Prediction of BAP1 Expression in Uveal Melanoma Using Densely-Connected Deep Classification Networks
Abstract
:1. Introduction
- We employed a densely-connected deep classification network for the recognition of nuclear BAP1 expression in immunohistochemical stained eye tissue with uveal melanoma for the first time. Our network has achieved an expert-level performance.
- We created an image dataset that was specialized for use for BAP1 expression in the uveal melanoma.
- We have provided an affordable, efficient, stable and easily accessed approach for uveal melanoma prognostication in a clinical setting.
2. Materials and Methods
2.1. Dataset Acquisition
2.2. Histology
2.3. Immunohistochemistry
2.4. Annotation and Preprocessing
- Positive: Positive BAP 1 patches (retained nuclear expression) (2576 patches).
- Negative: Negative BAP 1 patches (lost nuclear expression) (4720 patches).
- Blurred: Cannot be distinguished/Too vague (560 patches).
- Excluded: Other tissues/Tumor free (320 patches).
2.5. Manual BAP1 Classification
2.6. Densely-Connected Deep Classification Network
2.7. Training Process and Implementation Details
2.8. Evaluation Metrics
- True Positive (TP): the total number of positive pixels correctly predicted;
- False Positive (FP): the total number of negative pixels incorrectly predicted;
- True Negative (TN): the total number of negative pixels correctly predicted; and
- False Negative (FN): the total number of positive pixels incorrectly predicted
3. Results
3.1. Descriptive Statistics
3.2. Model Performance in the Prediction of BAP1 Expression
3.3. Model Performance Compared with Other Methods and Human Experts
3.4. Regression Analysis and Survival
3.5. Abstract Perception of Deep Networks
3.6. Visualization of the Predictive Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
BAP1 | BRCA1-associated protein |
IHC | Immunohistochemistry |
ROC | Receiver Operating Characteristic |
GPU | Graphics Processing Unit |
SGD | Stochastic Gradient Descent |
SVM | Support Vector Machine |
VGG | Visual Geometry Group |
ResNet | Residual neural network |
CAD | Computer-aided diagnostic |
CT | Computed Tomography |
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA-Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed]
- Stang, A.; Parkin, D.; Ferlay, J.; Jöckel, K.-H. International uveal melanoma incidence trends in view of a decreasing proportion of morphological verification. Int. J. Cancer 2005, 114, 114–123. [Google Scholar] [CrossRef] [PubMed]
- Virgili, G.; Gatta, G.; Ciccolallo, L.; Capocaccia, R.; Biggeri, A.; Crocetti, E.; Lutz, J.-M..; Paci, E. Survival in patients with uveal melanoma in europe. Arch. Ophthalmol. 2008, 126, 1413–1418. [Google Scholar] [CrossRef] [PubMed]
- Jovanovic, P.; Mihajlovic, M.; Djordjevic-Jocic, J.; Vlajkovic, S.; Cekic, S.; Stefanovic, V. Ocular melanoma: An overview of the current status. Int. J. Clin. Exp. Pathol. 2013, 6, 1230–1244. [Google Scholar]
- Kujala, E.; Makitie, T.; Kivela, T. Very long-term prognosis of patients with malignant uveal melanoma. Investig. Ophthalmol. Vis. Sci. 2003, 44, 4651–4659. [Google Scholar] [CrossRef]
- Onken, M.; Worley, D.; Char, D.H.; Augsburger, J.J.; Correa, Z.M.; Nudleman, E.; Aaberg, T.M.; Altaweel, M.M.; Bardenstein, D.S.; Finger, P.T.; et al. Collaborative ocular oncology group report number 1: Prospective validation of a multi-gene prognostic assay in uveal melanoma. BMC Ophthalmol. 2012, 119, 596–603. [Google Scholar] [CrossRef]
