Monolithic Wafer Scale Integration of Silicon Nanoribbon Sensors with CMOS for Lab-on-Chip Application
Abstract
:1. Introduction
2. Materials and Methods
3. Electrical Characterization
4. Results and Discussion
4.1. ID-VG Transfer Characteristics of N- and P-Type Transistors
4.2. Backgate Mode of Operation or ID-VBG Transfer Characteristics of N- and P-Type SiRi Pixel Sensors
4.3. Frontgate Mode of Operation or ID-VG Transfer Characteristics of N- and P-Type SiRi Pixel Sensors
4.4. Influence of Backgate Voltage on the SiRi Pixel Sensors in Frontgate Mode of Operation
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, G.-J.; Zhang, L.; Huang, M.J.; Luo, Z.H.H.; Tay, G.K.I.; Lim, E.-J.A.; Kang, T.G.; Chen, Y. Silicon nanowire biosensor for highly sensitive and rapid detection of Dengue virus. Sens. Actuators B Chem. 2010, 146, 138–144. [Google Scholar] [CrossRef]
- Lee, J.; Lee, J.M.; Lee, J.H.; Lee, W.H.; Uhm, M.; Park, B.G.; Kim, D.M.; Jeong, Y.J.; Kim, D.H. Complementary silicon nanowire hydrogen ion sensor with high sensitivity and voltage output. IEEE Electron Device Lett. 2012, 33, 1768–1770. [Google Scholar] [CrossRef]
- Park, I.; Li, Z.; Pisano, A.P.; Williams, R.S. Top-down fabricated silicon nanowire sensors for real-time chemical detection. Nanotechnology 2010, 21, 15501. [Google Scholar] [CrossRef] [PubMed]
- Yoo, S.K.; Yang, S.; Lee, J.H. Hydrogen iIon sensing using schottky contacted silicon nanowire FETs. IEEE Trans. Nanotechnol. 2008, 7, 745–748. [Google Scholar] [CrossRef]
- Nguyen, T.T.T.; Legallais, M.; Morisot, F.; Cazimajou, T.; Mouis, M.; Salem, B.; Stambouli, V.; Ternon, C. On the development of label-free DNA sensor using silicon nanonet field-effect transistors. Proceedings 2017, 1, 312. [Google Scholar] [CrossRef]
- Kim, A.; Ah, C.S.; Yu, H.Y.; Yang, J.-H.; Baek, I.-B.; Ahn, C.-G.; Park, C.W.; Jun, M.S.; Lee, S. Ultrasensitive, label-free, and real-time immunodetection using silicon field-effect transistors. Appl. Phys. Lett. 2007, 91, 103901. [Google Scholar] [CrossRef]
- Chiang, P.L.; Chou, T.C.; Wu, T.H.; Li, C.C.; Liao, C.D.; Lin, J.Y.; Tsai, M.H.; Tsai, C.C.; Sun, C.J.; Wang, C.H.; et al. Nanowire transistor-based ultrasensitive virus detection with reversible surface functionalization. Chem. Asian J. 2012, 7, 2073–2079. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wang, X.; Erramilli, S.; Mohanty, P. Silicon-based nanoelectronic field-effect pH sensor with local gate control. Appl. Phys. Lett. 2006, 89, 223512. [Google Scholar] [CrossRef]
- Tarasov, A.; Wipf, M.; Stoop, R.L.; Bedner, K.; Fu, W.; Guzenko, V.A.; Knopfmacher, O.; Calame, M.; Schönenberger, C. Understanding the electrolyte background for biochemical sensing with ion-sensitive field-effect transistors. ACS Nano 2012, 6, 9291–9298. [Google Scholar] [CrossRef] [PubMed]
- Shaya, O.; Shaked, M.; Doron, A.; Cohen, A.; Levy, I.; Rosenwaks, Y. Distinguishing between dipoles and field effects in molecular gated transistors. Appl. Phys. Lett. 2008, 93, 43509. [Google Scholar] [CrossRef]
- Jayakumar, G.; Legallais, M.; Hellström, P.-E.; Mouis, M.; P-Paintrand, I.; Stambouli, V.; Ternon, C.; Östling, M. Wafer-scale HfO2 encapsulated silicon nanowire field effect transistor for efficient label-free DNA hybridization detection in dry environment, Unpublished work. Nanotechnology 2018. under review. [Google Scholar]
- Lee, J.; Jang, J.; Choi, B.; Yoon, J.; Kim, J.-Y.; Choi, Y.-K.; Kim, D.M.; Kim, D.H.; Choi, S.-J. A highly responsive silicon nanowire/amplifier MOSFET hybrid biosensor. Sci. Rep. 2015, 5, 12286. [Google Scholar] [CrossRef] [PubMed]
- El Gamal, A.; Eltoukhy, H. CMOS image sensors. IEEE Circuits Devices Mag. 2005, 21, 6–20. [Google Scholar] [CrossRef]
- Jayakumar, G.; Asadollahi, A.; Hellström, P.-E.; Garidis, K.; Östling, M. Silicon nanowires integrated with CMOS circuits for biosensing application. Solid State. Electron. 2014, 98, 26–31. [Google Scholar] [CrossRef] [Green Version]
- Curreli, M.; Ishikawa, F.N.; Cote, R.J.; Thompson, M.E. Real-time label-free detection of biological entities using nanowire-based FETs. IEEE Trans. Nanotechnol. 2008, 7, 651–667. [Google Scholar] [CrossRef]
- Knopfmacher, O. Sensing with Silicon Nanowire Field-Effect Transistors. 2011. Available online: http://edoc.unibas.ch/1351/1/Diss_Knopfmacher.pdf (accessed on 18 September 2015).
