A Novel Acquired t(2;4)(q36.1;q24) with a Concurrent Submicroscopic del(4)(q23q24) in An Adult with Polycythemia Vera
Abstract
:1. Introduction
2. Results
2.1 Clinical Description
2.2 Cytogenetic Analyses
2.3 Oligo-Based Array Comparative Genomic Hybridization (CGH) Analysis
2.4 Validation by FISH Analyses
2.5 Breakpoint Mapping by FISH Analyses
3. Discussion
4. Materials and Methods
4.1 Cytogenetic Analysis
4.2 FISH Analysis
4.3 oaCGH Analysis
4.4 JAK2 Mutation Analysis
5. Conclusions
Supplementary Materials
Acknowledgments
Conflicts of Interest
References
- The International Agency for Research on Cancer. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissue, 4th ed.; Swerdlow, S., Campo, E., Harris, N.L., Jaffe, E.S., Pileri, S.A., Stein, H., Thiele, J., Vardiman, J.W., Eds.; IARC Publications: Lyon, France, 2008. [Google Scholar]
- Tefferi, A.; Vannucchi, A.M.; Barbui, T. Polycythemia vera treatment algorithm 2018. Blood Cancer J. 2018, 8, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bacher, U.; Haferlach, T.; Kern, W.; Hiddemann, W.; Schnittger, S.; Schoch, C. Conventional cytogenetics of myeloproliferative diseases other than CML contribute valid information. Ann. Hematol. 2005, 84, 250–257. [Google Scholar] [CrossRef] [PubMed]
- Diez-Martin, J.L.; Graham, D.L.; Petitt, R.M.; Dewald, G.W. Chromosome studies in 104 patients with polycythemia vera. Mayo Clin. Proc. 1991, 66, 287–299. [Google Scholar] [CrossRef]
- Gangat, N.; Strand, J.; Lasho, T.L.; Finke, C.M.; Knudson, R.A.; Pardanani, A.; Li, C.Y.; Ketterling, R.P.; Tefferi, A. Cytogenetic studies at diagnosis in polycythemia vera: Clinical and JAK2V617F allele burden correlates. Eur. J. Haematol. 2008, 80, 197–200. [Google Scholar] [CrossRef] [PubMed]
- Lawler, S.D. Cytogenetic studies in Philadelphia chromosome-negative myeloproliferative disorders, particularly polycythaemia rubra vera. Clin. Haematol. 1980, 9, 159–174. [Google Scholar] [PubMed]
- Rege-Cambrin, G.; Mecucci, C.; Tricot, G.; Michaux, J.L.; Louwagie, A.; van Hove, W.; Francart, H.; van den Berghe, H. A chromosomal profile of polycythemia vera. Cancer Genet. Cytogenet. 1987, 25, 233–245. [Google Scholar] [CrossRef]
- Testa, J.R.; Kanofsky, J.R.; Rowley, J.D.; Baron, J.M.; Vardiman, J.W. Karyotypic patterns and their clinical significance in polycythemia vera. Am. J. Hematol. 1981, 11, 29–45. [Google Scholar] [CrossRef] [PubMed]
- Swolin, B.; Weinfeld, A.; Westin, J. A prospective long-term cytogenetic study in polycythemia vera in relation to treatment and clinical course. Blood 1988, 72, 386–395. [Google Scholar] [PubMed]
- Sever, M.; Quintas-Cardama, A.; Pierce, S.; Zhou, L.; Kantarjian, H.; Verstovsek, S. Significance of cytogenetic abnormalities in patients with polycythemia vera. Leuk. Lymphoma 2013, 54, 2667–2670. [Google Scholar] [CrossRef] [PubMed]
- Andrieux, J.L.; Demory, J.L. Karyotype and molecular cytogenetic studies in polycythemia vera. Curr Hematol Rep 2005, 4, 224–229. [Google Scholar] [PubMed]
- Baxter, E.J.; Scott, L.M.; Campbell, P.J.; East, C.; Fourouclas, N.; Swanton, S.; Vassiliou, G.S.; Bench, A.J.; Boyd, E.M.; Curtin, N.; et al. Cancer Genome: Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 2005, 365, 1054–1061. [Google Scholar] [CrossRef]
- James, C.; Ugo, V.; Le Couedic, J.P.; Staerk, J.; Delhommeau, F.; Lacout, C.; Garcon, L.; Raslova, H.; Berger, R.; Bennaceur-Griscelli, A.; et al. unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 2005, 434, 1144–1148. [Google Scholar] [CrossRef] [PubMed]
