A Set of Platforms with Combinatorial and High-Throughput Technique for Gas Sensing, from Material to Device and to System
Abstract
:1. Introduction
2. Combinatorial and High-Throughput Technique for Screening Gas Sensor
2.1. Parallel Synthesis of Sensor Library
2.2. High-Throughput Screening of Sensor Library
3. Details of Handheld Wireless E-Nose System
3.1. Handheld Wireless E-Nose System with Selected Materials
3.2. Application in Discrimination of Gases
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Loutfi, A.; Coradeschi, S.; Mani, G.K.; Shankar, P.; Rayappan, J.B.B. Electronic noses for food quality: A review. J. Food Eng. 2015, 144, 103–111. [Google Scholar] [CrossRef]
- Feng, T.; Zhuang, H.; Ye, R.; Jin, Z.; Xu, X.; Xie, Z. Analysis of volatile compounds of Mesona Blumes, gum/rice extrudates via GC–MS and electronic nose. Sens. Actuators B Chem. 2011, 160, 964–973. [Google Scholar] [CrossRef]
- Romain, A.; Nicolas, J. Long Term Stability of Metal Oxide-Based Gas Sensors for E-nose Environmental Applications: An overview. Sens. Actuators B Chem. 2010, 146, 502–506. [Google Scholar] [CrossRef]
- Delgado-Rodríguez, M.; Ruiz-Montoya, M.; Giraldez, I.; López, R.; Madejón, E.; Díaz, M.J. Use of electronic nose and GC-MS in detection and monitoring some VOC. Atmos. Environ. 2012, 51, 278–285. [Google Scholar] [CrossRef] [Green Version]
- Tonacci, A.; Corda, D.; Tartarisco, G.; Pioggia, G.; Domenici, C. A Smart Sensor System for Detecting Hydrocarbon Volatile Organic Compounds in Sea Water. CLEAN Soil Air Water 2015, 43, 147–152. [Google Scholar] [CrossRef]
- Norman, A.; Stam, F.; Morrissey, A.; Hirschfelder, M.; Enderlein, D. Packaging effects of a novel explosion-proof gas sensor. Sens. Actuators B Chem. 2003, 95, 287–290. [Google Scholar] [CrossRef]
- Young, R.C.; Buttner, W.J.; Linnell, B.R.; Ramesham, R. Electronic nose for space program applications. Sens. Actuators B Chem. 2003, 93, 7–16. [Google Scholar] [CrossRef]
- Stetter, J.R.; Penrose, W.R. Understanding chemical sensors and chemical sensor arrays (electronic noses): Past, present, and future. Sens. Update 2002, 10, 189–229. [Google Scholar] [CrossRef]
- Wilson, D.M.; Garrod, S.; Hoyt, S.; McKennoch, S.; Booksh, K.S. Array optimization and preprocessing techniques for chemical sensing Microsystems. Sens. Update 2002, 10, 77–106. [Google Scholar] [CrossRef]
- Zhang, T.; Sun, Q.; Yang, L.; Yang, L.; Wang, J. Vigor detection of sweet corn seeds by optimal sensor array based on electronic nose. Trans. Chin. Soc. Agric. Eng. 2017, 33, 275–281. [Google Scholar]
- Chaudry, A.N.; Hawkin, T.M.; Travers, P.J. A method for selecting an optimum sensor array. Sens. Actuators B Chem. 2000, 69, 236–242. [Google Scholar] [CrossRef]
- Zhang, S.; Xie, C.; Zeng, D.; Li, H.; Liu, Y.; Cai, S. A sensor array optimization method for electronic noses with sub-arrays. Sens. Actuators B Chem. 2009, 142, 243–252. [Google Scholar] [CrossRef]
- Korotcenkov, G. Metal oxides for solid-state gas sensors: What determines our choice? Mater. Sci. Eng. B 2007, 139, 1–23. [Google Scholar] [CrossRef]
- Ding, X.; Zeng, D.; Zhang, S.; Xie, C. C-doped WO3 microtubes assembled by nanoparticles with ultrahigh sensitivityto toluene at low operating temperature. Sens. Actuators B Chem. 2011, 155, 86–92. [Google Scholar] [CrossRef]
- Lupan, O.; Ursaki, V.V.; Chai, G.; Chow, L.; Emelchenko, G.A.; Tiginyanu, I.M.; Gruzintsev, A.N.; Redkin, A.N. Selective hydrogen gas nanosensor using individual ZnO nanowire with fast response at room temperature. Sens. Actuators B Chem. 2010, 144, 56–66. [Google Scholar] [CrossRef]
- Yu, X.; Zeng, W. Fabrication and gas-sensing performance of nanorod-assembled SnO2, nanostructures. J. Mater. Sci. Mater. Electron. 2016, 27, 7448–7453. [Google Scholar] [CrossRef]
- Urasinska-Wojcik, B.; Vincent, T.A.; Chowdhury, M.F.; Gardner, J.W. Ultrasensitive WO3, gas sensors for NO2, detection in air and low oxygen environment. Sens. Actuators B Chem. 2017, 239, 1051–1059. [Google Scholar] [CrossRef]
- Anand, K.; Kaur, J.; Singh, R.C.; Thangaraj, R. Preparation and characterization of Ag-doped In2O3 nanoparticles gas sensor. Chem. Phys. Lett. 2017, 682, 140–146. [Google Scholar] [CrossRef]
