Performance Analysis and Numerical Evaluation of Mixing in 3-D T-Shape Passive Micromixers
Abstract
:1. Introduction
2. Mathematical Model
3. Grid Independence Analysis
4. Results and Discussion
4.1. FVM Analysis
4.2. FEM Analysis
4.3. Comparison of FVM and FEM Solutions
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Mansur, E.A.; Ye, M.; Wang, Y.; Dai, Y. A state-of-the-art review of mixing in microfluidic mixers. Chin. J. Chem. Eng. 2008, 16, 503–516. [Google Scholar] [CrossRef]
- Nguyen, N.-T.; Wu, Z. Micromixers—A review. J. Micromech. Microeng. 2005, 15, R1–R16. [Google Scholar] [CrossRef]
- Capretto, L.; Cheng, W.; Hill, M.; Zhang, X. Micromixing within microfluidic devices. Top. Curr. Chem. 2011, 304, 27–68. [Google Scholar] [PubMed]
- Kumar, V.; Paraschivoiu, M.; Nigam, K.D.P. Single-phase fluid flow and mixing in microchannels. Chem. Eng. Sci. 2011, 66, 1329–1373. [Google Scholar] [CrossRef]
- Cai, G.; Xue, L.; Zhang, H.; Lin, J. A review on micromixers. Micromachines 2017, 8, 274. [Google Scholar] [CrossRef]
- Ward, K.; Fan, Z.H. Mixing in microfluidic devices and enhancement methods. J. Micromech. Microeng. 2015, 25, 094001. [Google Scholar] [CrossRef] [PubMed]
- Hessel, V.; Löwe, H.; Schönfeld, F. Micromixers—A review on passive and active mixing principles. Chem. Eng. Sci. 2005, 60, 2479–2501. [Google Scholar] [CrossRef]
- Wang, L.; Liu, D.; Wang, X.; Han, X. Mixing enhancement of novel passive microfluidic mixers with cylindrical grooves. Chem. Eng. Sci. 2012, 81, 157–163. [Google Scholar] [CrossRef]
- Alam, A.; Afzal, A.; Kim, K.-Y. Mixing performance of a planar micromixer with circular obstructions in a curved microchannel. Chem. Eng. Res. Des. 2014, 92, 423–434. [Google Scholar] [CrossRef]
- Demirel, E.; Aral, M. Unified analysis of multi-chamber contact tanks and mixing efficiency evaluation based on vorticity field. Part II: Transport analysis. Water 2016, 8, 537. [Google Scholar] [CrossRef]
- Rudyak, V.Y.; Minakov, A.V.; Gavrilov, A.A.; Dekterev, A.A. Modelling of flows in micromixers. Thermophys. Aeromech. 2010, 17, 565–576. [Google Scholar] [CrossRef]
- Bailey, R.T. Managing false diffusion during second-order upwind simulations of liquid micromixing. Int. J. Numer. Methods Fluids 2017, 83, 940–959. [Google Scholar] [CrossRef]
- Liu, M. Computational study of convective–diffusive mixing in a microchannel mixer. Chem. Eng. Sci. 2011, 66, 2211–2223. [Google Scholar] [CrossRef]
- Moukalled, F.; Mangani, L.; Darwish, M. The Finite Volume Method in Computational Fluid Dynamics: An Advanced Introduction with Openfoam and Matlab; Springer Publishing Company: New York, NY, USA, 2015; p. 791. [Google Scholar]
- Godunov, S.K.; Ryaben’kii, V.S. Spectral stability criteria for boundary-value problems for non-self-adjoint difference equations. Russ. Math. Surv. 1963, 18, 1–12. [Google Scholar] [CrossRef]
- Idelsohn, S.R.; Oñate, E. Finite volumes and finite elements: Two ‘good friends’. Int. J. Numer. Methods Eng. 1994, 37, 3323–3341. [Google Scholar] [CrossRef]
- Patankar, S.V. Numerical Heat Transfer and Fluid Flow; Hemisphere Publishing Corporation: New York, NY, USA, 1980. [Google Scholar]
- Gresho, P.M.; Lee, R.L. Don’t suppress the wiggles—They’re telling you something! Comput. Fluids 1981, 9, 223–253. [Google Scholar] [CrossRef]
- Kuzmin, D. A Guide to Numerical Methods for Transport Equations; University Erlangen-Nuremberg: Erlangen, Germany, 2010; Available online: http://www.mathematik.uni-dortmund.de/~kuzmin/Transport.pdf (accessed on 28 April 2018).
