Lattice Boltzmann Simulation of the Hydrodynamic Entrance Region of Rectangular Microchannels in the Slip Regime
Abstract
:1. Introduction
2. Literature Review
3. Models
3.1. Mathmatical Models of Slip Flow through Rectangular Microchannels
3.2. Lattice Boltzmann Model
3.2.1. Lattice Boltzmann Equation and the Corresponding Macroscopic Equation
3.2.2. Kinetic Boundary Conditions for LBE
4. Simulation Results and Discussion
4.1. Developing Velocity Profiles
4.2. The Effects of Aspect Ratio and Knudsen Numeber on the
4.3. Uncertainty Analysis
4.4. Hydrodynamic Development Length
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Nomenclature
Flow area (m2) | |
Minor semi-axis of rectangle (m) | |
Major semi-axis of rectangle (m) | |
Particle streaming speed | |
Discrete velocity | |
Speed of sound (m/s) | |
Constant = | |
Hydraulic diameter = (m) | |
Fanning friction factor = | |
Apparent friction factor accounting for developing flows dimensionless developing flows, dimensionless | |
Particle distribution function | |
Local-equilibrium distribution function | |
Knudsen number = | |
Modified Knudsen number (for liquids) = | |
Hagenbach’s factor | |
Hydrodynamic entrance length (m) | |
Dimensionless hydrodynamic entrance length = | |
Grid number in the characteristic length | |
Normal coordinate | |
Perimeter (m) | |
Pressure (N/m2) | |
Apparent Poiseuille number | |
Fluid volumetric flow rate (kg/s) | |
Specific gas constant (m2/(s2∙K)) | |
Reflection coefficient | |
Re | Reynolds number = |
Reference gas temperature (K) | |
A function of the independent variables | |
Uncertainty in estimating | |
Average velocity (m/s) | |
Maximum velocity (m/s) | |
Velocity components (m/s) | |
Dimensionless channel length = | |
Coordinate in flow direction (m) | |
Independent variable | |
Cartesian coordinates (m) | |
Greek Symbols | |
Eigenvalues | |
Aspect ratio = a/b | |
Molecular mean free path (m) | |
Slip length (m) | |
Kinematic viscosity (m2/s) | |
Dynamic viscosity (Ns/m2) | |
Density (kg/m3) | |
Tangential momentum accommodation coefficient | |
Dimensionless collision relaxation time | |
Subscripts | |
Apparent | |
Bounce-back | |
Equilibrium | |
Mean | |
Maximum | |
Specular-reflection | |
Weighting coefficient | |
Wall surface |
References
- Ho, C.; Tai, Y. Micro-Electro-Mechanical-Systems (MEMS) and fluid flows. Annu. Rev. Fluid Mech. 1998, 30, 579–612. [Google Scholar] [CrossRef]
- Gad-El-Hak, M. The fluid mechanics of microdevices—The freeman scholar lecture. J. Fluids Eng. 1999, 121, 5–33. [Google Scholar] [CrossRef]
- Qu, H. CMOS MEMS fabrication technologies and devices. Micromachines 2016, 7, 14. [Google Scholar] [CrossRef]
- Lau, G.; Shrestha, M. Ink-Jet Printing of Micro-Electro-Mechanical Systems (MEMS). Micromachines 2017, 8, 194. [Google Scholar] [CrossRef]
- Weng, H. Combined forced and thermocreep convection through a long horizontal microchannel. Micromachines 2016, 7, 33. [Google Scholar] [CrossRef]
- Raisi, A.; Ghasemi, B.; Aminossadati, S.M. A Numerical study on the forced convection of laminar nanofluid in a microchannel with both slip and no-slip conditions. Numer. Heat Transf. Part A Appl. 2011, 59, 114–129. [Google Scholar] [CrossRef]
- Arkilic, E.B.; Schmidt, M.A.; Breuer, K.S. Gaseous slip flow in long microchannels. J. Microelectromech. Syst. 1997, 6, 167–178. [Google Scholar] [CrossRef]
