Salivary Exosome and Cell-Free DNA for Cancer Detection
Abstract
:1. Introduction
2. Techniques for Pretreatment of Saliva
3. Salivary Exosome and Cell-Free DNA
4. Applicable Technologies to Enrich and Isolate Exosome and Cell-Free DNA
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Molina-Vila, M.Á. Liquid biopsy in lung cancer: Present and future. Transl. Lung Cancer Res. 2016, 5, 452–454. [Google Scholar] [CrossRef]
- Nonaka, T.; Wong, D.T.W. Liquid biopsy in head and neck cancer: Promises and challenges. J. Dent. Res. 2018, 97, 701–708. [Google Scholar] [CrossRef] [PubMed]
- Aro, K.; Wei, F.; Wong, D.T.; Tu, M. Saliva liquid biopsy for point-of-care-applications. Front. Public Health 2017, 5, 77. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.H.; Wong, D.T.W. Saliva: An emerging biofluid for early detection of diseases. Am. J. Dent. 2009, 22, 241–248. [Google Scholar] [PubMed]
- Zeringer, E.; Barta, T.; Li, M.; Vlassov, A.V. Strategies for isolation of exosomes. Cold Spring Harb. Protoc. 2015, 2015. [Google Scholar] [CrossRef] [PubMed]
- Michael, A.; Bajracharya, S.D.; Yuen, P.S.; Zhou, H.; Star, R.A.; Illei, G.G.; Alevizos, I. Exosomes from human saliva as a source of microRNA biomarkers. Oral Dis. 2010, 16, 34–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herr, A.E.; Hatch, A.V.; Throckmorton, D.J.; Tran, H.M.; Brennan, J.S.; Giannobile, W.V.; Singh, A.K. Microfluidic immunoassays as rapid saliva-based clinical diagnostics. Proc. Natl. Acad. Sci. USA 2007, 104, 5268–5273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Helton, K.L.; Nelson, K.E.; Fu, E.; Yager, P. Conditioning saliva for use in a microfluidic biosensor. Lab Chip 2008, 8, 1847–1851. [Google Scholar] [CrossRef] [PubMed]
- Yager, P.; Edwards, T.; Fu, E.; Helton, K.; Nelson, K.; Tam, M.R.; Weigl, B.H. Microfluidic diagnostic technologies for global public health. Nature 2006, 442, 412–418. [Google Scholar] [CrossRef] [PubMed]
- Wägli, P.; Chang, Y.C.; Homsy, A.; Hvozdara, L.; Herzig, H.P.; de Rooij, N.F. Microfluidic Droplet-Based Liquid–Liquid Extraction and On-Chip IR Spectroscopy Detection of Cocaine in Human Saliva. Anal. Chem. 2013, 85, 7558–7565. [Google Scholar] [CrossRef] [PubMed]
- Hyun, K.A.; Kim, J.M.; Gwak, H.; Jung, H.I. Isolation and enrichment of circulating biomarkers for cancer screening, detection, and diagnostics. Analyst 2016, 141, 382–392. [Google Scholar] [CrossRef] [PubMed]
- Soung, Y.H.; Ford, S.; Zhang, V.; Chung, J. Exosomes in cancer diagnostics. Cancers 2017, 9, 8. [Google Scholar] [CrossRef] [PubMed]
- Théry, C.; Zitvogel, L.; Amigorena, S. Exosomes: Composition, biogenesis and function. Nat. Rev. Immunol. 2002, 2, 569–579. [Google Scholar] [CrossRef] [PubMed]
- Kaczor-Urbanowicz, K.E.; Martín Carreras-Presas, C.; Kaczor, T.; Tu, M.; Wei, F.; Garcia-Godoy, F.; Wong, D.T. Emerging technologies for salivaomics in cancer detection. J. Cell. Mol. Med. 2017, 21, 640–647. [Google Scholar] [CrossRef] [PubMed]
- Tabernero, J.; Lenz, H.J.; Siena, S.; Sobrero, A.; Falcone, A.; Ychou, M.; Humblet, Y.; Bouché, O.; Mineur, L.; Barone, C.; et al. Analysis of circulating DNA and protein biomarkers to predict the clinical activity of regorafenib and assess prognosis in patients with metastatic colorectal cancer: A retrospective, exploratory analysis of the CORRECT trial. Lancet Oncol. 2015, 16, 937–948. [Google Scholar] [CrossRef]
