Editorial for the Special Issue on 3D Printed Microfluidic Devices
Conflicts of Interest
References
- Fuad, N.M.; Carve, M.; Kaslin, J.; Wlodkowic, D. Characterization of 3D-printed moulds for soft lithography of millifluidic devices. Micromachines 2018, 9, 116. [Google Scholar] [CrossRef] [PubMed]
- Beauchamp, M.J.; Gong, H.; Woolley, A.T.; Nordin, G.P. 3D printed microfluidic features using dose control in X, Y, and Z dimensions. Micromachines 2018, 9, 326. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.T.; Castro, K.; Bhattacharjee, N.; Folch, A. Digital manufacturing of selective porous barriers in microchannels using multi-material stereolithography. Micromachines 2018, 9, 125. [Google Scholar] [CrossRef] [PubMed]
- Kotz, F.; Risch, P.; Helmer, D.; Rapp, B.E. Highly fluorinated methacrylates for optical 3D printing of microfluidic devices. Micromachines 2018, 9, 115. [Google Scholar] [CrossRef] [PubMed]
- Brennan, M.D.; Bokhari, F.F.; Eddington, D.T. Open design 3D-printable adjustable micropipette that meets the ISO standard for accuracy. Micromachines 2018, 9, 191. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.; Choi, S. 3D-printed capillary circuits for calibration-free viscosity measurement of Newtonian and non-Newtonian fluids. Micromachines 2018, 9, 314. [Google Scholar] [CrossRef] [PubMed]
- van den Driesche, S.; Lucklum, F.; Bunge, F.; Vellekoop, M.J. 3D printing solutions for microfluidic chip-to-world connections. Micromachines 2018, 9, 71. [Google Scholar] [CrossRef] [PubMed]
- Serex, L.; Bertsch, A.; Renaud, P. Microfluidics: A new layer of control for extrusion-based 3D printing. Micromachines 2018, 9, 86. [Google Scholar] [CrossRef] [PubMed]
- Lim, C.; Lee, Y.; Kulinsky, L. Fabrication of a Malaria-Ab ELISA Bioassay Platform with Utilization of Syringe-Based and 3D Printed Assay Automation. Micromachines 2018, 9, 502. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Lee, J.; Park, S. 3D-Printed Microfluidic Platform Enabling Bacterial Preconcentration and DNA Purification for Molecular Detection of Pathogens in Blood. Micromachines 2018, 9, 472. [Google Scholar] [CrossRef] [PubMed]
- Sharafeldin, M.; Jones, A.; Rusling, J. 3D-Printed Biosensor Arrays for Medical Diagnostics. Micromachines 2018, 9, 394. [Google Scholar] [CrossRef] [PubMed]
- Carve, M.; Wlodkowic, D. 3D-printed chips: Compatibility of additive manufacturing photopolymeric substrata with biological applications. Micromachines 2018, 9, 91. [Google Scholar] [CrossRef] [PubMed]
- Lepowsky, E.; Amin, R.; Tasoglu, S. Assessing the Reusability of 3D-Printed Photopolymer Microfluidic Chips for Urine Processing. Micromachines 2018, 9, 520. [Google Scholar] [CrossRef] [PubMed]
- Lepowsky, E.; Tasoglu, S. Emerging Anti-Fouling Methods: Towards Reusability of 3D-Printed Devices for Biomedical Applications. Micromachines 2018, 9, 196. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tasoglu, S.; Folch, A. Editorial for the Special Issue on 3D Printed Microfluidic Devices. Micromachines 2018, 9, 609. https://doi.org/10.3390/mi9110609
Tasoglu S, Folch A. Editorial for the Special Issue on 3D Printed Microfluidic Devices. Micromachines. 2018; 9(11):609. https://doi.org/10.3390/mi9110609
Chicago/Turabian StyleTasoglu, Savas, and Albert Folch. 2018. "Editorial for the Special Issue on 3D Printed Microfluidic Devices" Micromachines 9, no. 11: 609. https://doi.org/10.3390/mi9110609
APA StyleTasoglu, S., & Folch, A. (2018). Editorial for the Special Issue on 3D Printed Microfluidic Devices. Micromachines, 9(11), 609. https://doi.org/10.3390/mi9110609