Incidental Use of Beta-Blockers Is Associated with Outcome of Metastatic Colorectal Cancer Patients Treated with Bevacizumab-Based Therapy: A Single-Institution Retrospective Analysis of 514 Patients
Abstract
:1. Background
2. Materials and Methods
2.1. Study Design
2.2. Patients and Treatment
2.3. Outcome Assessment
2.4. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Outcome of Patients According to the Use of Beta-Blockers and Other Antihypertensive Drugs
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jemal, A.; Bray, F.; Center, M.M.; Ferlay, J.; Ward, E.; Forman, D. Global cancer statistics. CA Cancer J. Clin. 2011, 61, 69–90. [Google Scholar] [CrossRef]
- Hurwitz, H.; Fehrenbacher, L.; Novotny, W.; Cartwright, T.; Hainsworth, J.; Heim, W.; Berlin, J.; Baron, A.; Griffing, S.; Holmgren, E.; et al. Bevacizumab plus irinotecan, fluorouracil and leucovorin for metastatic colorectal cancer. N. Engl. J. Med. 2004, 250, 2335–2342. [Google Scholar] [CrossRef] [PubMed]
- Kabbinavar, F.F.; Hambleton, J.; Mass, R.D.; Hurwitz, H.I.; Bergsland, E.; Sarkar, S. Combined analysis of efficacy: The addition of bevacizumab to fluorouracil/leucovorin improves survival in patiens with metastatic colorectal cancer. J. Clin. Oncol. 2005, 23, 3706–3712. [Google Scholar] [CrossRef] [PubMed]
- Saltz, L.B.; Clarke, S.; Díaz-Rubio, E.; Scheithauer, W.; Figer, A.; Wong, R.; Koski, S.; Lichinitser, M.; Yang, T.S.; Rivera, F.; et al. Bevacizumab in combination with oxaliplatin-based chemotherapy as first-line therapy in metastatic colorectal cancer: A randomized phase III study. J. Clin. Oncol. 2008, 26, 2013–2019. [Google Scholar] [CrossRef] [PubMed]
- Kozloff, M.; Yood, M.U.; Berlin, J.; Flynn, P.J.; Kabbinavar, F.F.; Purdie, D.M.; Ashby, M.A.; Dong, W.; Sugrue, M.M.; Grothey, A.; et al. Clinical outcomes associated with bevacizumab-containing treatment of metastatic colorectal cancer: The BRiTE observational cohort study. Oncologist 2009, 14, 862–870. [Google Scholar] [CrossRef] [PubMed]
- Van Cutsem, E.; Rivera, F.; Berry, S.; Kretzschmar, A.; Michael, M.; DiBartolomeo, M.; Mazier, M.A.; Canon, J.L.; Georgoulias, V.; Peeters, M.; et al. Safety and efficacy of first-line bevacizumab with FOLFOX, XELOX, FOLFIRI and fluoropyrimidines in metastatic colorectal cancer: The BEAT study. Ann. Oncol. 2009, 20, 1842–1847. [Google Scholar] [CrossRef]
- Tang, J.; Li, Z.; Lu, L.; Cho, C.H. ß-Adrenergic system, a backstage manipulator regulating tumour progression and drug target in cancer therapy. Semin. Cancer Biol. 2013, 23, 533–542. [Google Scholar] [CrossRef]
- Lang, K.; Drell, T.L.; Lindecke, A.; Niggemann, B.; Kaltschmidt, C.; Zaenker, K.S.; Entschladen, F. Induction of a metastatogenic tumor cell type by neurotransmitters and its pharmacological inhibition by established drugs. Int. J. Cancer 2004, 112, 231–238. [Google Scholar] [CrossRef]
- Masur, K.; Niggemann, B.; Zanker, K.S.; Entschladen, F. Norepinephrine-induced migration of SW 480 colon carcinoma cells is inhibited by beta-blockers. Cancer Res. 2001, 61, 2866–2869. [Google Scholar]
