Detection of Particulate Matter of Size 2.5 μm with a Surface-Acoustic-Wave Sensor Combined with a Cyclone Separator
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of SH-SAW Chips
2.2. Cyclone Separator Design and Simulation
2.3. Sensing System
3. Results
3.1. Simulation of the Efficiency of the Cyclone Separation
3.2. SH-SAW Sensor Aerosol Experiment
3.2.1. Test of Sensor Sensitivity
3.2.2. Test of an SH-SAW Sensor Combined with a Cyclone Separator
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kulkarni, P.; Baron, P.A.; Willeke, K. Biological particle sampling: Principles, techniques, and applications. In Aerosol Measurement, 3rd ed.; Wiley: Hoboken, NJ, USA, 2011; p. 22. [Google Scholar]
- Douwes, J.; Thorne, P.; Pearce, N.; Heederik, D. Bioaerosol health effects and exposure assessment: Progress and prospects. Ann. Occup. Hyg. 2003, 47, 187–200. [Google Scholar] [PubMed]
- Air Pollution and Cancer. Available online: https://www.iarc.fr/en/publications/books/sp161/AirPollutionandCancer161.pdf (accessed on 9 August 2018).
- World Health Organization. Burden of Disease from the Joint Effects of Household and Ambient Air Pollution for 2012. Available online: http://www.who.int/airpollution/data/AP_jointeffect_BoD_results_Nov2016.pdf (accessed on 9 August 2018).
- WHO Air Quality Guidelines for Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide. Available online: http://apps.who.int/iris/bitstream/handle/10665/69477/WHO_SDE_PHE_OEH_06.02_eng.pdf?sequence=1 (accessed on 9 August 2018).
- Djoumi, L.; Vanotti, M.; Blondeau-Patissier, V. Real time cascade impactor based on surface acoustic wave delay lines for PM10 and PM2. 5 mass concentration measurement. Sensors 2018, 18, 255. [Google Scholar] [CrossRef] [PubMed]
- Djoumi, L.; Blondeau-Patissier, V.; Vanotti, M.; Appert-Collin, J.C.; Thomas, D.; Fertier, L. Surface Acoustic Wave Sensors for PM2. 5 and PM10 Concentration. Procedia Eng. 2016, 168, 696–699. [Google Scholar] [CrossRef]
- Molenar, J.V. Theoretical Analysis of PM2.5 Mass Measurements by Nephelometry. Available online: http://vista.cira.colostate.edu/improve/publications/graylit/014_AerosolByNeph/AerosolbyNeph.pdf (accessed on 9 August 2018).
- Black, J.P.; Elium, A.; White, R.M.; Apte, M.G.; Gundel, L.A.; Cambie, R. MEMS-enabled miniaturized particulate matter monitor employing 1.6 GHz aluminum nitride thin-film bulk acoustic wave resonator (FBAR) and thermophoretic precipitator. IEEE Ultrason. Symp. 2007, 4, 476–479. [Google Scholar]
- Thomas, S.; Cole, M.; Villa-López, F.H.; Gardner, J.W. High frequency surface acoustic wave resonator-based sensor for particulate matter detection. Sens. Actuators A Phys. 2016, 244, 138–145. [Google Scholar] [CrossRef] [Green Version]
- Rayleigh, L. On waves propagated along the plane surface of an elastic solid. Proc. Lond. Math. Soc. 1885, 1, 4–11. [Google Scholar] [CrossRef]
- Chen, B.T.; Feather, G.A.; Maynard, A.; Rao, C.Y. Development of a personal sampler for collecting fungal spores. Aerosol Sci.Technol. 2004, 38, 926–937. [Google Scholar] [CrossRef]
- Campbell, C. Surface Acoustic Wave Devices and Their Signal Processing Applications; Elsevier: New York, NY, USA, 2012. [Google Scholar]
- Lindsley, W.G.; Schmechel, D.; Chen, B.T. A two-stage cyclone using microcentrifuge tubes for personal bioaerosol sampling. J. Environ. Monit. 2006, 8, 1136–1142. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, A.C.; Stein, L.E.; Hoffmann, A.C. A closer look at centrifugal gas cleaning devices. In Gas Cyclones and Swirl Tubes: Principles, Design, and Operation, 2nd ed.; Springer-Verlag: Heidelberg, Berlin, 2002. [Google Scholar]