- Spindler, K.L.G.; Pallisgaard, N.; Vogelius, I.; Jakobsen, A. Quantitative cell free DNA, KRAS and BRAF mutations in plasma from patients with metastatic colorectal cancer during treatment with cetuximab and irinotecan. Clin. Cancer Res. 2012, 18, 1177–1185. [Google Scholar] [CrossRef] [PubMed]
- Taly, V.; Pekin, D.; Benhaim, L.; Kotsopoulos, S.K.; Le Corre, D.; Li, X.; Atochin, I.; Link, D.R.; Griffiths, A.D.; Pallier, K.; et al. Multiplex picodroplet digital PCR to detect KRAS mutations in circulating DNA from the plasma of colorectal cancer patients. Clin. Chem. 2013, 59, 1722–1731. [Google Scholar] [CrossRef] [PubMed]
- Nakauchi, C.; Kagara, N.; Shimazu, K.; Shimomura, A.; Naoi, Y.; Shimoda, M.; Kim, S.J.; Noguchi, S. Detection of TP53/PIK3CA mutations in cell-free plasma DNA from metastatic breast cancer patients using next generation sequencing. Clin. Breast Cancer 2016, 16, 418–423. [Google Scholar] [CrossRef] [PubMed]
- Yoshioka, Y.; Kosaka, N.; Konishi, Y.; Ohta, H.; Okamoto, H.; Sonoda, H.; Nonaka, R.; Yamamoto, H.; Ishii, H.; Mori, M.; et al. Ultra-sensitive liquid biopsy of circulating extracellular vesicles using ExoScreen. Nat. Commun. 2014, 5, 3591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azad, A.A.; Volik, S.V.; Wyatt, A.W.; Haegert, A.; Le Bihan, S.; Bell, R.H.; Anderson, S.A.; McConeghy, B.; Shukin, R.; Bazov, J.; et al. Androgen receptor gene aberrations in circulating cell-free DNA: Biomarkers of therapeutic resistance in castration-resistant prostate cancer. Clin. Cancer Res. 2015, 21, 2315–2324. [Google Scholar] [CrossRef] [PubMed]
- Jahr, S.; Hentze, H.; Englisch, S.; Hardt, D.; Fackelmayer, F.O.; Hesch, R.D.; Knippers, R. DNA fragments in the blood plasma of cancer patients: Quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res. 2001, 61, 1659–1665. [Google Scholar] [PubMed]
- Yao, W.; Mei, C.; Nan, X.; Hui, L. Evaluation and comparison of in vitro degradation kinetics of DNA in serum, urine and saliva: A qualitative study. Gene 2016, 590, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Lee, R.J.; Gremel, G.; Marshall, A.; Myers, K.A.; Fisher, N.; Dunn, J.A.; Dhomen, N.; Corrie, P.G.; Middleton, M.R.; Lorigan, P.; et al. Circulating tumor DNA predicts survival in patients with resected high-risk stage II/III melanoma. Ann. Oncol. 2017, 29, 490–496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frattini, M.; Gallino, G.; Signoroni, S.; Balestra, D.; Lusa, L.; Battaglia, L.; Sozzi, G.; Bertario, L.; Leo, E.; Pilotti, S.; et al. Quantitative and qualitative characterization of plasma DNA identifies primary and recurrent colorectal cancer. Cancer Lett. 2008, 263, 170–181. [Google Scholar] [CrossRef] [PubMed]
- Diehl, F.; Li, M.; Dressman, D.; He, Y.; Shen, D.; Szabo, S.; Diaz, L.A.; Goodman, S.N.; David, K.A.; Juhl, H.; et al. Detection and quantification of mutations in the plasma of patients with colorectal tumors. Proc. Natl. Acad. Sci. USA 2005, 102, 16368–16373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dawson, S.J.; Tsui, D.W.; Murtaza, M.; Biggs, H.; Rueda, O.M.; Chin, S.F.; Dunning, M.J.; Gale, D.; Forshew, T.; Mahler-Araujo, B.; et al. Analysis of circulating tumor DNA to monitor metastatic breast cancer. N. Engl. J. Med. 2013, 368, 1199–1209. [Google Scholar] [CrossRef] [PubMed]