- Zhang, D.; Ma, Q.Y.; Hu, H.T.; Zhang, M. β2-adrenergic antagonists suppress pancreatic cancer cell invasion by inhibiting CREB, NFkappaB and AP-1. Cancer Biol. Ther. 2010, 10, 19–29. [Google Scholar] [CrossRef]
- Guo, K.; Ma, Q.; Wang, L.; Hu, H.; Li, J.; Zhang, D.; Zhang, M. Norepinephrine-induced invasion by pancreatic cancer cells is inhibited by propranolol. Oncol. Rep. 2009, 22, 825–830. [Google Scholar] [PubMed]
- Sloan, E.K.; Priceman, S.J.; Cox, B.F.; Yu, S.; Pimentel, M.A.; Tangkanangnukul, V.; Arevalo, J.M.; Morizono, K.; Karanikolas, B.D.; Wu, L.; et al. The sympathetic nervous system induces a metastatic switch in primary breast cancer. Cancer Res. 2010, 70, 7042–7052. [Google Scholar] [CrossRef] [PubMed]
- Sood, A.K.; Armaiz-Pena, G.N.; Halder, J.; Nick, A.M.; Stone, R.L.; Hu, W.; Carroll, A.R.; Spannuth, W.A.; Deavers, M.T.; Allen, J.K.; et al. Adrenergic modulation of focal adhesion kinase protects human ovarian cancer cells from anoikis. J. Clin. Investig. 2010, 120, 1515–1523. [Google Scholar] [CrossRef] [PubMed]
- Stiles, J.M.; Amaya, C.; Rains, S.; Diaz, D.; Pham, R.; Battiste, J.; Modiano, J.F.; Kokta, V.; Boucheron, L.E.; Mitchell, D.C.; et al. Targeting of beta adrenergic receptors results in therapeutic efficacy against models of hemangioendothelioma and angiosarcoma. PLoS ONE 2013, 8, e60021. [Google Scholar] [CrossRef] [PubMed]
- Eisenhauer, E.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur. J. Cancer 2009, 45, 228–247. [Google Scholar] [CrossRef]
- R: A Language and Environment for Statistical Computing. Available online: https://repo.bppt.go.id/cran/web/packages/dplR/vignettes/intro-dplR.pdf (accessed on 20 December 2018).
- A Package for Survival Analysis in S. Available online: https://CRAN.R-project.org/package=survival (accessed on 27 November 2018).
- Survminer: Drawing survival curves using “ggplot2”. Available online: https://rpkgs.datanovia.com/survminer/index.html (accessed on 5 August 2018).
- Schuller, H.M. Beta-adrenergic signaling, a novel target for cancer therapy? Oncotarget 2010, 1, 466–469. [Google Scholar] [CrossRef]
- Schuller, H.M. Neurotransmitter receptor-mediated signaling pathways as modulators of carcinogenesis. Prog. Exp. Tumor. Res. 2007, 39, 45–63. [Google Scholar] [PubMed]
- Wong, H.P.; Ho, J.W.; Koo, M.W.; Yu, L.; Wu, W.K.; Lam, E.K.; Tai, E.K.; Ko, J.K.; Shin, V.Y.; Chu, K.M.; et al. Effects of adrenaline in human colon adenocarcinoma HT-29 cells. Life Sci. 2011, 88, 1108–1112. [Google Scholar] [CrossRef]
- Wu, W.K.; Wong, H.P.; Luo, S.W.; Chan, K.; Huang, F.Y.; Hui, M.K.; Lam, E.K.; Shin, V.Y.; Ye, Y.N.; Yang, Y.H.; et al. 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone from cigarette smoke stimulates colon cancer growth via beta-adrenoceptors. Cancer Res. 2005, 65, 5272–5277. [Google Scholar] [CrossRef]
- Sastry, K.S.; Karpova, Y.; Prokopovich, S.; Smith, A.J.; Essau, B.; Gersappe, A.; Carson, J.P.; Weber, M.J.; Register, T.C.; Chen, Y.Q.; et al. Epinephrine protects cancer cells from apoptosis via activation of cAMP-dependent protein kinase and BAD phosphorylation. J. Biol. Chem. 2007, 282, 14094–14100. [Google Scholar] [CrossRef]