- Oñate, E.; Manzan, M. Stabilization techniques for finite element analysis of convection-diffusion problems. Dev. Heat Transf. 2000, 7, 71–118. [Google Scholar]
- Leonard, B.P. A stable and accurate convective modelling procedure based on quadratic upstream interpolation. Comput. Methods Appl. Mech. Eng. 1979, 19, 59–98. [Google Scholar] [CrossRef]
- Van Leer, B. Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J. Comput. Phys. 1979, 32, 101–136. [Google Scholar] [CrossRef]
- Soleymani, A.; Kolehmainen, E.; Turunen, I. Numerical and experimental investigations of liquid mixing in T-type micromixers. Chem. Eng. J. 2008, 135, S219–S228. [Google Scholar] [CrossRef]
- Le Thanh, H.; Dong, T.; Ta, B.Q.; Tran-Minh, N.; Karlsen, F. An effective passive micromixer with shifted trapezoidal blades using wide reynolds number range. Chem. Eng. Res. Des. 2015, 93, 1–11. [Google Scholar] [CrossRef]
- Virk, M.S.; Holdø, A.E. Numerical analysis of fluid mixing in T-type micro mixer. Int. J. Multiphys. 2016, 2. [Google Scholar] [CrossRef]
- Jain, M.; Rao, A.; Nandakumar, K. Numerical study on shape optimization of groove micromixers. Microfluid. Nanofluid. 2013, 15, 689–699. [Google Scholar] [CrossRef]
- Gidde, R.R.; Pawar, P.M.; Ronge, B.P.; Misal, N.D.; Kapurkar, R.B.; Parkhe, A.K. Evaluation of the mixing performance in a planar passive micromixer with circular and square mixing chambers. In Microsystem Technologies; Springer Publishing Company: New York, NY, USA, 2017. [Google Scholar]
- Li, T.; Chen, X. Numerical investigation of 3D novel chaotic micromixers with obstacles. Int. J. Heat Mass Transf. 2017, 115, 278–282. [Google Scholar] [CrossRef]
- Galletti, C.; Roudgar, M.; Brunazzi, E.; Mauri, R. Effect of inlet conditions on the engulfment pattern in a t-shaped micro-mixer. Chem. Eng. J. 2012, 185–186, 300–313. [Google Scholar] [CrossRef]
- Roudgar, M.; Brunazzi, E.; Galletti, C.; Mauri, R. Numerical Study of Split t-Micromixers. Chem. Eng. Technol. 2012, 35, 1291–1299. [Google Scholar] [CrossRef]
- Bothe, D.; Stemich, C.; Warnecke, H.-J. Fluid mixing in a t-shaped micro-mixer. Chem. Eng. Sci. 2006, 61, 2950–2958. [Google Scholar] [CrossRef]
- Tran-Minh, N.; Dong, T.; Karlsen, F. An efficient passive planar micromixer with ellipse-like micropillars for continuous mixing of human blood. Comput. Methods Programs Biomed. 2014, 117, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Tseng, L.-Y.; Yang, A.-S.; Lee, C.-Y.; Hsieh, C.-Y. Cfd-based optimization of a diamond-obstacles inserted micromixer with boundary protrusions. Eng. Appl. Comput. Fluid Mech. 2011, 5, 210–222. [Google Scholar] [CrossRef]
- Van Doormaal, J.P.; Raithby, G.D. Enhancements of the simple method for predicting incompressible fluid flows. Numer. Heat Transf. 1984, 7, 147–163. [Google Scholar] [CrossRef]
- Warming, R.F.; Beam, R.M. Upwind second-order difference schemes and applications in aerodynamic flows. AIAA J. 1976, 14, 1241–1249. [Google Scholar]
- Sweby, P.K. High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal. 1984, 21, 995–1011. [Google Scholar] [CrossRef]
- Geuzaine, C.; Remacle, J.F. Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Methods Eng. 2009, 79, 1309–1331. [Google Scholar] [CrossRef]
- Freitas, C.J. The issue of numerical uncertainty. Appl. Math. Model. 2002, 26, 237–248. [Google Scholar] [CrossRef]
- Celik, I.B.; Ghia, U.; Roache, P.J. Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. J. Fluids Eng. 2008, 130, 078001. [Google Scholar]
- Roache, P.J. Quantification of uncertainty in computational fluid dynamics. Annu. Rev. Fluid Mech. 1997, 29, 123–160. [Google Scholar] [CrossRef]
- Roache, P.J. Perspective: A method for uniform reporting of grid refinement studies. J. Fluids Eng. 1994, 116, 405–413. [Google Scholar] [CrossRef]