- Rigante, S. High-K dielectric FinFETs on Si-bulk for ionic and biological sensing integrated circuits. EPFL 2014, 1, 18–19. [Google Scholar] [CrossRef]
- Legallais, M. Design, Study and Modeling of a New Generation of Silicon Nanowire Transistors for Biosensing Applications, Université Grenoble Alpes, 2017. Available online: https://tel.archives-ouvertes.fr/tel-01745520 (accessed on 25 May 2018).
- Zhang, G.-J.; Huang, M.J.; Luo, Z.H.H.; Tay, G.K.I.; Lim, E.-J.A.; Liu, E.T.; Thomsen, J.S. Highly sensitive and reversible silicon nanowire biosensor to study nuclear hormone receptor protein and response element DNA interactions. Biosens. Bioelectron. 2010, 26, 365–370. [Google Scholar] [CrossRef] [PubMed]
- Hellström, P.-E.; Jayakumar, G.; Östling, M. Integration of silicon nanowires with CMOS. Beyond-CMOS Nanodevices 2014, 1, 65–72. [Google Scholar] [CrossRef]
Reference | Fabrication Method, Substrate, Device Type | CMOS Integration | Application |
---|---|---|---|
Zhang et al. [1] | TD, SOI, SiRi | No | Dengue virus (DEN-2) |
Lee et al. [2] | TD, SOI, SiRi | No | pH |
Park et al. [3] | TD, SOI, SiRi | No | pH |
Yoo et al. [4] | TD, SOI, SiRi | No | pH |
Nguyen et al. [5] | BU, Bulk, SiNN-FET | No | DNA |
Kim et al. [6] | TD, SOI, SiRi | No | PSA cancer marker |
Chaing et al. [7] | TD, SOI, SiRi | No | H5N2 virus |
Chen et al. [8] | TD, SOI, SiRi | No | pH |
Tarasov et al. [9] | TD, SOI, SiRi | No | pH, ions |
Type of Pixel | Type of Transistor | Transistor Dimensions | Type of SiRi | SiRi Dimensions | ||
---|---|---|---|---|---|---|
L (μm) | W (μm) | L (μm) | W (μm) | |||
N | N | 1 | 4 | N | 1 | 1 |
P | P | 1 | 4 | P | 1 | 1 |
Electrical Parameter | P-Type SiRi Pixel (Backgate Mode) | P-Type SiRi Pixel (Frontgate Mode) |
---|---|---|
VTH variation (V) | 10 to 15 | 0.3 to 0.7 |
ION variation (A) | 1 × 10−6 to 2.5 × 10−6 | 4 × 10−7 to 3 × 10−6 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jayakumar, G.; Hellström, P.-E.; Östling, M. Monolithic Wafer Scale Integration of Silicon Nanoribbon Sensors with CMOS for Lab-on-Chip Application. Micromachines 2018, 9, 544. https://doi.org/10.3390/mi9110544
Jayakumar G, Hellström P-E, Östling M. Monolithic Wafer Scale Integration of Silicon Nanoribbon Sensors with CMOS for Lab-on-Chip Application. Micromachines. 2018; 9(11):544. https://doi.org/10.3390/mi9110544
Chicago/Turabian StyleJayakumar, Ganesh, Per-Erik Hellström, and Mikael Östling. 2018. "Monolithic Wafer Scale Integration of Silicon Nanoribbon Sensors with CMOS for Lab-on-Chip Application" Micromachines 9, no. 11: 544. https://doi.org/10.3390/mi9110544
APA StyleJayakumar, G., Hellström, P. -E., & Östling, M. (2018). Monolithic Wafer Scale Integration of Silicon Nanoribbon Sensors with CMOS for Lab-on-Chip Application. Micromachines, 9(11), 544. https://doi.org/10.3390/mi9110544