Molecular Dynamics Investigation of Residual Stress and Surface Roughness of Cerium under Diamond Cutting
Abstract
:1. Introduction
2. Simulation Method
3. Results and Discussion
3.1. Formation Mechanisms of Residual Stress and Surface Roughness
3.2. Effect of Rake Angle
3.3. Effect of Crystal Orientation
3.4. Effect of DOC
4. Summary
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Liu, Y.; Zhao, W.X.; Zhou, T.F.; Liu, X.; Wang, X.B. Microgroove machining on crystalline nickel phosphide plating by single-point diamond cutting. Int. J. Adv. Manuf. Technol. 2017, 91, 477–484. [Google Scholar] [CrossRef]
- Li, G.H.; Xu, Z.W.; Fang, F.Z.; Wu, W.; Xing, X.D.; Li, W.L.; Liu, H.Z. Micro cutting of V-shaped cylindrical grating template for roller nano-imprint. J. Mater. Process. Technol. 2013, 213, 895–904. [Google Scholar] [CrossRef]
- Zhang, J.G.; Suzuki, N.; Wang, Y.L.; Shamoto, E. Fundamental investigation of ultra-precision ductile machining of tungsten carbide by applying elliptical vibration cutting with single crystal diamond. Mater. Process. Technol. 2014, 214, 2644–2659. [Google Scholar] [CrossRef]
- Davoodi, B.; Tazehkandi, A.H. Cutting forces and surface roughness in wet machining of Inconel alloy 738 with coated carbide tool. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2014, 230, 1–12. [Google Scholar] [CrossRef]
- Yao, C.; Wu, D.; Tan, L.; Ren, J.; Shi, K.; Yang, Z. Effects of cutting parameters on surface residual stress and its mechanism in high-speed milling of TB6. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2013, 227, 483–493. [Google Scholar]
- Dahlman, P.; Gunnberg, F.; Jacobson, M. The influence of rake angle, cutting feed and cutting depth on residual stresses in hard turning. J. Mater. Process. Technol. 2004, 147, 181–184. [Google Scholar] [CrossRef]
- Schiwek, A.; Porsch, F.; Holzapfel, W.B. High temperature-high pressure structural studies of cerium. High Pressure Res. 2002, 22, 407–410. [Google Scholar] [CrossRef]
- Holzapfel, W.B.; Zhao, Y. Structural studies on the phase diagram of cerium. J. Alloys Compd. 1997, 246, 216–219. [Google Scholar]
- Nikolaev, A.V.; Tsvyashchenko, A.V. Puzzle of the gamma-alpha and other phase transitions in cerium. Phys-Uspekhi 2012, 55, 657–680. [Google Scholar] [CrossRef]
- Soderlind, P. Theory of the crystal structures of cerium and the light actinides. Adv. Phys. 1998, 47, 959–998. [Google Scholar] [CrossRef]
- Johansson, B.; Luo, W.; Li, S.; Ahuja, R. Cerium, crystal structure and position in the periodic table. Sci. Rep. 2014, 4, 6398. [Google Scholar] [CrossRef] [PubMed]
- Zukas, E.G.; Pereyra, R.A.; Willis, J.O. The gamma to alpha phase transformation in cerium. Metall. Trans. A 1987, 18, 35–42. [Google Scholar] [CrossRef]
- Dupont, V.; Chen, S.P.; Germann, T.C. Isomorphic phase transformation in shocked Cerium using molecular dynamics. EDP Sci. 2011, 15, 82–88. [Google Scholar] [CrossRef]
- Lipp, M.J.; Jackson, D.; Cynn, H.; Aracne, C.; Evans, W.J.; McMahan, A.K. Thermal signatures of the Kondo volume collapse in cerium. Phys. Rev. Lett. 2008, 101, 165703. [Google Scholar] [CrossRef] [PubMed]
- Witczak, Z.; Goncharova, V.A. Anomalous plastic flow of cerium near the isomorphic phase transformations under high hydrostatic pressure. Acta Mater. 1999, 47, 1565–1573. [Google Scholar] [CrossRef]
- Zhang, J.; Zheng, H.; Shuai, M.; Li, Y.; Yang, Y.; Sun, T. Molecular dynamics modeling and simulation of diamond cutting of Cerium. Nanoscale Res. Lett. 2017, 12, 464. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Shuai, M.; Zheng, H.; Li, Y.; Jin, M.; Sun, T. Atomistic and experimental investigation of the effect of depth of cut on diamond cutting of Cerium. Micromachines 2018, 9, 26. [Google Scholar] [CrossRef]
- Chavoshi, S.Z.; Xu, S.; Luo, X. Dislocation-mediated plasticity in silicon during nanometric cutting: A molecular dynamics simulation study. Mat. Sci. Semicon. Proc. 2016, 519, 60–70. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Fang, Q.; Zhang, L.; Liu, Y. The effect of rough surface on nanoscale high speed grinding by a molecular dynamics simulation. Comp. Mater. Sci. 2015, 98, 252–262. [Google Scholar] [CrossRef]
- Komanduri, R.; Raff, L.M. A review on the molecular dynamics simulation of machining at the atomic scale. Proc IMechE Part B J. Eng. Manuf. 2001, 215, 1639–1672. [Google Scholar] [CrossRef]
- Cai, Y.D.; Chen, Y.L.; Shimizu, Y.; Ito, S.; Gao, W. Molecular dynamics simulation of elastic-plastic deformation associated with tool-workpiece contact in force sensor-integrated fast tool servo. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2016, 1–10. [Google Scholar] [CrossRef]