- Kralovics, R.; Teo, S.S.; Buser, A.S.; Brutsche, M.; Tiedt, R.; Tichelli, A.; Passamonti, F.; Pietra, D.; Cazzola, M.; Skoda, R.C. Altered gene expression in myeloproliferative disorders correlates with activation of signaling by the V617F mutation of Jak2. Blood 2005, 106, 3374–3376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kralovics, R.; Passamonti, F.; Buser, A.S.; Teo, S.S.; Tiedt, R.; Passweg, J.R.; Tichelli, A.; Cazzola, M.; Skoda, R.C. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N. Engl. J. Med. 2005, 352, 1779–1790. [Google Scholar] [CrossRef] [PubMed]
- Levine, R.L.; Wadleigh, M.; Cools, J.; Ebert, B.L.; Wernig, G.; Huntly, B.J.; Boggon, T.J.; Wlodarska, I.; Clark, J.J.; Moore, S.; et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 2005, 7, 387–397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tefferi, A. Novel mutations and their functional and clinical relevance in myeloproliferative neoplasms: JAK2, MPL, TET2, ASXL1, CBL, IDH and IKZF1. Leukemia 2010, 24, 1128–1138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cerquozzi, S.; Tefferi, A. Blast transformation and fibrotic progression in polycythemia vera and essential thrombocythemia: A literature review of incidence and risk factors. Blood Cancer J. 2015, 5, e366. [Google Scholar] [CrossRef] [PubMed]
- Kiladjian, J.J.; Gardin, C.; Renoux, M.; Bruno, F.; Bernard, J.F. Long-term outcomes of polycythemia vera patients treated with pipobroman as initial therapy. Hematol. J. 2003, 4, 198–207. [Google Scholar] [CrossRef] [PubMed]
- Passamonti, F.; Rumi, E.; Pungolino, E.; Malabarba, L.; Bertazzoni, P.; Valentini, M.; Orlandi, E.; Arcaini, L.; Brusamolino, E.; Pascutto, C.; et al. Life expectancy and prognostic factors for survival in patients with polycythemia vera and essential thrombocythemia. Am. J. Med. 2004, 117, 755–761. [Google Scholar] [CrossRef] [PubMed]
- Bonicelli, G.; Abdulkarim, K.; Mounier, M.; Johansson, P.; Rossi, C.; Jooste, V.; Andreasson, B.; Maynadie, M.; Girodon, F. Leucocytosis and thrombosis at diagnosis are associated with poor survival in polycythaemia vera: A population-based study of 327 patients. Br. J. Haematol. 2013, 160, 251–254. [Google Scholar] [CrossRef] [PubMed]
- Tefferi, A.; Guglielmelli, P.; Larson, D.R.; Finke, C.; Wassie, E.A.; Pieri, L.; Gangat, N.; Fjerza, R.; Belachew, A.A.; Lasho, T.L.; et al. Long-term survival and blast transformation in molecularly annotated essential thrombocythemia, polycythemia vera, and myelofibrosis. Blood 2014, 124, 2507–2513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tefferi, A.; Rumi, E.; Finazzi, G.; Gisslinger, H.; Vannucchi, A.M.; Rodeghiero, F.; Randi, M.L.; Vaidya, R.; Cazzola, M.; Rambaldi, A.; et al. Survival and prognosis among 1545 patients with contemporary polycythemia vera: An international study. Leukemia 2013, 27, 1874–1881. [Google Scholar] [CrossRef] [PubMed]
- Finazzi, G.; Caruso, V.; Marchioli, R.; Capnist, G.; Chisesi, T.; Finelli, C.; Gugliotta, L.; Landolfi, R.; Kutti, J.; Gisslinger, H.; et al. Acute leukemia in polycythemia vera: An analysis of 1638 patients enrolled in a prospective observational study. Blood 2005, 105, 2664–2670. [Google Scholar] [CrossRef] [PubMed]
- Marchioli, R.; Finazzi, G.; Landolfi, R.; Kutti, J.; Gisslinger, H.; Patrono, C.; Marilus, R.; Villegas, A.; Tognoni, G.; Barbui, T. Vascular and neoplastic risk in a large cohort of patients with polycythemia vera. J. Clin. Oncol. 2005, 23, 2224–2232. [Google Scholar] [CrossRef] [PubMed]