- Yang, E.V.; Sood, A.K.; Chen, M.; Li, Y.; Eubank, T.D.; Marsh, C.B.; Jewell, S.; Flavahan, N.A.; Morrison, C.; Yeh, P.E.; et al. Norepinephrine up-regulates the expression of vascular endothelial growth factor, matrix metalloproteinase (MMP)-2, and MMP-9 in nasopharyngeal carcinoma tumor cells. Cancer Res. 2006, 66, 10357–10364. [Google Scholar] [CrossRef] [PubMed]
- Drell, T.L.; Joseph, J.; Lang, K.; Niggemann, B.; Zaenker, K.S.; Entschladen, F. Effects of neurotransmitters on the chemokinesis and chemotaxis of MDA-MB-468 human breast carcinoma cells. Breast Cancer Res. Treat. 2003, 80, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, M.B.; Armaiz-Pena, G.; Takahashi, R.; Lin, Y.G.; Trevino, J.; Li, Y.; Jennings, N.; Arevalo, J.; Lutgendorf, S.K.; Gallick, G.E.; et al. Stress hormonesregulate interleukin-6 expression by human ovarian carcinoma cells through a Src-dependent mechanism. J. Biol. Chem. 2007, 282, 29919–29926. [Google Scholar] [CrossRef] [PubMed]
- Cole, S.W.; Arevalo, J.M.; Takahashi, R.; Sloan, E.K.; Lutgendorf, S.K.; Sood, A.K.; Sheridan, J.F.; Seeman, T.E. Computational identification of gene-social environment interaction at the human IL6 locus. Proc. Natl. Acad. Sci. USA 2010, 107, 5681–5686. [Google Scholar] [CrossRef] [PubMed]
- Shahzad, M.M.; Arevalo, J.M.; Armaiz-Pena, G.N.; Lu, C.; Stone, R.L.; Moreno-Smith, M.; Nishimura, M.; Lee, J.W.; Jennings, N.B.; Bottsford-Miller, J.; et al. Stress effects on FosB and interleukin-8 (IL8) -driven ovarian cancer growth and metastasis. J. Biol. Chem. 2010, 285, 35462–35470. [Google Scholar] [CrossRef] [PubMed]
- Thaker, P.H.; Han, L.Y.; Kamat, A.A.; Arevalo, J.M.; Takahashi, R.; Lu, C.; Jennings, N.B.; Armaiz-Pena, G.; Bankson, J.A.; Ravoori, M.; et al. Chronic stress promotes tumor growth and angiogenesis in a mouse model of ovarian carcinoma. Nat. Med. 2006, 12, 939–944. [Google Scholar] [CrossRef]
- Chakroborty, D.; Sarkar, C.; Basu, B.; Dasgupta, P.S.; Basu, S. Catecholamines regulate tumor angiogenesis. Cancer Res. 2009, 69, 3727–3730. [Google Scholar] [CrossRef]
- Grytli, H.H.; Fagerland, M.W.; Fossa, S.D.; Tasken, K.A. Association between use of beta-blockers and prostate cancer-specific survival: A cohort study of 3561 prostate cancer patients with high-risk or metastatic disease. Eur. Urol. 2014, 65, 635–641. [Google Scholar] [CrossRef]
- Grytli, H.H.; Fagerland, M.W.; Fossa, S.D.; Tasken, K.A.; Haheim, L.L. Use of beta-blockers is associated with prostate cancer-specific survival in prostate cancer patients on androgen deprivation therapy. Prostate 2013, 73, 250–260. [Google Scholar] [CrossRef]
- Barron, T.I.; Connolly, R.M.; Sharp, L.; Bennett, K.; Visvanathan, K. Beta blockers and breast cancer mortality: A population-based study. J. Clin. Oncol. 2011, 29, 2635–2644. [Google Scholar] [CrossRef]
- Melhem-Bertrandt, A.; Chavez-Macgregor, M.; Lei, X.; Brown, E.N.; Lee, R.T.; Meric-Bernstam, F.; Sood, A.K.; Conzen, S.D.; Hortobagyi, G.N.; Gonzalez-Angulo, A.M. Beta-blocker use is associated with improved relapse-free survival in patients with triple-negative breast cancer. J. Clin. Oncol. 2011, 29, 2645–2652. [Google Scholar] [CrossRef] [PubMed]