- Salvatorelli, L.; Puzzo, L.; Russo, A.; Reibaldi, M.; Longo, A.; Ragusa, M.; Aldo, C.; Rappazzo, G.; Caltabiano, R.; Salemi, M. Immunoexpression of SPANX-C in metastatic uveal melanoma. Pathol. Res. Pract. 2019, 215, 152431. [Google Scholar] [CrossRef]
- Caltabiano, R.; Puzzo, L.; Barresi, V.; Leni, A.; Loreto, C.; Musumeci, G.; Castrogiovanni, P.; Ragusa, M.; Foti, P.; Russo, A.; et al. ADAM 10 expression in primary uveal melanoma as prognostic factor for risk of metastasis. Pathol. Res. Pract. 2016, 212, 980–987. [Google Scholar] [CrossRef]
- Caltabiano, R.; Puzzo, L.; Barresi, V.; Cardile, V.; Loreto, C.; Ragusa, M.; Russo, A.; Reibaldi, M.; Longo, A. Expression of Raf Kinase Inhibitor Protein (RKIP) is a predictor of uveal melanoma metastasis. Histol. Histopathol. 2014, 29, 1325–1334. [Google Scholar]
- Murali, R.; Wiesner, T.; Scolyer, R.A. Tumours associated with bap1 mutations. Pathology 2013, 45, 116–126. [Google Scholar] [CrossRef]
- Stålhammar, G.; See, T.; Phillips, S.; Grossniklaus, H. Density of PAS positive patterns in uveal melanoma: Correlation with vasculogenic mimicry, gene expression class, BAP-1 expression, macrophage infiltration, and risk for metastasis. Mol. Vis. 2019, 25, 502–516. [Google Scholar] [PubMed]
- Koopmans, A.; Verdijk, R.; Brouwer, R.W.; van den Bosch, T.P.; van den Berg, M.M.; Vaarwater, J.; Kockx, C.E.; Paridaens, D.; Naus, N.C.; Nellist, M.; et al. Clinical significance of immunohistochemistry for detection of BAP1 mutations in uveal melanoma. Mod. Pathol. 2014, 27, 1321–1330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Griewank, K.; Van de Nes, J.; Schilling, B.; Moll, I.; Sucker, A.; Kakavand, H.; Haydu, L.E.; Asher, M.; Zimmer, L.; Hillen, U.; et al. Genetic and clinico-pathologic analysis of metastatic uveal melanoma. Mod. Pathol. 2014, 27, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Harbour, J.; Onken, M.; Roberson, E.; Duan, S.; Cao, L.; Worley, L.A.; Council, M.L.; Matatall, K.A.; Helms, C.; Bowcock, A.M. Frequent mutation of BAP1 in metastasizing uveal melanomas. Science 2012, 330, 1410–1413. [Google Scholar] [CrossRef]
- Stålhammar, G.; See, T.; Phillips, S.; Seregard, S.; Grossniklaus, H.E. Digital image analysis of bap-1 accurately predicts uveal melanoma metastasis. Trans. Vis. Sci. Technol. 2019, 8, 11. [Google Scholar] [CrossRef]
- Litjens, G.; kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; van der Laak, J.A.W.M.; van Ginneken, B.; Sanchez, C.I. A survey on deep learning in medical image analysis. Med. Image Anal. 2017, 12, 60–88. [Google Scholar] [CrossRef]
- Shen, D.; Wu, G.; Suk, H. Deep learning in medical image analysis. Annu. Rev. Biomed. Eng. 2017, 19, 221–248. [Google Scholar] [CrossRef]
- Kaiming, H.; Jian, S.; Shaoqing, R.; Jian, S. Deep residual learning for image recognition. Conf. Comput. Vis. Pattern Recognit. 2016, 33, 770–778. [Google Scholar]
- Campanella, G.; Hanna, M.G.; Geneslaw, L.; Miraflor, A.; Werneck Krauss Silva, V.; Busam, K.J.; Brogi, E.; Reuter, V.E.; Klimstra, D.S.; Fuchs, T.J. Clinical-Grade computational pathology using weakly supervised deep learning on whole slide images. Nat. Med. 2019, 25, 1301–1309. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Networks: Morden Practices in Deep Learning; MIT Press: Boston, MA, USA, 2006; pp. 161–217. [Google Scholar]
- Setio, A.; Ciompi, F.; Litjens, G.; Gerke, P.; Jacobs, C.; van Riel, S.J.; Wille, M.M.; Naqibullah, M.; Sanchez, C.I.; van Ginneken, B. Pulmonary nodule detection in ct images: False positive reduction using multi-view convolutional networks. IEEE Trans. Med. Imaging 2016, 35, 1160–1169. [Google Scholar] [CrossRef]
- Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.; Blau, H.M.; Thrun, S. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2016, 542, 115–118. [Google Scholar] [CrossRef] [PubMed]
- Bruno, P.; Zaffino, P.; Scaramuzzino, S.; De Rosa, S.; Indolfi, C.; Calimeri, F.; Spadea, M.F. Using cnns for designing and implementing an automatic vascular segmentation method of biomedical images. In Proceedings of the International Conference of the Italian Association for Artificial Intelligence, Trento, Italy, 20–23 November 2018; pp. 60–70. [Google Scholar]
- Gargeya, R.; Leng, T. Automated identification of diabetic retinopathy using deep learning. Ophthalmology 2017, 124, 962–969. [Google Scholar] [CrossRef] [PubMed]
- Janowczyk, A.; Madabhushi, A. Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use cases. J. Pathol. Inform. 2016, 7, 29. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Khosla, A.; Gargeya, R.; Irshad, H.; Beck, A. Deep learning for identifying metastatic breast cancer. arXiv 2016, 25, 1–6. [Google Scholar]
- Coudray, N.; Ocampo, P.S.; Sakellaropoulos, T.; Narula, N.; Snuderi, M.; Fenyö, D.; Moreira, A.L.; Razavian, N.; Tsirigos, A. Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nat. Med. 2018, 24, 1559–1567. [Google Scholar] [CrossRef] [PubMed]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z.B. Rethinking the inception architecture for computer vision. IEEE Conf. Comput. Vis. Pattern Recognit. 2016, 33, 2818–2826. [Google Scholar]
- Lei, B.; Jinman, K.; Ashnil, K.; Fulham, M.; Feng, D. Stacked fully convolutional networks with multi-channel learning: Application to medical image segmentation. Vis. Comput. 2017, 33, 1061–1071. [Google Scholar] [CrossRef]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. IEEE Conf. Comput. Vis. Pattern Recognit. 2017, 68, 4700–4708. [Google Scholar]
- Yang, M.; Yu, K.; Zhang, C.; Zhiwei, L.; Kuiyuan, Y. DenseASPP for semantic segmentation in street scenes. IEEE Conf. Comput. Vis. Pattern Recognit. 2018, 68, 3684–3692. [Google Scholar]
- Zhou, P.; Ni, B.; Geng, C.; Hu, J.; Xu, Y. Scale-transferrable object detection. IEEE Conf. Comput. Vis. Pattern Recognit. 2018, 35, 528–537. [Google Scholar]
- Hubel, D.H.; Wiesel, T.N. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. Physiology-London 1962, 160, 106–154. [Google Scholar] [CrossRef] [PubMed]
- Dayan, P.; Abbott, L.F. Theoretical neuroscience: Computational and mathematical modeling of neural systems. CA-Cancer J. Clin. 2018, 68, 394–442. [Google Scholar]
- Carandini, M. What simple and complex cells compute. J. Physiol. 2018, 68, 394–442. [Google Scholar] [CrossRef] [PubMed]
- Heeger, D.J. Normalization of cell responses in cat striate cortex. Vis. Neurosci. 2006, 577, 463–466. [Google Scholar] [CrossRef] [PubMed]
- Movshon, A.J.; Thompson, I.D.; Tolhurst, D.J. Understanding locally competitive networks. J. Physiol. 1978, 283, 53–57. [Google Scholar] [CrossRef] [PubMed]
- Alex, K.; Ilya, S.H.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 2012, 1, 394–442. [Google Scholar]
- Chen, L.-C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. Int. Conf. Learn. Represent. 2015, 3, 1–14. [Google Scholar]
- Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.; DeVito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.; Lerer, A. Pytorch. 2017. Available online: https://openreview.net/forum?id=BJJsrmfCZ (accessed on 15 October 2019).