- Gangat, N.; Strand, J.; Li, C.Y.; Wu, W.; Pardanani, A.; Tefferi, A. Leucocytosis in polycythaemia vera predicts both inferior survival and leukaemic transformation. Br. J. Haematol. 2007, 138, 354–358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdulkarim, K.; Ridell, B.; Johansson, P.; Kutti, J.; Safai-Kutti, S.; Andreasson, B. The impact of peripheral blood values and bone marrow findings on prognosis for patients with essential thrombocythemia and polycythemia vera. Eur. J. Haematol. 2011, 86, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Passamont, F.; Rumi, E.; Pietra, D.; Elena, C.; Boveri, E.; Arcaini, L.; Roncoroni, E.; Astori, C.; Merli, M.; Boggi, S.; et al. A prospective study of 338 patients with polycythemia vera: The impact of JAK2 (V617F) allele burden and leukocytosis on fibrotic or leukemic disease transformation and vascular complications. Leukemia 2010, 24, 1574–1579. [Google Scholar] [CrossRef] [PubMed]
- Acar, K.; Sucak, G.T.; Yagci, M.; Tunca, Y.; Haznedar, R. Translocation (2;11)(p21;q23) in a patient with polycythemia vera: A novel clonal chromosome abnormality. Am. J. Hematol. 2006, 81, 891. [Google Scholar] [CrossRef] [PubMed]
- Daibata, M.; Taguchi, T.; Taguchi, H. A novel t(16;20)(q22;p13) in polycythemia vera. Cancer Genet. Cytogenet. 2002, 137, 29–32. [Google Scholar] [CrossRef]
- Larsen, T.S.; Hasselbalch, H.C.; Pallisgaard, N.; Kerndrup, G.B. A der(18)t(9;18)(p13;p11) and a der(9;18)(p10;q10) in polycythemia vera associated with a hyperproliferative phenotype in transformation to postpolycythemic myelofibrosis. Cancer Genet. Cytogenet. 2007, 172, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Mitelman, F.; Johansson, B.; Mertens, F.E. Mitelman Database of Chromosome Aberrations and Gene Fusions in Cancer. Available online: http://cgapncinihgov/Chromosomes/Mitelman 2018 (accessed on 14 February 2018).
- Dastugue, N.; Lafage-Pochitaloff, M.; Pages, M.P.; Radford, I.; Bastard, C.; Talmant, P.; Mozziconacci, M.J.; Leonard, C.; Bilhou-Nabera, C.; Cabrol, C.; et al. Cytogenetic profile of childhood and adult megakaryoblastic leukemia (M7): A study of the Groupe Francais de Cytogenetique Hematologique (GFCH). Blood 2002, 100, 618–626. [Google Scholar] [CrossRef] [PubMed]
- Alter, B.P.; Caruso, J.P.; Drachtman, R.A.; Uchida, T.; Velagaleti, G.V.; Elghetany, M.T. Fanconi anemia: Myelodysplasia as a predictor of outcome. Cancer Genet. Cytogenet. 2000, 117, 125–131. [Google Scholar] [CrossRef]
- Fenaux, P.; Lai, J.L.; Quiquandon, I.; Preudhomme, C.; Dupriez, B.; Facon, T.; Lorthois, C.; Lucidarme, D.; Bauters, F. Therapy related myelodysplastic syndrome and leukemia with no “unfavourable” cytogenetic findings have a good response to intensive chemotherapy: A report on 15 cases. Leuk. Lymphoma 1991, 5, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Borel, C.; Dastugue, N.; Cances-Lauwers, V.; Mozziconacci, M.J.; Prebet, T.; Vey, N.; Pigneux, A.; Lippert, E.; Visanica, S.; Legrand, F.; et al. PICALM-MLLT10 acute myeloid leukemia: A French cohort of 18 patients. Leuk. Res. 2012, 36, 1365–1369. [Google Scholar] [CrossRef] [PubMed]