- Hoffman, A.C.; Stein, L.E.; Hoffmann, A.C. Particle motion. In Gas Cyclones and Swirl Tubes: Principles, Design, and Operation, 2nd ed.; Springer-Verlag: Heidelberg, Berlin, 2002. [Google Scholar]
- Hand, J.L.; Kreidenweis, S.M. A new method for retrieving particle refractive index and effective density from aerosol size distribution data. Aerosol Sci. Technol. 2002, 36, 1012–1026. [Google Scholar] [CrossRef]
- Shi, Y.; Ji, Y.; Sun, H.; Hui, F.; Hu, J.; Wu, Y.; Fang, J.; Lin, H.; Wang, J.; Duan, H.; et al. Nanoscale characterization of PM 2.5 airborne pollutants reveals high adhesiveness and aggregation capability of soot particles. Sci. Rep. 2015, 5, 11232. [Google Scholar] [CrossRef] [PubMed]
- Pitz, M.; Cyrys, J.; Karg, E.; Wiedensohler, A.; Wichmann, H.E.; Heinrich, J. Variability of apparent particle density of an urban aerosol. Environ. Sci. Technol. 2003, 37, 4336–4342. [Google Scholar] [CrossRef] [PubMed]
- Morawska, L.; Johnson, G.R.; Ristovski, Z.; Agranovski, V. Relation between particle mass and number for submicrometer airborne particles. Atmos. Environ. 1999, 33, 1983–1990. [Google Scholar] [CrossRef] [Green Version]
- Kulkarni, P.; Baron, P.A.; Willeke, K. Aerosol Measurement: Principles, Techniques, and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Jetter, J.J.; Guo, Z.; McBrian, J.A.; Flynn, M.R. Characterization of emissions from burning incense. Sci. Total Environ. 2002, 295, 51–67. [Google Scholar] [CrossRef]
- Kondoh, J.; Matsui, Y.; Shiokawa, S. New biosensor using shear horizontal surface acoustic wave device. Jpn. J. Appl. Phys. 1993, 32, 2376. [Google Scholar] [CrossRef]
Principle | Instrument | Resolution (m/m3) | Advantages | Volume/Mass | Price (NTD) |
---|---|---|---|---|---|
Optical | TSI DustTrak 8532 | 1 | Real-time measurement (1 s); Portable | 6 × 16 × 10cm3/1 kg | $300,000 |
Beta Attenuation | Met-One BAM 1020 | 0.1 | Continuous data; Error-handling software | 31 × 43 × 40cm3/24.5 kg | $580,000 |
Oscillating Microbalance | Thermo RP 1400 | 0.1 | Simple design principle | 28 × 22 × 43cm3/20 kg | $550,000 |
Spectrometer | GRIMM 180 | 0.1 | 31 size channels | 27 × 36 × 48cm3/18 kg | $850,000 |
Cyclone Size | din/dout/mm | Operating Flow Rate/LPM | d50/µm | Sample Time/s |
---|---|---|---|---|
Without Cyclone | - | 3 | - | 10 |
0.2 mL | 0.5/0.5 | 0.125 | 2.5 | 160 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuo, F.-Y.; Lin, Y.-C.; Ke, L.-Y.; Tsai, C.-J.; Yao, D.-J. Detection of Particulate Matter of Size 2.5 μm with a Surface-Acoustic-Wave Sensor Combined with a Cyclone Separator. Micromachines 2018, 9, 398. https://doi.org/10.3390/mi9080398
Kuo F-Y, Lin Y-C, Ke L-Y, Tsai C-J, Yao D-J. Detection of Particulate Matter of Size 2.5 μm with a Surface-Acoustic-Wave Sensor Combined with a Cyclone Separator. Micromachines. 2018; 9(8):398. https://doi.org/10.3390/mi9080398
Chicago/Turabian StyleKuo, Fung-Yu, Ying-Chen Lin, Ling-Yi Ke, Chuen-Jinn Tsai, and Da-Jeng Yao. 2018. "Detection of Particulate Matter of Size 2.5 μm with a Surface-Acoustic-Wave Sensor Combined with a Cyclone Separator" Micromachines 9, no. 8: 398. https://doi.org/10.3390/mi9080398
APA StyleKuo, F. -Y., Lin, Y. -C., Ke, L. -Y., Tsai, C. -J., & Yao, D. -J. (2018). Detection of Particulate Matter of Size 2.5 μm with a Surface-Acoustic-Wave Sensor Combined with a Cyclone Separator. Micromachines, 9(8), 398. https://doi.org/10.3390/mi9080398