- Afzal, A.; Kim, K.-Y. Passive split and recombination micromixer with convergent–divergent walls. Chem. Eng. J. 2012, 203, 182–192. [Google Scholar] [CrossRef]
- Javaid, M.; Cheema, T.; Park, C. Analysis of passive mixing in a serpentine microchannel with sinusoidal side walls. Micromachines 2018, 9, 8. [Google Scholar] [CrossRef]
Simulation Type | Material Properties | Boundary | Boundary Condition |
---|---|---|---|
Incompressible Fluid Flow | ρ = 1000 kg/m3 µ = 0.001 Pa·s | Inlet 1 | Uniform Inflow |
Inlet 2 | Uniform Inflow | ||
Outlet | p = 0 | ||
Walls | No-Slip | ||
Advective-Diffusive Transport | D = 3 × 10−10 m2/s | Inlet 1 | c = 0 mol/m3 |
Inlet 2 | c = 1 mol/m3 | ||
Outlet | ∂c/∂n = 0 * | ||
Walls | ∂c/∂n = 0 |
Inlet Velocity (m/s) | Mixing Channel | |
Re | Pe | |
0.00075 | 0.1 | 3.33 × 102 |
0.0075 | 1 | 3.33 × 103 |
0.075 | 10 | 3.33 × 104 |
0.375 | 50 | 1.67 × 105 |
0.75 | 100 | 3.33 × 105 |
Mesh Level | Constant Flow, Re = 100 | |
Average Cell Re * | Average Cell Pe * | |
L1: Δx = 2.0 µm | 1.50 | 5000 |
L2: Δx = 3.0 µm | 2.25 | 7500 |
L3: Δx = 4.5 µm | 3.38 | 11250 |
L4: Δx = 6.6 µm | 4.95 | 16500 |
Re | Constant Grid Level, L1 | |
Average Cell Re | Average Cell Pe | |
0.1 | 0.0015 | 5 |
1 | 0.015 | 50 |
10 | 0.15 | 500 |
50 | 0.75 | 2500 |
100 | 1.5 | 5000 |
Mesh Level (L) | Grid Size, Δx (µm) | Number of Cells in Computational Domain | ||
Hexahedral | Prism | Tetrahedral | ||
L1 | 2.0 | 3.75 × 106 | 8.70 × 106 | 8.70 × 106 |
L2 | 3.0 | 1.09 × 106 | 2.57 × 106 | 2.57 × 106 |
L3 | 4.5 | 3.22 × 105 | 7.72 × 105 | 7.74 × 105 |
L4 | 6.6 | 1.02 × 105 | 2.46 × 105 | 2.44 × 105 |
Mesh Level (L) | Grid Size, Δx (µm) | Max Velocity at x = 200 µm Plane (m/s) | ||
Hexahedral | Prism | Tetrahedral | ||
L1 | 2.0 | 1.65617 | 1.65691 | 1.65900 |
L2 | 3.0 | 1.65242 | 1.65175 | 1.65398 |
L3 | 4.5 | 1.64624 | 1.64361 | 1.64049 |
L4 | 6.6 | 1.63322 | 1.62657 | 1.61615 |
Mesh Level Comparison | GCI Between Mesh Levels (%) | |||
Hexahedral | Prism | Tetrahedral | ||
L1–L2 | 0.44 | 0.68 | 0.22 | |
L2–L3 | 0.57 | 0.82 | 0.94 | |
L3–L4 | 0.89 | 1.18 | 2.31 |
False Mixing (%) | Required Average Mesh Density | Numerical Diffusion | Required Average Mesh Density | ||
---|---|---|---|---|---|
Prism | Tetrahedral | Prism | Tetrahedral | ||
0.50 | 1.08 × 1018 | 2.81 × 1017 | 1.00 × 10-13 | 4.37 × 1015 | 1.19 × 1022 |
1.00 | 2.61 × 1015 | 1.85 × 1015 | 1.00 × 10−12 | 6.64 × 1013 | 2.96 × 1019 |
2.00 | 6.28 × 1012 | 1.22 × 1013 | 1.00 × 10−11 | 1.01 × 1012 | 7.37 × 1016 |
5.00 | 2.18 × 109 | 1.59 × 1010 | 3.00 × 10−10 | 2.08 × 109 | 1.05 × 1013 |
Re | D-Numerical/D-Physical | D-Effective/D-Physical | ||||
---|---|---|---|---|---|---|
Hexahedral | Prism | Tetrahedral | Hexahedral | Prism | Tetrahedral | |
0.1 | 5.36 × 10−7 | 0.01 | 0.17 | 1.00 | 1.01 | 1.17 |
1 | 5.39 × 10−6 | 0.15 | 1.69 | 1.00 | 1.15 | 2.69 |
10 | 5.16 × 10−5 | 1.53 | 17.03 | 1.00 | 2.53 | 18.03 |
50 | 6.91 × 10−4 | 8.99 | 98.32 | 1.00 | 9.99 | 99.32 |
100 | 9.04 × 10−4 | 26.94 | 230.01 | 1.00 | 27.94 | 231.01 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okuducu, M.B.; Aral, M.M. Performance Analysis and Numerical Evaluation of Mixing in 3-D T-Shape Passive Micromixers. Micromachines 2018, 9, 210. https://doi.org/10.3390/mi9050210
Okuducu MB, Aral MM. Performance Analysis and Numerical Evaluation of Mixing in 3-D T-Shape Passive Micromixers. Micromachines. 2018; 9(5):210. https://doi.org/10.3390/mi9050210
Chicago/Turabian StyleOkuducu, Mahmut Burak, and Mustafa M. Aral. 2018. "Performance Analysis and Numerical Evaluation of Mixing in 3-D T-Shape Passive Micromixers" Micromachines 9, no. 5: 210. https://doi.org/10.3390/mi9050210
APA StyleOkuducu, M. B., & Aral, M. M. (2018). Performance Analysis and Numerical Evaluation of Mixing in 3-D T-Shape Passive Micromixers. Micromachines, 9(5), 210. https://doi.org/10.3390/mi9050210