- Botteri, E.; Munzone, E.; Rotmensz, N.; Cipolla, C.; De Giorgi, V.; Santillo, B.; Zanelotti, A.; Adamoli, L.; Colleoni, M.; Viale, G.; et al. Therapeutic effect of β-blockers in triple-negative breast cancer postmenopausal women. Breast Cancer Res. Treat. 2013, 140, 567–575. [Google Scholar] [CrossRef] [PubMed]
- Spera, G.; Fresco, R.; Fung, H.; Dyck, J.R.B.; Pituskin, E.; Paterson, I.; Mackey, J.R. Beta blockers and improved progression free survival in patients with advanced HER2 negative breast cancer: A retrospective analysis of the ROSE/TRIO-012 study. Ann. Oncol. 2017, 28, 1836–1841. [Google Scholar] [CrossRef] [PubMed]
- De Giorgi, V.; Gandini, S.; Grazzini, M.; Benemei, S.; Marchionni, N.; Geppetti, P. Effect of β-blockers and other antihypertensive drugs on the risk of melanoma recurrence and death. Mayo Clin. Proc. 2013, 88, 1196–1203. [Google Scholar] [CrossRef] [PubMed]
- Lemeshow, S.; Sorensen, H.T.; Phillips, G.; Yang, E.V.; Antonsen, S.; Riis, A.H.; Lesinski, G.B.; Jackson, R.; Glaser, R. β-blockers and survival among Danish patients with malignant melanoma: A population-based cohort study. Cancer Epidemiol. Biomark. Prev. 2011, 20, 2273–2279. [Google Scholar] [CrossRef] [Green Version]
- Beg, M.S.; Gupta, A.; Sher, D.; Ali, S.; Khan, S.; Gao, A.; Stewart, T.; Ahn, C.; Berry, J.; Mortensen, E.M.; et al. Impact of concurrent medication use on pancreatic cancer survival-SEER-medicare analysis. Am. J. Clin. Oncol. 2018, 41, 766–771. [Google Scholar] [CrossRef]
- Udumyan, R.; Montgomery, S.; Fang, F.; Almroth, H.; Valdimarsdottir, U.; Ekbom, A.; Smedby, K.; Fall, K. Beta-blocker drug use and survival among patients with pancreatic adenocarcinoma. Cancer Res. 2017, 77, 3700–3707. [Google Scholar] [CrossRef] [Green Version]
- Ganz, P.A.; Habel, L.A.; Weltzien, E.K.; Caan, B.J.; Cole, S.W. Examining the influence of beta blockers and ACE inhibitors on the risk for breast cancer recurrence: Results from the LACE cohort. Breast Cancer Res. Treat. 2011, 129, 549–556. [Google Scholar] [CrossRef] [Green Version]
- Jansen, L.; Hoffmeister, M.; Arndt, V.; Chang-Claude, J.; Brenner, H. Stage-specific associations between beta blocker use and prognosis after colorectal cancer. Cancer 2014, 120, 1178–1186. [Google Scholar] [CrossRef]
- Giampieri, R.; Scartozzi, M.; Del Prete, M.; Faloppi, L.; Bianconi, M.; Ridolfi, F.; Cascinu, S. Prognostic value for incidental antihypertensive therapy with beta-blockers in metastatic colorectal cancer. Medicine 2015, 94, e719. [Google Scholar] [CrossRef] [Green Version]
- Hwa, Y.L.; Shi, Q.; Kumar, S.K.; Lacy, M.Q.; Gertz, M.A.; Kapoor, P.; Buadi, F.K.; Leung, N.; Dingli, D.; Go, R.S.; et al. Beta-blockers improve survival outcomes in patients with multiple myeloma: A retrospective evaluation. Am. J. Hematol. 2017, 92, 50–55. [Google Scholar] [CrossRef]
- Diaz, E.S.; Karlan, B.Y.; Li, A.J. Impact of beta blockers on epithelial ovarian cancer survival. Gynecol. Oncol. 2012, 127, 375–378. [Google Scholar] [CrossRef] [PubMed]