- Chang, C.C.; Lin, C.J. Libsvm: A library for support vector machines. ACM TIST 2011, 2, 27. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. Comput. Sci. 2014, 32, 1–14. [Google Scholar]
- Girard, N.; Sima, C.; Jackman, D.M.; Sequist, L.V.; Chen, H.; Yang, J.C.; Ji, H.; Waltman, B.; Rosell, R. Nomogram to predict the presence of egfr activating mutation in lung adenocarcinoma. Eur. Respir. J. 2012, 39, 366–372. [Google Scholar] [CrossRef]
- Velazquez, E.; Parmar, C.; Liu, Y.; Coroller, T.P.; Cruz, G.; Stringfield, O.; Ye, Z.; Makrigiorgos, M.; Fennessy, F.; Mak, R.H. Somatic mutations drive distinct imaging phenotypes in lung cancer. Cancer Res. 2017, 77, 3922–3930. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Kim, J.; Qu, F.; Liu, S.; Wang, H.; Balagurunathan, Y.; Ye, Z.; Gillies, R.J. CT features associated with epidermal growth factor receptor mutation status in patients with lung adenocarcinoma. Radiology 2016, 180, 271–280. [Google Scholar] [CrossRef] [PubMed]
- Yano, M.; Sasaki, H.; Kobayashi, Y.; Yukiue, H.; Haneda, H.; Suzuki, E.; Endo, K.; Kawano, O.; Hara, M.; Fujii, Y. Epidermal growth factor receptor gene mutation and computed tomographic findings in peripheral pulmonary adenocarcinoma. J. Thorac. Oncol. 2006, 1, 413–416. [Google Scholar] [CrossRef] [PubMed]
- Stålhammar, G.; Robertson, S.; Wedlund, L.; Lippert, M.; Rantalainen, M.; Bergh, J.; Hartman, J. Digital image analysis of ki67 in hot spots is superior to both manual ki67 and mitotic counts in breast cancer. Histopathology 2018, 72, 974–989. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Shi, J.; Ye, Z.; Dong, D.; Yu, D.; Zhou, M.; Liu, Y.; Gevaert, O.; Wang, K.; Zhu, Y. Predicting EGFR mutation status in lung adenocarcinoma on computed tomography image using deep learning. Eur. Respir. J. 2019, 53, 1800986. [Google Scholar] [CrossRef] [PubMed]
- Farquhar, S.; Thornton, S.; Coupland, S.E.; Coulson, J.M.; Sacco, J.J.; Krishna, Y.; Heimann, H.; Taktak, A.; Cebulla, C.M.; Abdel-Rahman, M.H. Patterns of bap1 protein expression provide insights into prognostic signicance and the biology of uveal melanoma. J. Pathol. Clin. Res. 2018, 4, 26–38. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Zhang, G.; Dang, H.; Qi, X.; Zhou, X.; Chang, Q. Accurate gastric cancer segmentation in digital pathology images using deformable convolution and multi-scale embedding networks. IEEE Access 2019, 7, 75530–75541. [Google Scholar] [CrossRef]
- Ciompi, F.; Chung, K.; Van Riel, S.J.; Setio, A.A.A.; Gerke, P.K.; Jacobs, C.; Scholten, E.T.; Schaefer-Prokop, C.; Wille, M.M.; Marchiano, A.; et al. Towards automatic pulmonary nodule management in lung cancer screening with deep learning. Sci. Rep. 2017, 7, 46479. [Google Scholar] [CrossRef]