- Frantzen, A.; Scheidtmann, J.; Frenzer, G.; Maier, W.F.; Jockel, J.; Brinz, T.; Sanders, D.; Simon, U. High-Throughput Method for the Impedance Spectroscopic Characterization of Resistive Gas sensors. Angew. Chem. Int. Ed. 2004, 43, 752–754. [Google Scholar] [CrossRef] [PubMed]
- Siemons, M.; Koplin, T.J.; Simon, U. Advances in high throughput screening of gas sensing materials. Appl. Surf. Sci. 2007, 254, 669–676. [Google Scholar] [CrossRef]
- Sanders, D.; Simon, U. High-Throughput Gas Sensing Screening of Surface-Doped In2O3. J. Comb. Chem. 2007, 9, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhang, S.; Hu, M.; Xie, C. Nanostructural ZnO based coplanar gas sensor arrays from the injection of metal chloride solutions: Device processing, gas-sensing properties and selectivity in liquors applications. Sens. Actuators B Chem. 2011, 153, 415–420. [Google Scholar] [CrossRef]
- Wang, J.; Gao, S.; Zhang, C.; Zhang, Q.; Li, Z.; Zhang, S. A high throughput platform screening of ppb-level sensitive materials for hazardous gases. Sens. Actuators B Chem. 2018, 276, 189–203. [Google Scholar] [CrossRef]
- Deng, Q.; Gao, S.; Lei, T.; Ling, Y.; Zhang, S.; Xie, C. Temperature & light modulation to enhance the selectivity of Pt-modified zinc oxide gas sensor. Sens. Actuators B Chem. 2017, 247, 903–915. [Google Scholar]
- Li, D.; Lei, T.; Zhang, S.; Shao, X.; Xie, C. A novel headspace integrated E-nose and its application in discrimination of Chinese medical herbs. Sens. Actuators B Chem. 2015, 221, 556–563. [Google Scholar] [CrossRef]
- Du, Y.; Gao, S.; Mao, Z.; Zhang, C.; Zhao, Q.; Zhang, S. Aerobic and anaerobic H2 sensing sensors fabricated by diffusion membranes depositing on Pt-ZnO film. Sens. Actuators B Chem. 2017, 252, 239–250. [Google Scholar] [CrossRef]
- Pardo, A.; Cámara, L.; Cabré, J.; Perera, A.; Cano, X.; Marco, S.; Bosch, J. Gas measurement systems based on IEEE1451.2 standard. Sens. Actuators B Chem. 2006, 116, 11–16. [Google Scholar] [CrossRef]
- Gutierrezosuna, R. Pattern analysis for machine olfaction: A review. IEEE Sens. J. 2002, 2, 189–202. [Google Scholar] [CrossRef]
- Geoffrey, M.; Kim-Anh, D.; Christophe, A. Analyzing Microarray Gene Expression Data; Wiley: New York, NY, USA, 2004. [Google Scholar] [CrossRef]
- Macías, M.M.; Agudo, J.E.; Manso, A.G.; Orellana, C.J.G.; Velasco, H.M.G.; Caballero, R.G. A compact and low cost electronic nose for aroma detection. Sensors 2013, 13, 5528–5541. [Google Scholar] [CrossRef] [PubMed]
Number | Element | Source | Number | Element | Source |
---|---|---|---|---|---|
1 | Null | Null | 5 | Pd | PdCl2 |
2 | Pt | H2PtCl·6H2O | 6 | Ir | IrCl4 |
3 | Rh | RhCl3 | 7 | Au | AuCl3·HCl |
4 | Ru | RuCl3·xH2O | 8 | Ag | AgNO3 |
Number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
Pt (mol%) | 0 | 0.05 | 0.09 | 0.13 | 0.2 | 0.3 | 0.4 | 0.5 |
Rh, Ru, Pd, Ir, Au, Ag (mol%) | 0.05 | 0.09 | 0.13 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 |
Data of Each Gas for Training | Data of Each Gas for Discrimination | Classification Rates (%) | ||||||
---|---|---|---|---|---|---|---|---|
Group 1 | Group 2 | Group 3 | Group 4 | Group 5 | Group 6 | All Samples | ||
9–16, 17–24 | 1–8 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
1–8, 17–24 | 9–16 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
1–8, 9–16 | 17–24 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
The Average Classification Rates | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mao, Z.; Wang, J.; Gong, Y.; Yang, H.; Zhang, S. A Set of Platforms with Combinatorial and High-Throughput Technique for Gas Sensing, from Material to Device and to System. Micromachines 2018, 9, 606. https://doi.org/10.3390/mi9110606
Mao Z, Wang J, Gong Y, Yang H, Zhang S. A Set of Platforms with Combinatorial and High-Throughput Technique for Gas Sensing, from Material to Device and to System. Micromachines. 2018; 9(11):606. https://doi.org/10.3390/mi9110606
Chicago/Turabian StyleMao, Zhenghao, Jianchao Wang, Youjin Gong, Heng Yang, and Shunping Zhang. 2018. "A Set of Platforms with Combinatorial and High-Throughput Technique for Gas Sensing, from Material to Device and to System" Micromachines 9, no. 11: 606. https://doi.org/10.3390/mi9110606
APA StyleMao, Z., Wang, J., Gong, Y., Yang, H., & Zhang, S. (2018). A Set of Platforms with Combinatorial and High-Throughput Technique for Gas Sensing, from Material to Device and to System. Micromachines, 9(11), 606. https://doi.org/10.3390/mi9110606