Meander Designer: Automatically Generating Meander Channel Designs
Abstract
:1. Introduction
- Realizing dedicated fluidic resistances: This case study considers the application of generating meanders with a dedicated fluidic resistance ranging from 10 to . To this end, the proposed tool is used to generate the designs, which are afterwards fabricated in polydimethylsiloxane (PDMS). Then, their actual fluidic resistances is systematically measured and compared to the desired values.
- Realizing dedicated mixing ratios of fluids: This case study considers the application of generating fluidic mixtures of different ratios. Therefore, a design is used containing two generated meanders with a dedicated resistance ratio, which eventually results in the desired mixing ratio. The mixing ratios 20:20, 40:20, 30:10, and 40:10 are tested, which also represent the used fluidic resistances in of the two meanders. The resulting designs are fabricated and, afterwards, the mixing ratios are measured.
2. Proposed Tool, Fabrication Process and Setup of Case Studies
2.1. Meander Designer
2.1.1. Problem Description
- the desired resistance,
- the viscosity of the used fluid,
- the desired width/height ratio of the meander boundary,
- the channel width and height (information of the channel cross section),
- the fabrication constraints such as a lateral channel distance and a minimum bend radius,
- the inlet and outlet positions, as well as
- an optional correction factor in the form of a constant or first order function.
- the meander design as a Scalable Vector Graphics (SVG) file (which is supported by all commonly used design tools),
- the resulting channel length,
- the resulting channel volume,
- the resulting boundary size of the meander (the width and height), as well as
- the logging file, which serves as a documentation of the generated meander.
2.1.2. Description of the Online Tool
2.2. Fabrication Process
2.2.1. Master Fabrication
2.2.2. Chip Fabrication
2.3. Setup of Case Studies
2.3.1. Setup for Realizing Dedicated Resistances
2.3.2. Setup for Realizing Dedicated Mixing Ratios
3. Results
3.1. Results for Dedicated Resistances
- Let’s assume the is equal to 10, 15, 20, 25, 30, 40, or 50.
- This allows for determining the by using the lump model, which gives 11.48, 16.91, 22.35, 27.78, 33.22, 44.09, and 54.96.
- When the Meander Designer would now be applied again to realize meanders with the and additionally taking the correction factor into account, exactly the designs would result as before when no correction factor was used.
3.2. Results for Dedicated Mixing Ratios
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Setup for Realizing Dedicated Resistances
Appendix B. Setup for Realizing Dedicated Mixing Ratios
References
- Gomez-Sjoeberg, R.; Leyrat, A.A.; Pirone, D.M.; Chen, C.S.; Quake, S.R. Versatile, fully automated, microfluidic cell culture system. Anal. Chem. 2007, 79, 8557–8563. [Google Scholar] [CrossRef] [PubMed]
- Ng, A.H.; Li, B.B.; Chamberlain, M.D.; Wheeler, A.R. Digital microfluidic cell culture. Annu. Rev. Biomed. Eng. 2015, 17, 91–112. [Google Scholar] [CrossRef] [PubMed]
- Grünberger, A.; Paczia, N.; Probst, C.; Schendzielorz, G.; Eggeling, L.; Noack, S.; Wiechert, W.; Kohlheyer, D. A disposable picolitre bioreactor for cultivation and investigation of industrially relevant bacteria on the single cell level. Lab Chip 2012, 12, 2060–2068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dittrich, P.S.; Manz, A. Lab-on-a-chip: Microfluidics in drug discovery. Nat. Rev. Drug Discov. 2006, 5, 210. [Google Scholar] [CrossRef] [PubMed]
