Study of the Carrier-Aided Thin Film Electrode Array Design for Cochlear Insertion
Abstract
:1. Introduction
2. Preparations of TFEA-Kapton
3. Characterizations of Bending Stiffness
3.1. Theoretical Analyses of the TFEA-Kapton’s Bending Stiffness
- (1)
- The planar assumption: Plane sections before bending remain plane after bending. This assumption neglects the sheer stress Vr on the transverse plane. The load, in this case, is such that no twisting occurred.
- (2)
- The constant transverse plane assumption: All longitudinal elements have the same length, transverse surface, and material properties.
- (3)
- The neutral plane continuity assumption: The neutral plane of the laminate remains continuous with no change in length when bending.
3.2. Bending Experiment
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Zeng, F.-G.; Rebscher, S.; Harrison, W.; Sun, X.; Feng, H. Cochlear implants: System design, integration, and evaluation. Biomed. Eng. IEEE Rev. 2008, 1, 115–142. [Google Scholar] [CrossRef] [PubMed]
- Zeng, F.-G. Challenges in improving cochlear implant performance and accessibility. IEEE Trans. Biomed. Eng. 2017, 68, 1662–1664. [Google Scholar] [CrossRef] [PubMed]
- Wise, K.D.; Sodagar, A.M.; Yao, Y.; Gulari, M.N.; Perlin, G.E.; Najafi, K. Microelectrodes, microelectronics, and implantable neural microsystems. Proc. IEEE 2008, 96, 1184–1202. [Google Scholar] [CrossRef]
- Gwon, T.M.; Min, K.S.; Kim, J.H.; Oh, S.H.; Lee, H.S.; Park, M.-H.; Kim, S.J. Fabrication and evaluation of an improved polymer-based cochlear electrode array for atraumatic insertion. Biomed. Microdevices 2015, 17, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.B.; Wise, K.D. A Thin-film cochlear electrode array with integrated position sensing. J. Microelectromech. Syst. 2009, 18, 385–395. [Google Scholar] [CrossRef]
- Lawand, N.; French, P.; Briare, J.; Frijns, J. Design and fabrication of stiff silicon probes: A step towards sophisticated cochlear implant electrodes. Proced. Eng. 2011, 25, 2011. [Google Scholar] [CrossRef]
- Johnson, A.C.; Wise, K.D. An Active Thin-film cochlear electrode array with monolithic backing and curl. Microelectromech. Syst. J. 2014, 23, 428–437. [Google Scholar] [CrossRef]
- Takeuchi, S.; Ziegler, D.; Yoshida, Y.; Mabuchi, K.; Suzuki, T. Parylene flexible neural probes integrated with microfluidic channels. Lab Chip 2005, 5, 519–523. [Google Scholar] [CrossRef] [PubMed]
- Gilgunn, P.; Khilwani, R.; Kozai, T.; Weber, D.; Cui, X.; Erdos, G.; Ozdoganlar, O.; Fedder, G. An ultra-compliant, scalable neural probe with molded biodissolvable delivery vehicle. In Proceedings of the 2012 IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS), Paris, France, 29 January–2 February 2012; pp. 56–59. [Google Scholar]
- Xiang, Z.; Yen, S.-C.; Xue, N.; Sun, T.; Tsang, W.M.; Zhang, S.; Liao, L.-D.; Thakor, N.V.; Lee, C. Ultra-thin flexible polyimide neural probe embedded in a dissolvable maltose-coated microneedle. J. Micromech. Micromech. 2014, 24, 065015. [Google Scholar] [CrossRef]
- Yu, H.; Zheng, N.; Wang, W.; Wang, S.; Zheng, X.; Li, Z. Electroplated nickel multielectrode microprobes with flexible parylene cable for neural recording and stimulation. J. Microelectromech. Syst. 2013, 22, 1199–1206. [Google Scholar] [CrossRef]
- Kuo, J.T.; Kim, B.J.; Hara, S.A.; Lee, C.D.; Gutierrez, C.A.; Hoang, T.Q.; Meng, E. Novel flexible Parylene neural probe with 3D sheath structure for enhancing tissue integration. Lab Chip 2013, 13, 554–561. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.; Kuo, J.; Hara, S.; Lee, C.; Yu, L.; Gutierrez, C.; Hoang, T.; Pikov, V.; Meng, E. 3D Parylene sheath neural probe for chronic recordings. J. Neural Eng. 2013, 10, 045002. [Google Scholar] [CrossRef] [PubMed]
- Fraysse, B.; Macías, Á.R.; Sterkers, O.; Burdo, S.; Ramsden, R.; Deguine, O.; Klenzner, T.; Lenarz, T.; Rodriguez, M.M.; Von Wallenberg, E. Residual hearing conservation and electroacoustic stimulation with the nucleus 24 contour advance cochlear implant. Otol. Neurotol. 2006, 27, 624–633. [Google Scholar] [CrossRef] [PubMed]
- Arcand, B.; Bhatti, P.; Butala, N.; Wang, J.; Friedrich, C.; Wise, K. Active positioning device for a perimodiolar cochlear electrode array. Micromech. Technol. 2004, 10, 478–483. [Google Scholar] [CrossRef]
- Iverson, K.C.; Bhatti, P.T.; Falcone, J.; Figueroa, R.; McKinnon, B.J. Cochlear implantation using thin-film array electrodes. Otolaryngol. Head Neck Surg. 2011, 144, 934–939. [Google Scholar] [CrossRef] [PubMed]
- CAPLINQ, C. 1-mil Polyimide (Kapton) tape silicone adhesive single-sided on release liner. Available online: https://www.caplinq.com/1-mil-polyimide-kapton-tape-silicone-adhesive-on-release-liner-pit1s-rl-series.html (accessed on 27 December 2017).