- Hadjiconstantinou, N.G. The limits of Navier–Stokes theory and kinetic extensions for describing small-scale gaseous hydrodynamics. Phys. Fluids 2006, 18, 111301. [Google Scholar] [CrossRef]
- Arkilic, E.B.; Breuer, K.S.; Schmidt, M.A. Mass flow and tangential momentum accommodation in silicon micromachined channels. J. Fluid Mech. 2001, 437, 29–43. [Google Scholar] [CrossRef]
- Chen, S.; Chen, H.; Martnez, D.; Matthaeus, W. Lattice Boltzmann model for simulation of magnetohydrodynamics. Phys. Rev. Lett. 1991, 67, 3776–3779. [Google Scholar] [CrossRef] [PubMed]
- Morini, G.L.; Spiga, M. Slip flow in rectangular microtubes. Microscale Thermophys. Eng. 1998, 2, 273–282. [Google Scholar]
- Morini, G.L.; Spiga, M.; Tartarini, P. The rarefaction effect on the friction factor of gas flow in microchannels. Superlattices Microstruct. 2004, 35, 587–599. [Google Scholar] [CrossRef]
- Vocale, P.; Spiga, M. Slip flow in the hydrodynamic entrance region of microchannels. Int. J. Microscale Nanoscale Therm. Fluid Transp. Phenom. 2013, 4, 175–191. [Google Scholar]
- Renksizbulut, M.; Niazmand, H.; Tercan, G. Slip-flow and heat transfer in rectangular microchannels with constant wall temperature. Int. J. Therm. Sci. 2006, 45, 870–881. [Google Scholar] [CrossRef]
- Jiang, P.X.; Fan, M.H.; Si, G.S.; Ren, Z.P. Thermal–hydraulic performance of small scale micro-channel and porous-media heat-exchangers. Int. J. Heat Mass Transf. 2001, 44, 1039–1051. [Google Scholar] [CrossRef]
- Steinke, M.E.; Kandlikar, S.G. Single-phase liquid friction factors in microchannels. Int. J. Therm. Sci. 2006, 45, 1073–1083. [Google Scholar] [CrossRef]
- Li, C.W.; Jia, L.; Zhang, T.T. The entrance effect on gases flow characteristics in micro-tube. Therm. Sci. 2009, 18, 353–357. [Google Scholar] [CrossRef]
- Palm, B. Heat transfer in microchannels. Microscale Thermophys. Eng. 2001, 5, 155–175. [Google Scholar] [CrossRef]
- Mishan, Y.; Mosyak, A.; Pogrebnyak, E.; Hetsroni, G. Effect of developing flow and thermal regime on momentum and heat transfer in micro-scale heat sink. Int. J. Heat Mass Transf. 2007, 50, 3100–3114. [Google Scholar] [CrossRef]
- Zhang, C.; Lian, Y.; Yu, X.; Liu, W.; Teng, J.; Xu, T.; Hsu, C.; Chang, Y.; Greif, R. Numerical and experimental studies on laminar hydrodynamic and thermal characteristics in fractal-like microchannel networks. Part A: Comparisons of two numerical analysis methods on friction factor and Nusselt number. Int. J. Heat Mass Transf. 2013, 66, 930–938. [Google Scholar] [CrossRef]
- Chai, L.; Xia, G.; Wang, L.; Zhou, M.; Cui, Z. Heat transfer enhancement in microchannel heat sinks with periodic expansion-constriction cross-sections. Int. J. Heat Mass Transf. 2013, 62, 741–751. [Google Scholar] [CrossRef]
- He, X.; Luo, L. Lattice Boltzmann Model for the incompressible Navier–Stokes Equation. J. Stat. Phys. 1997, 88, 927–944. [Google Scholar] [CrossRef]
- Qian, Y.H.; D’Humires, D.; Lallemand, P. Lattice BGK models for Navier–Stokes Equation. EPL 2007, 17, 479–484. [Google Scholar] [CrossRef]
- Chen, H.; Chen, S.; Matthaeus, W.H. Recovery of the Navier–Stokes equations using a lattice Boltzmann method. Phys. Rev. A 1992, 45, R5339–R5342. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Doolen, G.D. Lattice boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 1998, 30, 329–364. [Google Scholar] [CrossRef]