- Al-Niaimi, A.; Dickson, E.L.; Albertin, C.; Karnowski, J.; Niemi, C.; Spencer, R.; Shahzad, M.M.; Uppal, S.; Saha, S.; Rice, L.; et al. The impact of perioperative beta blocker use on patient outcomes after primary cytoreductive surgery in high-grade epithelial ovarian carcinoma. Gynecol. Oncol. 2016, 143, 521–525. [Google Scholar] [CrossRef]
- Watkins, J.L.; Thaker, P.H.; Nick, A.M.; Ramondetta, L.M.; Kumar, S.; Urbauer, D.L.; Matsuo, K.; Squires, K.C.; Coleman, R.L.; Lutgendorf, S.K.; et al. Clinical impact of selective and nonselective beta-blockers on survival in patients with ovarian cancer. Cancer 2015, 121, 3444–3451. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.A.; Moon, H.; Roh, J.L.; Kim, S.B.; Choi, S.H.; Nam, S.Y.; Kim, S.Y. Postdiagnostic use of beta-blockers and other antihypertensive drugs and the risk of recurrence and mortality in head and neck cancer patients: An observational study of 10, 414 person-years of follow-up. Clin. Transl. Oncol. 2017, 19, 826–833. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.M.; Liao, Z.X.; Komaki, R.; Welsh, J.W.; O’Reilly, M.S.; Chang, J.Y.; Zhuang, Y.; Levy, L.B.; Lu, C.; Gomez, D.R. Improved survival outcomes with the incidental use of beta-blockers among patients with non-small-cell lung cancer treated with definitive radiation therapy. Ann. Oncol. 2013, 24, 1312–1319. [Google Scholar] [CrossRef] [PubMed]
- Musselman, R.P.; Li, W.; Gomes, T.; Mamdani, M.; Haggar, F.; Moloo, H.; Boushey, R.P.; Al-Omran, M.; Al-Obeed, O.; Van Walraven, C.; et al. Association between beta blocker usage and cancer survival in a large, matched population study among hypertensive patients. J. Surg. Res. 2014, 186, 639–640. [Google Scholar] [CrossRef]
- Holmes, S.; Griffith, E.J.; Musto, G.; Minuk, G.Y. Antihypertensive medications and survival in patients with cancer: A population-based retrospective cohort study. Cancer Epidemiol. 2013, 37, 881–885. [Google Scholar] [CrossRef]
- Assayag, J.; Pollak, M.N.; Azoulay, L. Post-diagnostic use of beta-blockers and the risk of death inpatients with prostate cancer. Eur. J. Cancer 2014, 50, 2838–2845. [Google Scholar] [CrossRef]
- Sakellakis, M.; Kostaki, A.; Starakis, I.; Koutras, A. Beta-blocker use and risk of recurrence in patients with early breast cancer. Chemotherapy 2014, 60, 288–289. [Google Scholar] [CrossRef]
- Livingstone, E.; Hollestein, L.M.; van Herk-Sukel, M.P.; Van de Poll-Franse, L.; Nijsten, T.; Schadendorf, D.; De Vries, E. β-Blocker use and all-cause mortality of melanoma patients: Results from a population-based Dutch cohort study. Eur. J. Cancer 2013, 49, 3863–3871. [Google Scholar] [CrossRef] [PubMed]
- Cata, J.P.; Villarreal, J.; Keerty, D.; Thakar, D.R.; Liu, D.D.; Sood, A.K.; Gottumukkala, V. Perioperative beta-blocker use and survival in lung cancer patients. J. Clin. Anesth. 2014, 26, 106–117. [Google Scholar] [CrossRef] [PubMed]