- Babicka, L.; Ransdorfova, S.; Brezinova, J.; Zemanova, Z.; Sindelarova, L.; Siskova, M.; Maaloufova, J.; Cermak, J.; Michalova, K. Analysis of complex chromosomal rearrangements in adult patients with MDS and AML by multicolor FISH. Leuk. Res. 2007, 31, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Lessard, M.; Helias, C.; Struski, S.; Perrusson, N.; Uettwiller, F.; Mozziconacci, M.J.; Lafage-Pochitaloff, M.; Dastugue, N.; Terre, C.; Brizard, F.; et al. Fluorescence in situ hybridization analysis of 110 hematopoietic disorders with chromosome5 abnormalities: Do de novo and therapy-related myelodysplastic syndrome-acute myeloid leukemia actually differ? Cancer Genet. Cytogenet. 2007, 176, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Lange, K.; Holm, L.; Vang Nielsen, K.; Hahn, A.; Hofmann, W.; Kreipe, H.; Schlegelberger, B.; Gohring, G. Telomere shortening and chromosomal instability in myelodysplastic syndromes. Genes Chromosom. Cancer 2010, 49, 260–269. [Google Scholar] [CrossRef] [PubMed]
- Le Beau, M.M.; Albain, K.S.; Larson, R.A.; Vardiman, J.W.; Davis, E.M.; Blough, R.R.; Golomb, H.M.; Rowley, J.D. Clinical and cytogenetic correlations in 63 patients with therapy-related myelodysplastic syndromes and acute nonlymphocytic leukemia: Further evidence for characteristic abnormalities of chromosomes no. 5 and 7. J. Clin. Oncol. 1986, 4, 325–345. [Google Scholar] [CrossRef] [PubMed]
- Jeandidier, E.; Dastugue, N.; Mugneret, F.; Lafage-Pochitaloff, M.M.; Mozziconacci, M.J.; Herens, C.; Michaux, L.; Verellen-Dumoulin, C.; Talmant, P.; Cornillet-Lefebvre, P.; et al. Abnormalities of the long arm of chromosome 21 in 107 patients with hematopoietic disorders: A collaborative retrospective study of the Groupe Francais de Cytogenetique Hematologique. Cancer Genet. Cytogenet. 2006, 166, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Xin, X.; Fu, X.; Xu, D. Expression pattern of human SERPINE2 in a variety of human tumors. Oncol. Lett. 2018, 15, 4523–4530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Pitta, C.; Tombolan, L.; Campo Dell’Orto, M.; Accordi, B.; te Kronnie, G.; Romualdi, C.; Vitulo, N.; Basso, G.; Lanfranchi, G. A leukemia-enriched cDNA microarray platform identifies new transcripts with relevance to the biology of pediatric acute lymphoblastic leukemia. Haematologica 2005, 90, 890–898. [Google Scholar] [PubMed]
- Dambruoso, I.; Boni, M.; Rossi, M.; Zappasodi, P.; Calvello, C.; Zappatore, R.; Cavigliano, P.M.; Giardini, I.; Rocca, B.; Caresana, M.; et al. Detection of TET2 abnormalities by fluorescence in situ hybridization in 41 patients with myelodysplastic syndrome. Cancer Genet. 2012, 205, 285–294. [Google Scholar] [CrossRef] [PubMed]
- Soares-Ventura, E.M.; Mkrtchyan, H.; de Jesus Marques-Salles, T.; Silva, M.; Santos, N.; de Araujo Silva Amaral, B.; Liehr, T.; Abdelhay, E.; Silva, M.L.; Muniz, M.T. Molecular cytogenetics reveals complex karyotype in apparent t(8;13) therapy-related acute myeloid leukemia M2 after fibrosarcoma. Leuk. Res. 2011, 35, e27–29. [Google Scholar] [CrossRef] [PubMed]
- Walker, A.; Mrozek, K.; Kohlschmidt, J.; Rao, K.W.; Pettenati, M.J.; Sterling, L.J.; Marcucci, G.; Carroll, A.J.; Bloomfield, C.D.; Alliance for Clinical Trials in Oncology. New recurrent balanced translocations in acute myeloid leukemia and myelodysplastic syndromes: Cancer and leukemia group B 8461. Genes Chromosom. Cancer 2013, 52, 385–401. [Google Scholar] [CrossRef] [PubMed]