- Escudé, B.; James, C.; Deguine, O.; Cochard, N.; Eter, E.; Fraysse, B. The size of the cochlea and predictions of insertion depth angles for cochlear implant electrodes. Audiol. Neurotol. 2006, 11, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Goodfellow50. Polymer Material Properties. Available online: http://www.goodfellow.com/PDF/TAB301E.pdf (accessed on 16 November 2017).
- Wolf, A.T.; Descamps, P. Determination of Poisson‘s ratio of silicone sealants from ultrasonic and tensile measurements. In Performance of Exterior Building Walls; ASTM International: West, Conshohocken, PA, USA, 2003. [Google Scholar]
- Fundamentals, E.E. Properties of Polyimide. Available online: http://www.efunda.com/materials/polymers/properties/polymer_datasheet.cfm?MajorID=PI&MinorID=1 (accessed on 27 December 2017).
- Hassler, C.; von Metzen, R.P.; Ruther, P.; Stieglitz, T. Characterization of parylene C as an encapsulation material for implanted neural prostheses. J. Biomed. Mater. Res. Part B Appl. Biomater. 2010, 93, 266–274. [Google Scholar] [CrossRef] [PubMed]
- Davis, S.; Prausnitz, M.; Allen, M. Fabrication and characterization of laser micromachined hollow microneedles. In Proceedings of the 12th International Conference onTRANSDUCERS, Solid-State Sensors, Actuators and Microsystems, Boston, MA, USA, 8–12 June 2003; pp. 1435–1438. [Google Scholar]
- Park, G.; Chung, H.J.; Kim, K.; Lim, S.A.; Kim, J.; Kim, Y.S.; Liu, Y.; Yeo, W.H.; Kim, R.H.; Kim, S.S. Immunologic and tissue biocompatibility of flexible/stretchable electronics and optoelectronics. Adv. Healthc. Mater. 2014, 3, 515–525. [Google Scholar] [CrossRef] [PubMed]
Layer Material | PET (i = 1) | Bottom Silicone Adhesive (i = 2) | Polyimide (i = 3) | Top Silicone Adhesive (i = 4) | Bottom Parylene (i = 5) | Platinum (i = 6) | Top Parylene (i = 7) |
---|---|---|---|---|---|---|---|
y-axis location (μm) (hi) | 75 | 110 | 135 | 170 | 175 | 175.2 | 176.2 |
Layer Material | PET (i = 1) | Silicone Adhesive (i = 2 or 4) | Polyimide (i = 3) | Parylene C (i = 5 or 7) | Platinum (i = 6) |
---|---|---|---|---|---|
Young’s modulus (Ei) (GPa) | 2.10 | 4.15 × 10−3 | 2.07 | 2.80 | 154 |
Density (Di) (kg/m3) | 1430 | 1280 | 1420 | 1289 | 21,387 |
Poisson’s ratio (νi) | 0.40 | 0.49 | 0.35 | 0.40 | 0.345 |
Object of Study | Method | Equivalent Bending Stiffness (EI)e (N∙m2) | Calculation Deviation Compared with Experimental Results |
---|---|---|---|
Kapton tape only | Analytical model | 2.88 × 10−7 | −7.31% |
FEM | 3.02 × 10−7 | −2.63% | |
Experiment | 3.10 × 10−7 | N/A | |
TFEA-Kapton | Analytical model with 200-nm-thick Pt | 7.03 × 10−7 | 41.77% |
FEM with 200-nm-thick Pt | 7.14 × 10−7 | 44.07% | |
Analytical model with no Pt | 4.39 × 10−7 | −11.44% | |
FEM with no Pt | 4.62 × 10−7 | −6.85% | |
Experiment | 4.96 × 10−7 | N/A |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Luo, C.; Zeng, F.-G.; Middlebrooks, J.C.; Lin, H.W.; You, Z. Study of the Carrier-Aided Thin Film Electrode Array Design for Cochlear Insertion. Micromachines 2018, 9, 206. https://doi.org/10.3390/mi9050206
Xu Y, Luo C, Zeng F-G, Middlebrooks JC, Lin HW, You Z. Study of the Carrier-Aided Thin Film Electrode Array Design for Cochlear Insertion. Micromachines. 2018; 9(5):206. https://doi.org/10.3390/mi9050206
Chicago/Turabian StyleXu, Yuchen, Chuan Luo, Fan-Gang Zeng, John C. Middlebrooks, Harrison W. Lin, and Zheng You. 2018. "Study of the Carrier-Aided Thin Film Electrode Array Design for Cochlear Insertion" Micromachines 9, no. 5: 206. https://doi.org/10.3390/mi9050206
APA StyleXu, Y., Luo, C., Zeng, F. -G., Middlebrooks, J. C., Lin, H. W., & You, Z. (2018). Study of the Carrier-Aided Thin Film Electrode Array Design for Cochlear Insertion. Micromachines, 9(5), 206. https://doi.org/10.3390/mi9050206