- Heitz, F.; Hengsbach, A.; Harter, P.; Traut, A.; Ataseven, B.; Schneider, S.; Prader, S.; Kurzeder, C.; Sporkmann, M.; Du Bois, A. Intake of selective beta blockers has no impact on survival in patients with epithelial ovarian cancer. Gynecol. Oncol. 2017, 144, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Johannesdottir, S.A.; Schmidt, M.; Phillips, G.; Glaser, R.; Yang, E.V.; Blumenfeld, M.; Lemeshow, S. Use of ß-blockers and mortality following ovarian cancer diagnosis: A population-based cohort study. BMC Cancer 2013, 13, e85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heitz, F.; du Bois, A.; Harter, P.; Lubbe, D.; Kurzeder, C.; Vergote, I.; Plante, M.; Pfisterer, J.; AGO Study Group; NCIC-CTG Study Group; et al. Impact of beta blocker medication in patients with platinum sensitive recurrent ovarian cancer-a combined analysis of 2 prospective multicenter trials by the AGO Study Group, NCIC-CTG and EORTC-GCG. Gynecol. Oncol. 2013, 129, 463–466. [Google Scholar] [CrossRef] [PubMed]
- Jansen, L.; Weberpals, J.; Kuiper, J.G.; Vissers, P.A.J.; Wolkewitz, M.; Hoffmeister, M.; Brenner, H. Pre- and post-diagnostic beta-blocker use and prognosis after colorectal cancer: Results from a population-based study. Int. J. Cancer 2017, 141, 62–71. [Google Scholar] [CrossRef]
- Hicks, B.M.; Murray, L.J.; Powe, D.G.; Hughes, C.M.; Cardwell, C.R. ß-Blocker usage and colorectal cancer mortality: A nested case-control study in the UK Clinical Practice Research Datalink cohort. Ann. Oncol. 2013, 24, 3100–3106. [Google Scholar] [CrossRef]
- Choi, C.H.; Song, T.J.; Kim, T.H.; Choi, J.K.; Park, J.Y.; Yoon, A.; Lee, Y.Y.; Kim, T.J.; Bae, D.S.; Lee, J.W.; et al. Meta-analysis of the effects of beta blocker on survival time in cancer patients. J. Cancer Res. Clin. Oncol. 2014, 140, 1179–1188. [Google Scholar] [CrossRef]
- Zhong, S.; Yu, D.; Zhang, X.; Chen, X.; Yang, S.; Tang, J.; Zhao, J.; Wang, S. β-blocker use and mortality in cancer patients: Systematic review and meta-analysis of observational studies. Eur. J. Cancer Prev. 2016, 25, 440–448. [Google Scholar] [CrossRef]
- Na, Z.; Qiao, X.; Hao, X.; Fan, L.; Xiao, Y.; Shao, Y.; Sun, M.; Feng, Z.; Guo, W.; Li, J.; et al. The effects of beta-blocker use on cancer prognosis: A meta-analysis based on 319,006 patients. OncoTargets Ther. 2018, 11, 4913–4944. [Google Scholar] [CrossRef] [Green Version]
- Shyu, K.G.; Liou, J.Y.; Wang, B.W.; Fang, W.J.; Chang, H. Carvedilol prevents cardiac hypertrophy and overexpression of hypoxia-inducible factor-1a and vascular endothelial growth factor in pressure-overloaded rat heart. J. Biomed. Sci. 2005, 12, 409–420. [Google Scholar] [CrossRef]
- Shyu, K.G.; Lu, M.J.; Chang, H.; Sun, H.Y.; Wang, B.W.; Kuan, P. Carvedilol modulates the expression of hypoxia-inducible factor-alpha and vascular endothelial growth factor in a rat model of volume-overload heart failure. J. Card. Fail. 2005, 11, 152–159. [Google Scholar] [CrossRef]
- Schiestl, C.; Neuhaus, K.; Zoller, S.; Subotic, U.; Forster-Kuebler, I.; Michels, R.; Balmer, C.; Weibel, L. Efficacy and safety of propranolol as first-line treatment for infantile hemangiomas. Eur. J. Pediatr. 2011, 170, 493–501. [Google Scholar] [CrossRef] [Green Version]