- La Starza, R.; Crescenzi, B.; Nofrini, V.; Barba, G.; Matteucci, C.; Brandimarte, L.; Pierini, V.; Testoni, N.; Musto, P.; Paolini, S.; et al. FISH analysis reveals frequent co-occurrence of 4q24/TET2 and 5q and/or 7q deletions. Leuk. Res. 2012, 36, 37–41. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, F.M.; Miguel, C.E.; Lucena-Araujo, A.R.; de Lima, A.S.; Falcao, R.P.; Rego, E.M. FISH analysis for TET2 deletion in a cohort of 362 Brazilian myeloid malignancies: Correlation with karyotype abnormalities. Med. Oncol. 2013, 30, 483. [Google Scholar] [CrossRef] [PubMed]
- Peniket, A.J. Del(9q) acute myeloid leukaemia: Clinical and cytological characteristics and prognostic implications. Br. J. Haematol. 2005, 130, 969. [Google Scholar] [CrossRef] [PubMed]
- Fonatsch, C.; Gudat, H.; Lengfelder, E.; Wandt, H.; Silling-Engelhardt, G.; Ludwig, W.D.; Thiel, E.; Freund, M.; Bodenstein, H.; Schwieder, G.; et al. Correlation of cytogenetic findings with clinical features in 18 patients with inv(3)(q21q26) or t(3;3)(q21;q26). Leukemia 1994, 8, 1318–1326. [Google Scholar] [PubMed]
- Lessard, M.; Struski, S.; Leymarie, V.; Flandrin, G.; Lafage-Pochitaloff, M.; Mozziconacci, M.J.; Talmant, P.; Bastard, C.; Charrin, C.; Baranger, L.; et al. Cytogenetic study of 75 erythroleukemias. Cancer Genet. Cytogenet. 2005, 163, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Lai, J.L.; Zandecki, M.; Fenaux, P.; Le Baron, F.; Bauters, F.; Cosson, A.; Deminatti, M. Translocations (5;17) and (7;17) in patients with de novo or therapy-related myelodysplastic syndromes or acute nonlymphocytic leukemia. A possible association with acquired pseudo-Pelger-Huet anomaly and small vacuolated granulocytes. Cancer Genet Cytogenet. 1990, 46, 173–183. [Google Scholar] [CrossRef]
- Kuchinskaya, E.; Heyman, M.; Grander, D.; Linderholm, M.; Soderhall, S.; Zaritskey, A.; Nordgren, A.; Porwit-Macdonald, A.; Zueva, E.; Pawitan, Y.; et al. Children and adults with acute lymphoblastic leukaemia have similar gene expression profiles. Eur. J. Haematol. 2005, 74, 466–480. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.C.; Yang, C.F.; Lee, K.D.; You, J.Y.; Yu, Y.B.; Ho, C.H.; Tzeng, C.H.; Chau, W.K.; Hsu, H.C.; Gau, J.P. Complex karyotypes confer a poor survival in adult acute myeloid leukemia with unfavorable cytogenetic abnormalities. Cancer Genet. Cytogenet. 2007, 174, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Wyandt, H.E.; Chinnappan, D.; Ioannidou, S.; Salama, M.; O’Hara, C. Fluorescence in situ hybridization to assess aneuploidy for chromosomes 7 and 8 in hematologic disorders. Cancer Genet. Cytogenet. 1998, 102, 114–124. [Google Scholar] [CrossRef]
- Glenn, L.D.; Sanger, W.G.; Kessinger, A.; Vaughan, W.P. Failure of karyotypic instability to predict clinical progression in patients with dysmyelopoietic syndromes. Hematol. Pathol. 1988, 2, 239–248. [Google Scholar] [PubMed]
- Viguie, F.; Aboura, A.; Bouscary, D.; Ramond, S.; Delmer, A.; Tachdjian, G.; Marie, J.P.; Casadevall, N. Common 4q24 deletion in four cases of hematopoietic malignancy: Early stem cell involvement? Leukemia 2005, 19, 1411–1415. [Google Scholar] [CrossRef] [PubMed]
- He, Y.F.; Li, B.Z.; Li, Z.; Liu, P.; Wang, Y.; Tang, Q.; Ding, J.; Jia, Y.; Chen, Z.; Li, L.; et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 2011, 333, 1303–1307. [Google Scholar] [CrossRef] [PubMed]
- Ito, S.; D’Alessio, A.C.; Taranova, O.V.; Hong, K.; Sowers, L.C.; Zhang, Y. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 2010, 466, 1129–1133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Figueroa, M.E.; Lugthart, S.; Li, Y.; Erpelinck-Verschueren, C.; Deng, X.; Christos, P.J.; Schifano, E.; Booth, J.; van Putten, W.; Skrabanek, L.; et al. DNA methylation signatures identify biologically distinct subtypes in acute myeloid leukemia. Cancer Cell 2010, 17, 13–27. [Google Scholar] [CrossRef] [PubMed]