- Xu, F.F.; Fang, F.Z.; Zhang, X.D. Hard particle effect on surface generation in nano-cutting. Appl. Surf. Sci. 2017, 425, 1020–1027. [Google Scholar] [CrossRef]
- Li, J.; Liu, B.; Luo, H.; Fang, Q.H.; Liu, Y.W.; Liu, Y. A molecular dynamics investigation into plastic deformation mechanism of nanocrystalline copper for different nanoscratching rates. Comp. Mater. Sci. 2016, 118, 66–76. [Google Scholar] [CrossRef]
- Zhu, P.Z.; Hu, Y.Z.; Ma, T.B.; Wang, H. Study of AFM-based nanometric cutting process using molecular dynamics. Appl. Surf. Sci. 2010, 256, 7160–7165. [Google Scholar] [CrossRef]
- To, S.; Lee, W.B. Deformation behavior of aluminum single crystals in ultraprecision diamond turning. J. Mater. Process. Technol. 2001, 113, 296–300. [Google Scholar] [CrossRef]
- Ding, X.; Warfors, J.A.E.; Lim, G.C. A study of the cutting performance of poly-crystalline oxygen free copper with single crystalline diamond micro-tools. Precis. Eng. 2012, 36, 141–152. [Google Scholar] [CrossRef]
- Lucazeau, G.; Abello, L. Micro-Raman analysis of residual stresses and phase transformations in crystalline silicon under microindentation. J. Mater. Res. 1997, 12, 2262–2273. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, D.; Gao, W.; Kang, R. Residual stress analysis on silicon wafer surface layers induced by ultra-precision grinding. Rare Met. 2011, 30, 278–281. [Google Scholar] [CrossRef]
- Jasinevicius, R.G.; Duduch, J.G.; Montanari, L.; Pizani, P.S. Phase transformation and residual stress probed by Raman spectroscopy in diamond-turned single crystal silicon. Proc IMechE Part B J. Eng. Manuf. 2008, 222, 1065–1073. [Google Scholar] [CrossRef]
- Romero, P.A.; Anciaux, G.; Molinari, A.; Molinari, J.F. Friction at the tool–chip interface during orthogonal nanometric machining. Model. Simul. Mater. Sci. Eng. 2012, 20, 55007–55022. [Google Scholar] [CrossRef]
- Tian, Y.B.; Zhou, L.; Zhong, Z.W.; Sato, H.; Shimizu, J. Finite element analysis of deflection and residual stress on machined ultrathin silicon wafers. Semicond. Sci. Technol. 2011, 26, 105002. [Google Scholar] [CrossRef]
- Wiesner, C. Residual stresses after orthogonal machining of AlSl 304: Numerical calculation of the thermal component and comparison with experimental results. Metall. Mater. Trans. A 1992, 23, 989–996. [Google Scholar] [CrossRef]
- Sheng, H.W.; Kramer, M.J.; Cadien, A.; Fujita, T.; Chen, M.W. Highly optimized embedded-atom-method potentials for fourteen fcc metals. Phys. Rev. B 2011, 83, 134118. [Google Scholar] [CrossRef]
- LAMMPS Molecular Dynamics Simulator. Available online: http://lammps.sandia.gov/ (accessed on 28 July 2018).
- Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO—The open visualization tool. Model. Simul. Mater. Sci. Eng. 2010, 18, 7. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, J.; Ji, C. A numerical study of residual stress induced in machined silicon surfaces by molecular dynamics simulation. Appl. Phys. A 2014, 115, 1263–1279. [Google Scholar] [CrossRef]
- Alhafez, I.A.; Urbassek, H.M. Orientation dependence in nanocutting of Fe single crystals: A molecular-dynamcis study. Comput. Mater. Sci. 2018, 143, 286–294. [Google Scholar] [CrossRef]
- Xu, F.F.; Fang, F.Z.; Zhang, X.D. Side flow effect on surface generation in nano cutting. Nanoscale Res. Lett. 2017, 12, 359. [Google Scholar] [CrossRef] [PubMed]
- Son, S.M.; Han, S.L.; Ahn, J.H. Effects of the friction coefficient on the minimum cutting thickness in micro cutting. Int. J. Mach. Tools Manuf. 2005, 45, 529–535. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Shuai, M.; Zhang, J.; Zheng, H.; Sun, T.; Yang, Y. Molecular Dynamics Investigation of Residual Stress and Surface Roughness of Cerium under Diamond Cutting. Micromachines 2018, 9, 386. https://doi.org/10.3390/mi9080386
Li Y, Shuai M, Zhang J, Zheng H, Sun T, Yang Y. Molecular Dynamics Investigation of Residual Stress and Surface Roughness of Cerium under Diamond Cutting. Micromachines. 2018; 9(8):386. https://doi.org/10.3390/mi9080386
Chicago/Turabian StyleLi, Yao, Maobing Shuai, Junjie Zhang, Haibing Zheng, Tao Sun, and Yang Yang. 2018. "Molecular Dynamics Investigation of Residual Stress and Surface Roughness of Cerium under Diamond Cutting" Micromachines 9, no. 8: 386. https://doi.org/10.3390/mi9080386
APA StyleLi, Y., Shuai, M., Zhang, J., Zheng, H., Sun, T., & Yang, Y. (2018). Molecular Dynamics Investigation of Residual Stress and Surface Roughness of Cerium under Diamond Cutting. Micromachines, 9(8), 386. https://doi.org/10.3390/mi9080386