- Forshew, T.; Murtaza, M.; Parkinson, C.; Gale, D.; Tsui, D.W.; Kaper, F.; Dawson, S.J.; Piskorz, A.M.; Jimenez-Linan, M.; Bentley, D.; et al. Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA. Sci. Transl. Med. 2012, 4, 136ra68. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.A.; Jiang, P.; Zheng, Y.W.; Liao, G.J.; Sun, H.; Wong, J.; Siu, S.S.N.; Chan, W.C.; Chan, S.L.; Chan, A.T.; et al. Cancer genome scanning in plasma: Detection of tumor-associated copy number aberrations, single-nucleotide variants, and tumoral heterogeneity by massively parallel sequencing. Clin. Chem. 2013, 59, 211–224. [Google Scholar] [CrossRef] [PubMed]
- Leary, R.J.; Sausen, M.; Kinde, I.; Papadopoulos, N.; Carpten, J.D.; Craig, D.; O’Shaughnessy, J.; Kinzler, K.W.; Parmigiani, G.; Vogelstein, B.; et al. Detection of chromosomal alterations in the circulation of cancer patients with whole-genome sequencing. Sci. Transl. Med. 2012, 4, 162ra154. [Google Scholar] [CrossRef] [PubMed]
- Thierry, A.R.; Mouliere, F.; El Messaoudi, S.; Mollevi, C.; Lopez-Crapez, E.; Rolet, F.; Gillet, B.; Gongora, C.; Dechelotte, P.; Robert, B.; et al. Clinical validation of the detection of KRAS and BRAF mutations from circulating tumor DNA. Nat. Med. 2014, 20, 430–435. [Google Scholar] [CrossRef] [PubMed]
- Pfaffe, T.; Cooper-White, J.; Beyerlein, P.; Kostner, K.; Punyadeera, C. Diagnostic Potential of Saliva: Current State and Future Applications. Clin. Chem. 2011, 57, 675–687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sorber, L.; Zwaenepoel, K.; Deschoolmeester, V.; Roeyen, G.; Lardon, F.; Rolfo, C.; Pauwels, P. A Comparison of Cell-Free DNA Isolation Kits Isolation and Quantification of Cell-Free DNA in Plasma. J. Mol. Diagn. 2017, 19, 162–168. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Crow, J.; Roth, M.; Zeng, Y.; Godwin, A.K. Integrated immunoisolation and protein analysis of circulating exosomes using microfluidic technology. Lab Chip 2014, 14, 3773–3780. [Google Scholar] [CrossRef] [PubMed]
- Shao, H.; Chung, J.; Lee, K.; Balaj, L.; Min, C.; Carter, B.S.; Hochberg, F.H.; Breakefield, X.O.; Lee, H.; Weissleder, R. Chip-based analysis of exosomal mRNA mediating drug resistance in glioblastoma. Nat. Commun. 2015, 6, 6999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Z.; Yang, Y.; Zeng, Y.; He, M. A microfluidic ExoSearch chip for multiplexed exosome detection towards blood-based ovarian cancer diagnosis. Lab Chip 2016, 16, 489–496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Wu, H.J.; Fine, D.; Schmulen, J.; Hu, Y.; Godin, B.; Zhang, J.X.; Liu, X. Ciliated micropillars for the microfluidic-based isolation of nanoscale lipid vesicles. Lab Chip 2013, 13, 2879–2882. [Google Scholar] [CrossRef] [PubMed]
- Davies, R.T.; Kim, J.; Jang, S.C.; Choi, E.J.; Gho, Y.S.; Park, J. Microfluidic filtration system to isolate extracellular vesicles from blood. Lab Chip 2012, 12, 5202–5210. [Google Scholar] [CrossRef] [PubMed]