- Moran-Crusio, K.; Reavie, L.; Shih, A.; Abdel-Wahab, O.; Ndiaye-Lobry, D.; Lobry, C.; Figueroa, M.E.; Vasanthakumar, A.; Patel, J.; Zhao, X.; et al. Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell 2011, 20, 11–24. [Google Scholar] [CrossRef] [PubMed]
- Quivoron, C.; Couronne, L.; Della Valle, V.; Lopez, C.K.; Plo, I.; Wagner-Ballon, O.; Do Cruzeiro, M.; Delhommeau, F.; Arnulf, B.; Stern, M.H.; et al. TET2 inactivation results in pleiotropic hematopoietic abnormalities in mouse and is a recurrent event during human lymphomagenesis. Cancer Cell 2011, 20, 25–38. [Google Scholar] [CrossRef] [PubMed]
- Tefferi, A.; Pardanani, A.; Lim, K.H.; Abdel-Wahab, O.; Lasho, T.L.; Patel, J.; Gangat, N.; Finke, C.M.; Schwager, S.; Mullally, A.; et al. TET2 mutations and their clinical correlates in polycythemia vera, essential thrombocythemia and myelofibrosis. Leukemia 2009, 23, 905–911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delhommeau, F.; Dupont, S.; Della Valle, V.; James, C.; Trannoy, S.; Masse, A.; Kosmider, O.; Le Couedic, J.P.; Robert, F.; Alberdi, A.; et al. Mutation in TET2 in myeloid cancers. N. Engl. J. Med. 2009, 360, 2289–2301. [Google Scholar] [CrossRef] [PubMed]
- Ko, M.; Huang, Y.; Jankowska, A.M.; Pape, U.J.; Tahiliani, M.; Bandukwala, H.S.; An, J.; Lamperti, E.D.; Koh, K.P.; Ganetzky, R.; et al. Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature 2010, 468, 839–843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ko, M.; An, J.; Bandukwala, H.S.; Chavez, L.; Aijo, T.; Pastor, W.A.; Segal, M.F.; Li, H.; Koh, K.P.; Lahdesmaki, H.; et al. Modulation of TET2 expression and 5-methylcytosine oxidation by the CXXC domain protein IDAX. Nature 2013, 497, 122–126. [Google Scholar] [CrossRef] [PubMed]
- Moon, R.T.; Kohn, A.D.; De Ferrari, G.V.; Kaykas, A. WNT and beta-catenin signalling: Diseases and therapies. Nat. Rev. Genet. 2004, 5, 691–701. [Google Scholar] [CrossRef] [PubMed]
- Barker, N.; Clevers, H. Mining the Wnt pathway for cancer therapeutics. Nat. Rev. Drug Discov. 2006, 5, 997–1014. [Google Scholar] [CrossRef] [PubMed]
- Moon, R.T.; Bowerman, B.; Boutros, M.; Perrimon, N. The promise and perils of Wnt signaling through beta-catenin. Science 2002, 296, 1644–1646. [Google Scholar] [CrossRef] [PubMed]
- Logan, C.Y.; Nusse, R. The Wnt signaling pathway in development and disease. Annu. Rev. Cell Dev. Biol. 2004, 20, 781–810. [Google Scholar] [CrossRef] [PubMed]
- Gelsi-Boyer, V.; Trouplin, V.; Adelaide, J.; Bonansea, J.; Cervera, N.; Carbuccia, N.; Lagarde, A.; Prebet, T.; Nezri, M.; Sainty, D.; et al. Mutations of polycomb-associated gene ASXL1 in myelodysplastic syndromes and chronic myelomonocytic leukaemia. Br. J. Haematol. 2009, 145, 788–800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kojima, T.; Shimazui, T.; Hinotsu, S.; Joraku, A.; Oikawa, T.; Kawai, K.; Horie, R.; Suzuki, H.; Nagashima, R.; Yoshikawa, K.; et al. Decreased expression of CXXC4 promotes a malignant phenotype in renal cell carcinoma by activating Wnt signaling. Oncogene 2009, 28, 297–305. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, A.V.; Albers, C.G.; Holcombe, R.F. Differentiation of tubular and villous adenomas based on Wnt pathway-related gene expression profiles. Int. J. Mol. Med. 2010, 26, 121–125. [Google Scholar] [PubMed]