- Nie, X.B.; Doolen, G.D.; Chen, S.Y. Lattice-Boltzmann simulations of fluid flows in MEMS. J. Stat. Phys. 2002, 107, 279–289. [Google Scholar] [CrossRef]
- Lim, C.Y.; Shu, C.; Niu, X.D.; Chew, Y.T. Application of lattice Boltzmann method to simulate microchannel flows. Phys. Fluids 2002, 14, 2299–2308. [Google Scholar] [CrossRef]
- Dorari, E.; Saffar-Avval, M.; Mansoori, Z. Numerical simulation of gas flow and heat transfer in a rough microchannel using the lattice Boltzmann method. Phys. Rev. E 2015, 92, 63034. [Google Scholar] [CrossRef] [PubMed]
- Succi, S. Mesoscopic Modeling of slip motion at fluid-solid interfaces with heterogeneous catalysis. Phys. Rev. Lett. 2002, 89, 064502. [Google Scholar] [CrossRef] [PubMed]
- Sbragaglia, M.; Succi, S. Analytical calculation of slip flow in lattice Boltzmann models with kinetic boundary conditions. Phys. Fluids 2005, 17, 93602. [Google Scholar] [CrossRef]
- Lee, T.; Lin, C. Rarefaction and compressibility effects of the lattice-Boltzmann-equation method in a gas microchannel. Phys. Rev. E 2005, 71, 46706. [Google Scholar] [CrossRef] [PubMed]
- Jeong, N.; Lin, C.L.; Choi, D.H. Lattice Boltzmann study of three-dimensional gas microchannel flows. J. Micromech. Microeng. 2006, 16, 1749–1751. [Google Scholar] [CrossRef]
- Tang, G.H.; Tao, W.Q.; He, Y.L. Lattice Boltzmann method for gaseous microflows using kinetic theory boundary conditions. Phys. Fluids 2005, 17, 058101. [Google Scholar] [CrossRef]
- Guo, Z.L.; Zhao, T.S.; Shi, Y. Physical symmetry, spatial accuracy, and relaxation time of the lattice Boltzmann equation for microgas flows. J. Appl. Phys. 2006, 99, 074903. [Google Scholar] [CrossRef]
- Guo, Z.L.; Zheng, C.; Shi, B. Lattice Boltzmann equation with multiple effective relaxation times for gaseous microscale flow. Phys. Rev. E 2008, 77, 36707. [Google Scholar] [CrossRef] [PubMed]
- Verhaeghe, F.; Luo, L.S.; Blanpain, B. Lattice Boltzmann modeling of microchannel flow in slip flow regime. J. Comput. Phys. 2009, 228, 147–157. [Google Scholar] [CrossRef]
- Zhang, Y.; Qin, R.; Emerson, D.R. Lattice Boltzmann simulation of rarefied gas flows in microchannels. Phys. Rev. E 2005, 71, 47702. [Google Scholar] [CrossRef] [PubMed]
- Montessori, A.; Prestininzi, P.; La Rocca, M.; Falcucci, G.; Succi, S.; Kaxiras, E. Effects of Knudsen diffusivity on the effective reactivity of nanoporous catalyst media. J. Comput. Sci. 2016, 17, 377–383. [Google Scholar] [CrossRef]
- Montemore, M.M.; Montessori, A.; Succi, S.; Barroo, C.; Falcucci, G.; Bell, D.C.; Kaxiras, E. Effect of nanoscale flows on the surface structure of nanoporous catalysts. J. Chem. Phys. 2017, 146, 214703. [Google Scholar] [CrossRef] [PubMed]
- Montessori, A.; Prestininzi, P.; La, R.M.; Succi, S. Publisher’s note: Lattice Boltzmann approach for complex nonequilibrium flows. Phys. Rev. E 2015, 92, 069901. [Google Scholar] [CrossRef] [PubMed]
- Montessori, A.; Amadei, C.A.; Falcucci, G.; Sega, M.; Vecitis, C.D.; Succi, S. Extended friction elucidates the breakdown of fast water transport in graphene oxide membranes. EPL 2016, 116, 54002. [Google Scholar] [CrossRef]