- Kanwar, S.S.; Dunlay, C.J.; Simeone, D.M.; Nagrath, S. Microfluidic device (ExoChip) for on-chip isolation, quantification and characterization of circulating exosomes. Lab Chip 2014, 14, 1891–1900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pekin, D.; Skhiri, Y.; Baret, J.C.; Le Corre, D.; Mazutis, L.; Salem, C.B.; Millot, F.; El Harrak, A.; Hutchison, J.B.; Larson, J.W.; et al. Quantitative and sensitive detection of rare mutations using droplet-based microfluidics. Lab Chip 2011, 11, 2156–2166. [Google Scholar] [CrossRef] [PubMed]
- Yung, T.K.; Chan, K.A.; Mok, T.S.; Tong, J.; To, K.F.; Lo, Y.D. Single-molecule detection of epidermal growth factor receptor mutations in plasma by microfluidics digital PCR in non–small cell lung cancer patients. Clin. Cancer Res. 2009, 15, 2076–2084. [Google Scholar] [CrossRef] [PubMed]
- Reedy, C.R.; Price, C.W.; Sniegowski, J.; Ferrance, J.P.; Begley, M.; Landers, J.P. Solid phase extraction of DNA from biological samples in a post-based, high surface area poly(methyl methacrylate) (PMMA) microdevice. Lab Chip 2011, 11, 1603–1611. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; De Jonghe, J.; Kulesa, A.B.; Feldman, D.; Vatanen, T.; Bhattacharyya, R.P.; Berdy, B.; Gomez, J.; Nolan, J.; Epstein, S.; et al. High-throughput automated microfluidic sample preparation for accurate microbial genomics. Nat. Commun. 2017, 8, 13919. [Google Scholar] [CrossRef] [PubMed]
- Bienvenue, J.M.; Legendre, L.A.; Ferrance, J.P.; Landers, J.P. An integrated microfluidic device for DNA purification and PCR amplification of STR fragments. Forensic Sci. Int.: Genet. 2010, 4, 178–186. [Google Scholar] [CrossRef] [PubMed]
- Oblath, E.A.; Henley, W.H.; Alarie, J.P.; Ramsey, J.M. A microfluidic chip integrating DNA extraction and real-time PCR for the detection of bacteria in saliva. Lab Chip 2013, 13, 1325–1332. [Google Scholar] [CrossRef] [PubMed]
- Morley, A.A. Digital PCR: A brief history. Biomol. Detect. Quantif. 2014, 1, 1–2. [Google Scholar] [CrossRef] [PubMed]
Circulating Biomarkers | Commercial Kits | Microfluidic Devices | ||
---|---|---|---|---|
Product | Feature | Techniques | Feature | |
Exosome | ExoFACS™ (BioVision, Inc., San Francisco, CA, USA) | Immune-based separation (4 μm antibody-coated beads) Suggested volume: 250–500 μL 117 min Using diluted saliva | Immuno-affinity [33] | Immuno-affinity based separation Using CD9, CD63, CD81, EpCAM, α-IGF-1R, CA125 antibody-coated magnetic bead approximately 100 min Using minimal sample volume of 30 μL |
Minute™ (Invent Biotechnologies, Inc., Plymouth, MA, USA) | SDS-PAGE Suggested volume: 100–600 μL 90 min to overnight | Ciliated micropillars [36] | 400 nm long porous silicon nanowire-coated micropillars Using minimal sample volume: 10–100 μL Size based separation Retention rate: 60% | |
Exo-spinTM (Cell Guidance Systems, Ltd., Cambridge, UK) | Size Exclusion Chromatography (SEC) Suggested volume: 1–50 mL 162 min | PMMA-based membrane filters [37] | Porous polymer monoliths(PPM) filtration Throughput: 2 modes Pressure-driven filtration: 1 μL /min Electrophoresis-driven filtration: 2 μL /min Pressure mode: 40 min Electrophoresis mode: 2 h | |
Saliva Exosome Purification Kit (Norgen Biotek, Corp., Thorold, ON, Canada) | Resin based separation Suggested volume: 0.5–2 mL Using diluted saliva 45 min | Functionalized surfaces (Exochip) [38] | CD63 exosome-specific antibody coated Throughput: 50 μL /min Suggested volume: 400 μL 10 min | |