- Lu, H.; Sun, J.; Wang, F.; Feng, L.; Ma, Y.; Shen, Q.; Jiang, Z.; Sun, X.; Wang, X.; Jin, H. Enhancer of zeste homolog 2 activates wnt signaling through downregulating CXXC finger protein 4. Cell Death & Disease 2013, 4, e776. [Google Scholar]
- Chen, E.; Schneider, R.K.; Breyfogle, L.J.; Rosen, E.A.; Poveromo, L.; Elf, S.; Ko, A.; Brumme, K.; Levine, R.; Ebert, B.L.; et al. Distinct effects of concomitant Jak2V617F expression and Tet2 loss in mice promote disease progression in myeloproliferative neoplasms. Blood 2015, 125, 327–335. [Google Scholar] [CrossRef] [PubMed]
- Kiladjian, J.J.; Masse, A.; Cassinat, B.; Mokrani, H.; Teyssandier, I.; le Couedic, J.P.; Cambier, N.; Almire, C.; Pronier, E.; Casadevall, N.; et al. Clonal analysis of erythroid progenitors suggests that pegylated interferon alpha-2a treatment targets JAK2V617F clones without affecting TET2 mutant cells. Leukemia 2010, 24, 1519–1523. [Google Scholar] [CrossRef] [PubMed]
- Masarova, L.; Yin, C.C.; Cortes, J.E.; Konopleva, M.; Borthakur, G.; Newberry, K.J.; Kantarjian, H.M.; Bueso-Ramos, C.E.; Verstovsek, S. Histomorphological responses after therapy with pegylated interferon alpha-2a in patients with essential thrombocythemia (ET) and polycythemia vera (PV). Exp Hematol. Oncol. 2017, 6, 30. [Google Scholar] [PubMed]
- Tefferi, A.; Sirhan, S.; Sun, Y.; Lasho, T.; Finke, C.M.; Weisberger, J.; Bale, S.; Compton, J.; LeDuc, C.A.; Pardanani, A.; et al. Oligonucleotide array CGH studies in myeloproliferative neoplasms: Comparison with JAK2V617F mutational status and conventional chromosome analysis. Leuk. Res. 2009, 33, 662–664. [Google Scholar] [CrossRef] [PubMed]
- Borze, I.; Mustjoki, S.; Juvonen, E.; Knuutila, S. Oligoarray comparative genomic hybridization in polycythemia vera and essential thrombocythemia. Haematologica 2008, 93, 1098–1100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rumi, E.; Harutyunyan, A.; Elena, C.; Pietra, D.; Klampfl, T.; Bagienski, K.; Berg, T.; Casetti, I.; Pascutto, C.; Passamonti, F.; et al. Identification of genomic aberrations associated with disease transformation by means of high-resolution SNP array analysis in patients with myeloproliferative neoplasm. Am. J. Hematol. 2011, 86, 974–979. [Google Scholar] [CrossRef] [PubMed]
- ISCN. An International System for Human Cytogenetic Nomenclature; Shaffer, L.G., McGowan-Jordan, J., Schmid, M., Eds.; Karger: Basel, Switzerland, 2013. [Google Scholar]
- Kjeldsen, E.; Roug, A.S. A novel unbalanced de novo translocation der(5)t(4;5)(q26;q21.1) in adult T-cell precursor lymphoblastic leukemia. Mol. Cytogenet. 2012, 5, 21. [Google Scholar] [CrossRef] [PubMed]
Gene Symbol | Chromosome | Start | End | Length (bp) |
---|---|---|---|---|
EMCN | chr4 | 101,535,520 | 101,658,273 | 122,754 |
LINC01216 | chr4 | 101,800,458 | 101,815,293 | 14,836 |
DKFZp761L0516 | chr4 | 102,163,609 | 102,487,057 | 323,449 |
PPP3CA | chr4 | 102,163,609 | 102,487,651 | 324,043 |
MIR8066 | chr4 | 102,380,974 | 102,381,052 | 79 |
FLJ20021 | chr4 | 102,487,956 | 102,489,063 | 1108 |
AK000028 | chr4 | 102,487,959 | 102,489,062 | 1104 |
BANK1 | chr4 | 102,560,140 | 103,214,992 | 654,853 |
SLC39A8 | chr4 | 103,391,220 | 103,485,678 | 94,459 |
NFKB1 | chr4 | 103,641,517 | 103,757,507 | 115,991 |
MANBA | chr4 | 103,771,690 | 103,901,196 | 129,507 |
LOC102723704 | chr4 | 103,917,265 | 103,939,844 | 22,580 |