- Falcucci, G.; Succi, S.; Montessori, A.; Melchionna, S.; Prestininzi, P.; Barroo, C.; Bell, D.C.; Biener, M.M.; Biener, J.; Zugic, B.; et al. Mapping reactive flow patterns in monolithic nanoporous catalysts. Microfluid. Nanofluid. 2016, 20, 1–13. [Google Scholar] [CrossRef]
- Falcucci, G.; Amati, G.; Krastev, V.K.; Montessori, A.; Yablonsky, G.S.; Succi, S. Heterogeneous catalysis in pulsed-flow reactors with nanoporous gold hollow spheres. Chem. Eng. Sci. 2017, 166, 274–282. [Google Scholar] [CrossRef]
- Duan, Z.; Muzychka, Y.S. Slip flow in the hydrodynamic entrance region of circular and noncircular microchannels. J. Fluids Eng. 2010, 132, 11201. [Google Scholar] [CrossRef]
- Duan, Z.; Muzychka, Y.S. Slip flow in non-circular microchannels. Microfluid. Nanofluid. 2007, 3, 473–484. [Google Scholar] [CrossRef]
- Tang, G.; Tao, W.; He, Y. Lattice Boltzmann method for simulating gas flow in microchannels. Int. J. Mod. Phys. C 2004, 15, 335–347. [Google Scholar] [CrossRef]
- Zou, Q.; He, X. On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Phys. Fluids 1997, 9, 1591–1598. [Google Scholar] [CrossRef]
- Guo, Z.; Zheng, C.; Shi, B. Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method. Chin. Phys. 2002, 11, 366. [Google Scholar]
- Guo, Z.; Shi, B.; Zhao, T.S.; Zheng, C. Discrete effects on boundary conditions for the lattice Boltzmann equation in simulating microscale gas flows. Phys. Rev. E 2007, 76, 056704. [Google Scholar] [CrossRef] [PubMed]
- Duan, Z. Second-order gaseous slip flow models in long circular and noncircular microchannels and nanochannels. Microfluid. Nanofluid. 2012, 12, 805–820. [Google Scholar] [CrossRef]
- Sun, H.; Tao, G.; Vega, S.; Al-Suwaidi, A. Simulation of gas flow in organic-rich mudrocks using digital rock physics. J. Nat. Gas Sci. Eng. 2017, 41, 17–29. [Google Scholar] [CrossRef]
- Niazmand, H.; Tercan, G.; Renksizbulut, M. Entrance region flows in rectangular microchannels with constant wall temperature. In Proceedings of the International Conference on Microchannels and Minichannels, Toronto, ON, Canada, 13–15 June 2005; pp. 411–418. [Google Scholar]
- Moffat, R.J. Describing uncertainties in experimental results. Exp. Therm. Fluid Sci. 1988, 1, 3–17. [Google Scholar] [CrossRef]
- Han, L.S. Hydrodynamic entrance lengths for incompressible laminar flow in rectangular ducts. J. Appl. 1960, 27, 403–409. [Google Scholar] [CrossRef]
- Fleming, D.P.; Sparrow, E.M. Flow in the hydrodynamic entrance region of ducts of arbitrary Cross Section. J. Heat Transf. 1969, 91, 345–354. [Google Scholar] [CrossRef]
- Atkinson, B.; Brocklebank, M.P.; Card, C.C.; Smith, J.M. Low Reynolds number developing flows. AIChE J. 1969, 15, 548–553. [Google Scholar] [CrossRef]
- Wiginton, C.L.; Dalton, C. Incompressible Laminar flow in the entrance region of a rectangular duct. J. Appl. Mech. 1970, 37, 854–856. [Google Scholar] [CrossRef]
- Chen, R.Y. Flow in the entrance region at low Reynolds numbers. J. Fluids Eng. 1973, 95, 153–158. [Google Scholar] [CrossRef]
- Sparrow, E.M.; Hixon, C.W.; Shavit, G. Experiments on laminar flow development in rectangular ducts. J. Basic Eng. 1967, 89, 116–124. [Google Scholar] [CrossRef]
- Goldstein, R.J.; Kreid, D.K. Measurement of laminar flow development in a square duct using a Laser-Doppler Flowmeter. J. Appl. Mech. 1967, 34, 813–818. [Google Scholar] [CrossRef]