n = | 47 |
---|---|
Mean age at diagnosis, years (SD) | 63 (14) |
Sex, n (%) | |
Female | 25 (53) |
Male | 22 (47) |
Primary tumor location, n (%) | |
Choroid | 44 (94) |
Ciliary body | 3 (6) |
Iris | 0 (0) |
Cell type, n (%) | |
Spindle | 8 (17) |
Epithelioid | 6 (13) |
Mixed | 33 (70) |
Mean tumor thickness, mm (SD) | 9.2 (3.2) |
Mean tumor diameter, mm (SD) | 16.1 (3.7) |
Previous brachytherapy or TTT, n (%) | |
No | 47 (100) |
Yes | 0 (0) |
AJCC T-category, n (%) | |
1 | 0 (0) |
2 | 12 (26) |
3 | 24 (51) |
4 | 11 (23) |
Gene expression class, n (%) | |
1a | 8 (17) |
1b | 6 (13) |
2 | 12 (26) |
Na | 21 (45) |
BAP-1 classification, n (%) | |
High | 25 (53) |
Low | 22 (47) |
Follow-up months, mean (SD) * | 89 (98) |
Method | Sensitivity | Specificity | Accuracy | F1-Score |
---|---|---|---|---|
SVM | 88.76% | 91.52% | 89.50% | 89.20% |
VGGNet | 91.79% | 97.56% | 94.87% | 94.20% |
InceptionV3 | 95.56% | 93.88% | 94.27% | 94.21% |
ResNet-101 | 95.26% | 95.23% | 95.25% | 95.11% |
Our network | 97.09% | 98.12% | 97.10% | 97.81% |
Method | Sensitivity | Specificity | Accuracy | F1-Score |
---|---|---|---|---|
Our network | 92.09% | 93.12% | 92.80% | 92.96% |
Method | Sensitivity | Specificity | Accuracy | F1-Score |
---|---|---|---|---|
Our network | 97.09% | 98.12% | 97.10% | 97.81% |
Ophthalmologist | 97.25% | 97.81% | 97.62% | 97.76% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, M.; Zhou, W.; Qi, X.; Zhang, G.; Girnita, L.; Seregard, S.; Grossniklaus, H.E.; Yao, Z.; Zhou, X.; Stålhammar, G. Prediction of BAP1 Expression in Uveal Melanoma Using Densely-Connected Deep Classification Networks. Cancers 2019, 11, 1579. https://doi.org/10.3390/cancers11101579
Sun M, Zhou W, Qi X, Zhang G, Girnita L, Seregard S, Grossniklaus HE, Yao Z, Zhou X, Stålhammar G. Prediction of BAP1 Expression in Uveal Melanoma Using Densely-Connected Deep Classification Networks. Cancers. 2019; 11(10):1579. https://doi.org/10.3390/cancers11101579
Chicago/Turabian StyleSun, Muyi, Wei Zhou, Xingqun Qi, Guanhong Zhang, Leonard Girnita, Stefan Seregard, Hans E. Grossniklaus, Zeyi Yao, Xiaoguang Zhou, and Gustav Stålhammar. 2019. "Prediction of BAP1 Expression in Uveal Melanoma Using Densely-Connected Deep Classification Networks" Cancers 11, no. 10: 1579. https://doi.org/10.3390/cancers11101579
APA StyleSun, M., Zhou, W., Qi, X., Zhang, G., Girnita, L., Seregard, S., Grossniklaus, H. E., Yao, Z., Zhou, X., & Stålhammar, G. (2019). Prediction of BAP1 Expression in Uveal Melanoma Using Densely-Connected Deep Classification Networks. Cancers, 11(10), 1579. https://doi.org/10.3390/cancers11101579