- Sabhachandani, P.; Motwani, V.; Cohen, N.; Sarkar, S.; Torchilin, V.; Konry, T. Generation and functional assessment of 3D multicellular spheroids in droplet based microfluidics platform. Lab Chip 2016, 16, 497–505. [Google Scholar] [CrossRef] [PubMed]
- Courtney, M.; Chen, X.; Chan, S.; Mohamed, T.; Rao, P.P.; Ren, C.L. Droplet microfluidic system with on-demand trapping and releasing of droplet for drug screening applications. Anal. Chem. 2016, 89, 910–915. [Google Scholar] [CrossRef] [PubMed]
- Shamsi, M.H.; Choi, K.; Ng, A.H.; Wheeler, A.R. A digital microfluidic electrochemical immunoassay. Lab Chip 2014, 14, 547–554. [Google Scholar] [CrossRef] [PubMed]
- Gervais, L.; De Rooij, N.; Delamarche, E. Microfluidic chips for point-of-care immunodiagnostics. Adv. Mater. 2011, 23, H151–H176. [Google Scholar] [CrossRef] [PubMed]
- Martinez, A.W.; Phillips, S.T.; Whitesides, G.M.; Carrilho, E. Diagnostics for the developing world: Microfluidic paper-based analytical devices. Anal. Chem. 2010, 82, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Streets, A.M.; Zhang, X.; Cao, C.; Pang, Y.; Wu, X.; Xiong, L.; Yang, L.; Fu, Y.; Zhao, L.; Tang, F.; et al. Microfluidic single-cell whole-transcriptome sequencing. Proc. Natl. Acad. Sci. USA 2014, 111, 7048–7053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gawad, C.; Koh, W.; Quake, S.R. Single-cell genome sequencing: Current state of the science. Nat. Rev. Genet. 2016, 17, 175. [Google Scholar] [CrossRef] [PubMed]
- Redman, E.A.; Mellors, J.S.; Starkey, J.A.; Ramsey, J.M. Characterization of intact antibody drug conjugate variants using microfluidic capillary electrophoresis–Mass spectrometry. Anal. Chem. 2016, 88, 2220–2226. [Google Scholar] [CrossRef] [PubMed]
- Frank, P.; Haefner, S.; Elstner, M.; Richter, A. Fully-programmable, low-cost, “do-it-yourself” pressure source for general purpose use in the microfluidic laboratory. Inventions 2016, 1, 13. [Google Scholar] [CrossRef]
- Frank, P.; Gräfe, D.; Probst, C.; Haefner, S.; Elstner, M.; Appelhans, D.; Kohlheyer, D.; Voit, B.; Richter, A. Autonomous integrated microfluidic circuits for chip-level flow control utilizing chemofluidic transistors. Adv. Funct. Mater. 2017, 27, 1700430. [Google Scholar] [CrossRef]
- Grimmer, A.; Haselmayr, W.; Wille, R. Automated Dimensioning of Networked Labs-on-Chip. Comput.-Aided Des. Integr. Circuits Syst. 2018. [Google Scholar] [CrossRef]
- Whitesides, G.M. The origins and the future of microfluidics. Nature 2006, 442, 368–373. [Google Scholar] [CrossRef] [PubMed]
- Grimmer, A.; Chen, X.; Hamidović, M.; Haselmayr, W.; Ren, C.L.; Wille, R. Simulation before fabrication: A case study on the utilization of simulators for the design of droplet microfluidic networks. RSC Adv. 2018, 8, 34733–34742. [Google Scholar] [CrossRef]
- Grimmer, A.; Hamidović, M.; Haselmayr, W.; Wille, R. Advanced Simulation of Droplet Microfluidics. arXiv, 2018; arXiv:1810.01164. [Google Scholar]
- Mark, D.; Haeberle, S.; Roth, G.; von Stetten, F.; Zengerle, R. Microfluidic Lab-on-a-Chip platforms: Requirements, characteristics and applications. Chem. Soc. Rev. 2010, 39, 1153–1182. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Brisk, P.; Grover, W.H. Random design of microfluidics. Lab Chip 2016, 16, 4212–4219. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Chakrabarty, K. Design and Testing of Digital Microfluidic Biochips; Springer: New York, NY, USA, 2012. [Google Scholar]
- Grimmer, A.; Klepic, B.; Ho, T.Y.; Wille, R. Sound Valve-Control for Programmable Microfluidic Devices. In Proceedings of the Asia and South Pacific Design Automation Conference, Jeju Island, Korea, 22–25 January 2018. [Google Scholar]