- Beavers, G.S.; Sparrow, E.M.; Magnuson, R.A. Experiments on hydrodynamically developing flow in rectangular ducts of arbitrary aspect ratio. Int. J. Heat Mass Transf. 1970, 13, 689–701. [Google Scholar] [CrossRef]
- Muchnik, G.F.; Solomonov, S.D.; Gordon, A.R. Hydrodynamic development of a laminar velocity field in rectangular channels. J. Eng. Phys. 1973, 25, 1268–1271. [Google Scholar] [CrossRef]
- Durst, F.; Ray, S.; Unsal, B.; Bayoumi, O.A. The development lengths of laminar pipe and channel flows. J. Fluids Eng. 2005, 127, 1154–1160. [Google Scholar] [CrossRef]
- Renksizbulut, M.; Niazmand, H. Laminar flow and heat transfer in the entrance region of trapezoidal channels with constant wall temperature. J. Heat Transf. 2006, 128, 63–74. [Google Scholar] [CrossRef]
- Ahmad, T.; Hassan, I. Experimental analysis of microchannel entrance length characteristics using microparticle image velocimetry. J. Fluids Eng. 2010, 132, 041102. [Google Scholar] [CrossRef]
- Galvis, E.; Yarusevych, S.; Culham, J. Incompressible laminar developing flow in microchannels. J. Fluids Eng. 2012, 134, 014503. [Google Scholar] [CrossRef]
- Hettiarachchi, H.D.M.; Golubovic, M.; Worek, W.M. Three-dimensional laminar slip-flow and heat transfer in a rectangular microchannel with constant wall temperature. Int. J. Heat Mass Transf. 2008, 51, 5088–5096. [Google Scholar] [CrossRef]
Kn | L/Dh Re | ||||||||
---|---|---|---|---|---|---|---|---|---|
ε = 0.2 | ε = 0.5 | ε = 1 | |||||||
Present Results | Data [67] | Error (%) | Present Results | Data [67] | Error (%) | Present Results | Data [67] | Error (%) | |
0.001 | 0.07825 | 0.07782 | 0.55 | 0.08892 | 0.08858 | 0.38 | 0.09073 | 0.09028 | 0.50 |
0.02 | 0.07835 | 0.07791 | 0.56 | 0.08980 | 0.08942 | 0.42 | 0.09530 | 0.09483 | 0.49 |
0.04 | 0.07844 | 0.07801 | 0.55 | 0.09027 | 0.08974 | 0.59 | 0.09899 | 0.09847 | 0.53 |
0.06 | 0.07874 | 0.07836 | 0.48 | 0.09054 | 0.09025 | 0.32 | 0.10258 | 0.10226 | 0.31 |
0.08 | 0.07925 | 0.07885 | 0.50 | 0.09203 | 0.09163 | 0.43 | 0.10889 | 0.10841 | 0.44 |
0.1 | 0.08026 | 0.07985 | 0.51 | 0.09212 | 0.09164 | 0.52 | 0.11442 | 0.11407 | 0.31 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, N.; Duan, Z.; Ma, H.; Su, L.; Liang, P.; Ning, X.; He, B.; Zhang, X. Lattice Boltzmann Simulation of the Hydrodynamic Entrance Region of Rectangular Microchannels in the Slip Regime. Micromachines 2018, 9, 87. https://doi.org/10.3390/mi9020087
Ma N, Duan Z, Ma H, Su L, Liang P, Ning X, He B, Zhang X. Lattice Boltzmann Simulation of the Hydrodynamic Entrance Region of Rectangular Microchannels in the Slip Regime. Micromachines. 2018; 9(2):87. https://doi.org/10.3390/mi9020087
Chicago/Turabian StyleMa, Niya, Zhipeng Duan, Hao Ma, Liangbin Su, Peng Liang, Xiaoru Ning, Boshu He, and Xin Zhang. 2018. "Lattice Boltzmann Simulation of the Hydrodynamic Entrance Region of Rectangular Microchannels in the Slip Regime" Micromachines 9, no. 2: 87. https://doi.org/10.3390/mi9020087
APA StyleMa, N., Duan, Z., Ma, H., Su, L., Liang, P., Ning, X., He, B., & Zhang, X. (2018). Lattice Boltzmann Simulation of the Hydrodynamic Entrance Region of Rectangular Microchannels in the Slip Regime. Micromachines, 9(2), 87. https://doi.org/10.3390/mi9020087