CR618043 | chr4 | 103,934,626 | 103,936,350 | 1725 |
UBE2D3 | chr4 | 103,934,619 | 104,009,491 | 74,873 |
AK093356 | chr4 | 103,968,428 | 103,984,352 | 15,925 |
CISD2 | chr4 | 104,009,575 | 104,033,412 | 23,838 |
NHEDC1 | chr4 | 104,025,643 | 104,160,325 | 134,683 |
SLC9B1 | chr4 | 104,025,641 | 104,160,345 | 134,705 |
NHEDC2 | chr4 | 104,160,837 | 104,217,379 | 56,543 |
SLC9B2 | chr4 | 104,166,096 | 104,217,977 | 51,882 |
BDH2 | chr4 | 104,218,230 | 104,240,473 | 22,244 |
UNQ6308 | chr4 | 104,218,230 | 104,240,473 | 22,244 |
CENPE variant protein | chr4 | 104,278,956 | 104,281,020 | 2065 |
CENPE | chr4 | 104,246,411 | 104,339,015 | 92,605 |
LOC101929448 | chr4 | 104,565,647 | 104,580,334 | 14,688 |
TACR3 | chr4 | 104,730,073 | 104,860,422 | 130,350 |
AK093871 | chr4 | 105,609,014 | 105,612,315 | 3302 |
CXXC4 | chr4 | 105,608,911 | 105,635,507 | 26,597 |
AK094561 | chr4 | 105,631,570 | 105,816,794 | 185,225 |
LOC101929468 | chr4 | 105,631,570 | 105,838,198 | 206,629 |
TET2 | chr4 | 106,286,480 | 106,420,409 | 133,930 |
PPA2 | chr4 | 106,509,682 | 106,614,676 | 104,995 |
BC008246 | chr4 | 106,612,473 | 106,614,625 | 2153 |
EEF1AL7 | chr4 | 106,625,311 | 106,626,956 | 1646 |
ARHGEF38-IT1 | chr4 | 106,702,196 | 106,710,841 | 8646 |
FLJ20184 | chr4 | 106,693,225 | 106,772,286 | 79,062 |
ARHGEF38 | chr4 | 106,693,225 | 106,821,519 | 128,295 |
AK125951 | chr4 | 106,799,802 | 106,821,519 | 21,718 |
INTS12 | chr4 | 106,823,233 | 106,849,330 | 26,098 |
GSTCD | chr4 | 106,849,389 | 106,988,331 | 138,943 |
Cytoband | Position [hg18] | Probe | Result on Derivative Chromosomes |
---|---|---|---|
4q23 | 101,510,593–101,671,984 | RP11-13F20 | Partially deleted on der(4), and fused with RP11-79C2 |
4q23 | 101,560,500–101,762,033 | RP11-842N10 | Deleted on der(4) |
4q24 | 107,113,145–107,319,249 | RP11-867L22 | On der(2) |
4p10q10 | D4Z1 | On der(4) | |
2q35 | 218,520,847–218,639,368 | RP11-129D2 | On der(2) |
2q36.1 | 221,626,882–221,799,537 | RP11-451C18 | On der(2) |
2q36.1 | 224,095,528–224,291,965 | RP11-726G4 | On der(2) |
2q36.1 | 224,301,090–224,460,665 | RP11-183N7 | On der(2) |
2q36.1 | 224,460,665–224,627,199 | RP11-79C2 | The probe is unevenly split between der(2) and der(4) by 75% and 25% signal intensity, respectively. It is fused with RP11-13F20 |
2q36.1 | 224,625,674–224,809,242 | RP11-8F7 | On der(4) |
2q36.2 | 225,077,009–225,253,855 | RP11-110D2 | On der(4) |
2q36.2 | 225,527,112–225,706,569 | RP11-1047B17 | On der(4) |
2q36.3 | 226,764,027–226,939,580 | RP11-59L19 | On der(4) |
2q36.3 | 228,283,721–228,440,226 | RP11-90L9 | On der(4) |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kjeldsen, E. A Novel Acquired t(2;4)(q36.1;q24) with a Concurrent Submicroscopic del(4)(q23q24) in An Adult with Polycythemia Vera. Cancers 2018, 10, 214. https://doi.org/10.3390/cancers10070214
Kjeldsen E. A Novel Acquired t(2;4)(q36.1;q24) with a Concurrent Submicroscopic del(4)(q23q24) in An Adult with Polycythemia Vera. Cancers. 2018; 10(7):214. https://doi.org/10.3390/cancers10070214
Chicago/Turabian StyleKjeldsen, Eigil. 2018. "A Novel Acquired t(2;4)(q36.1;q24) with a Concurrent Submicroscopic del(4)(q23q24) in An Adult with Polycythemia Vera" Cancers 10, no. 7: 214. https://doi.org/10.3390/cancers10070214
APA StyleKjeldsen, E. (2018). A Novel Acquired t(2;4)(q36.1;q24) with a Concurrent Submicroscopic del(4)(q23q24) in An Adult with Polycythemia Vera. Cancers, 10(7), 214. https://doi.org/10.3390/cancers10070214