cfDNA (DNA) | GeneFixTM Saliva DNA isolation kit (Cell projects, Ltd., Harrietsham, UK) | Spin column chromatography Saliva input: 0.5–1 mL Yields in excess of 100 μg from 2 mL of saliva Average purity (OD260/280): >1.8 | Chitosan coated PMMA high surface area [41] | Functionalized surface(chitosan) Throughput: 1.6 μL/min Suggested volume: 25 μL Recovery rate: 47.8 ± 9.3% |
Oragene®-DNA (DNA Genotek, Inc., Ottawa, ON, Canada) | Ethanol precipitation Saliva input: 0.5 mL Median yield: 1.9–35.1 μg (2 mL of saliva) Average purity (OD260/280): 1.6–1.9 | Digital PCR using droplet based microfluidics [39] | Using droplet based microfluidics Droplet volume: 10 pL Generation speed: 30 kHz Multiple mutation can be analyzed 0.01–1.7% of mutation can be detected | |
Saliva DNA Isolation Kit (Norgen Biotek Corp., Thorold, ON, Canada) | Spin column chromatography Saliva input: 0.25 mL of fresh saliva, 0.5 mL of preserved saliva Average yield: 3–7 μg (0.25 mL of saliva) Average purity (OD260/280): 1.7–2.1 | Tagmentation chemistry and solid phase reversible immobilization (SPRI) based integrated microfluidics [42] | Tagmentation chemistry: Extraction DNA SPRI: Purification DNA Fully automated 96 cases of DNA extraction and purification simultaneously react. Low sample volume required: 36 nL DNA purity: >80% | |
Saliva DNA Isolation Kit (BioChain Institute, Inc., Newark, NJ, USA) | Spin column chromatography Saliva input: 50–200 μL Average yield: 0.25–4 μg (200 μL of saliva) Average purity (OD 260/280): >1.8 Total isolation time: <25 min DNA size: 99% of DNA is >20 kb | DNA purification and PCR amplification based integrated microfluidics [43] | Micro-sample processing device (μSPD) DNA purification process: 3 steps (load, wash, elute) DNA amplified on chip (low to high concentration) Low sample required: 12 μL Sample reduction for DNA purification: >25-fold | |
Mini·SAL™ Saliva DNA Isolation Kit (Oasis Diagnostics® Corporation, Vancouver, USA) | Spin column chromatography Saliva input: 0.1–1 mL Average yield: 2.21 μg (200 μL of saliva) Average purity (OD260/280): 1.85 Total isolation time: >34 min Average DNA size: approximately 30 kb | DNA extraction, amplification, detection based integrated microfluidics [44] | Monolithic aluminum oxide membrane for DNA extraction: seven parallel reaction wells Possible to real-time PCR on chip using extracted DNA Multiple target DNA is possible to identify Low sample required: 13.5 μL Total analysis time: <2.5 h |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hyun, K.-A.; Gwak, H.; Lee, J.; Kwak, B.; Jung, H.-I. Salivary Exosome and Cell-Free DNA for Cancer Detection. Micromachines 2018, 9, 340. https://doi.org/10.3390/mi9070340
Hyun K-A, Gwak H, Lee J, Kwak B, Jung H-I. Salivary Exosome and Cell-Free DNA for Cancer Detection. Micromachines. 2018; 9(7):340. https://doi.org/10.3390/mi9070340
Chicago/Turabian StyleHyun, Kyung-A, Hogyeong Gwak, Jaehun Lee, Bongseop Kwak, and Hyo-Il Jung. 2018. "Salivary Exosome and Cell-Free DNA for Cancer Detection" Micromachines 9, no. 7: 340. https://doi.org/10.3390/mi9070340
APA StyleHyun, K. -A., Gwak, H., Lee, J., Kwak, B., & Jung, H. -I. (2018). Salivary Exosome and Cell-Free DNA for Cancer Detection. Micromachines, 9(7), 340. https://doi.org/10.3390/mi9070340