- Chakrabarty, K.; Fair, R.B.; Zeng, J. Design tools for digital microfluidic biochips: Toward functional diversification and more than Moore. Comput.-Aided Des. Integr. Circuits Syst. 2010, 29, 1001–1017. [Google Scholar] [CrossRef]
- Pop, P.; Minhass, W.H.; Madsen, J. Microfluidic Very Large Scale Integration (VLSI); Springer: Cham, Switzerland, 2016. [Google Scholar]
- Keszocze, O.; Wille, R.; Ho, T.Y.; Drechsler, R. Exact one-pass synthesis of digital microfluidic biochips. In Proceedings of the Design Automation Conference, San Francisco, CA, USA, 1–5 June 2014; pp. 1–6. [Google Scholar]
- McDaniel, J.; Grover, W.H.; Brisk, P. The case for semi-automated design of microfluidic very large scale integration (mVLSI) chips. In Proceedings of the Design, Automation and Test in Europe, Lausanne, Switzerland, 27–31 March 2017; pp. 1793–1798. [Google Scholar]
- Grimmer, A.; Wang, Q.; Yao, H.; Ho, T.Y.; Wille, R. Close-to-optimal placement and routing for continuous-flow microfluidic biochips. In Proceedings of the Asia and South Pacific Design Automation Conference, Chiba, Japan, 16–19 January 2017; pp. 530–535. [Google Scholar]
- Paschew, G.; Schreiter, J.; Voigt, A.; Pini, C.; Chávez, J.P.; Allerdißen, M.; Marschner, U.; Siegmund, S.; Schüffny, R.; Jülicher, F.; et al. Autonomous chemical oscillator circuit based on bidirectional chemical-microfluidic coupling. Adv. Mater. Technol. 2016, 1, 1600005. [Google Scholar] [CrossRef]
- Oh, K.W.; Lee, K.; Ahn, B.; Furlani, E.P. Design of pressure-driven microfluidic networks using electric circuit analogy. Lab Chip 2012, 12, 515–545. [Google Scholar] [CrossRef] [PubMed]
- Dertinger, S.K.; Chiu, D.T.; Jeon, N.L.; Whitesides, G.M. Generation of gradients having complex shapes using microfluidic networks. Anal. Chem. 2001, 73, 1240–1246. [Google Scholar] [CrossRef]
- Lake, M.; Narciso, C.; Cowdrick, K.; Storey, T.; Zhang, S.; Zartman, J.; Hoelzle, D. Microfluidic device design, fabrication, and testing protocols. Protoc. Exch. 2015, 10. [Google Scholar] [CrossRef]
- Waldbaur, A.; Carneiro, B.; Hettich, P.; Wilhelm, E.; Rapp, B.E. Computer-aided microfluidics (CAMF): From digital 3D-CAD models to physical structures within a day. Microfluid. Nanofluid. 2013, 15, 625–635. [Google Scholar] [CrossRef]
- Fuerstman, M.J.; Lai, A.; Thurlow, M.E.; Shevkoplyas, S.S.; Stone, H.A.; Whitesides, G.M. The pressure drop along rectangular microchannels containing bubbles. Lab Chip 2007, 7, 1479–1489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hart, P.E.; Nilsson, N.J.; Raphael, B. A formal basis for the heuristic determination of minimum cost paths. Trans. Syst. Sci. Cybern. 1968, 4, 100–107. [Google Scholar] [CrossRef]
- Bjorck, A. Numerical Methods for Least Squares Problems; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 1996; Volume 51. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grimmer, A.; Frank, P.; Ebner, P.; Häfner, S.; Richter, A.; Wille, R. Meander Designer: Automatically Generating Meander Channel Designs. Micromachines 2018, 9, 625. https://doi.org/10.3390/mi9120625
Grimmer A, Frank P, Ebner P, Häfner S, Richter A, Wille R. Meander Designer: Automatically Generating Meander Channel Designs. Micromachines. 2018; 9(12):625. https://doi.org/10.3390/mi9120625
Chicago/Turabian StyleGrimmer, Andreas, Philipp Frank, Philipp Ebner, Sebastian Häfner, Andreas Richter, and Robert Wille. 2018. "Meander Designer: Automatically Generating Meander Channel Designs" Micromachines 9, no. 12: 625. https://doi.org/10.3390/mi9120625
APA StyleGrimmer, A., Frank, P., Ebner, P., Häfner, S., Richter, A., & Wille, R. (2018). Meander Designer: Automatically Generating Meander Channel Designs. Micromachines, 9(12), 625. https://doi.org/10.3390/mi9120625