- Manunza, F.; Syed, S.; Laguna, B.; Linward, J.; Kennedy, H.; Gholam, K.; Glover, M.; Giardini, A.; Harper, J.I. Propranolol for complicated infantile haemangiomas: A case series of 30 infants. Br. J. Dermatol. 2010, 162, 466–468. [Google Scholar] [CrossRef]
- Cai, J.; Ma, H.; Huang, F.; Zhu, D.; Bi, J.; Ke, Y.; Zhang, T. Correlation of bevacizumab-induced hypertension and outcomes of metastatic colorectal cancer patients treated with bevacizumab: A systematic review and meta-analysis. World J. Surg. Oncol. 2013, 111, e306. [Google Scholar] [CrossRef] [Green Version]
Characteristic | Category | Use of Beta-Blockers | Overall | |
---|---|---|---|---|
No | Yes | |||
Gender | ||||
Male | 248 (63.9%) | 90 (71.4%) | 338 (65.8%) | |
Female | 140 (36.1%) | 36 (28.6%) | 176 (34.2%) | |
Age | ||||
Median (range) | 62.3 (28.0, 86.1) | 65.8 (39.9, 82.6) | 63.2 (28.0, 86.1) | |
<70 years | 309 (79.6%) | 98 (77.8%) | 407 (79.2%) | |
≥70 years | 79 (20.4%) | 28 (22.2%) | 107 (20.8%) | |
ECOG PS | ||||
0 | 39 (10.1%) | 9 (7.1%) | 48 (9.3%) | |
1 | 346 (89.2%) | 116 (92.1%) | 462 (89.9%) | |
2 | 3 (0.8%) | 1 (0.8%) | 4 (0.8%) | |
Primary tumour location | ||||
Left | 285 (73.5%) | 90 (71.4%) | 375 (73.0%) | |
Right | 88 (22.7%) | 32 (25.4%) | 120 (23.3%) | |
Transversum | 15 (3.9%) | 4 (3.2%) | 19 (3.7%) | |
Line of therapy | ||||
First line | 329 (84.8%) | 114 (90.5%) | 443 (86.2%) | |
Second line | 56 (14.4%) | 12 (9.5%) | 68 (13.2%) | |
Third line | 3 (0.8%) | 0 (0%) | 3 (0.6%) | |
Chemotherapy | ||||
FOLFIRI or XELIRI | 72 (18.6%) | 19 (15.1%) | 91 (17.7%) | |
FOLFOX or XELOX | 206 (53.1%) | 74 (58.7%) | 280 (54.5%) | |
Other | 69 (17.8%) | 24 (19.0%) | 93 (18.1%) | |
Data not available | 41 (10.6%) | 9 (7.1%) | 50 (9.7%) | |
Lines of subsequent chemotherapy | ||||
No | 228 (58.8%) | 69 (54.8%) | 297 (57.8%) | |
One | 102 (26.3%) | 35 (27.8%) | 137 (26.7%) | |
Two | 39 (10.1%) | 17 (13.5%) | 56 (10.9%) | |
Three | 16 (4.1%) | 5 (4.0%) | 21 (4.1%) | |
Four | 3 (0.8%) | 0 (0%) | 3 (0.6%) | |
Lines of subsequent chemotherapy combined with targeted therapy | ||||
No | 302 (77.8%) | 100 (79.4%) | 402 (78.2%) | |
One | 85 (21.9%) | 23 (18.3%) | 108 (21.0%) | |
Two | 1 (0.3%) | 3 (2.4%) | 4 (0.8%) | |
Lines of subsequent targeted therapy | ||||
No | 291 (75%) | 98 (77.8%) | 389 (75.7%) | |
One | 81 (20.9%) | 26 (20.6%) | 107 (20.8%) | |
Two | 15 (3.9%) | 1 (0.8%) | 16 (3.1%) | |
Three | 1 (0.3%) | 1 (0.8%) | 2 (0.4%) | |
Synchronous metastases | ||||
No | 160 (41.2%) | 58 (46.0%) | 218 (42.4%) | |
Yes | 228 (58.8%) | 68 (54.0%) | 296 (57.8%) | |
Arterial hypertension | ||||
No | 215 (55.4%) | 99 (78.6%) | 272 (52.9%) | |
Yes | 173 (44.6%) | 27 (21.4%) | 242 (47.1%) | |
Ischaemic heart disease | ||||
No | 369 (95.1%) | 96 (76.2%) | 465 (90.5%) | |
Yes | 19 (4.9%) | 30 (23.8%) | 49 (9.5%) | |
Diabetes mellitus | ||||
No | 327 (84.3%) | 88 (69.8%) | 415 (80.7%) | |
Yes | 61 (15.7%) | 38 (30.2%) | 99 (19.3%) | |
Chronic obstructive pulmonary disease | ||||
No | 383 (98.7%) | 122 (96.8%) | 505 (98.2%) | |
Yes | 5 (1.3%) | 4 (3.2%) | 9 (1.8%) | |
Cancer duplicity | ||||
No | 365 (94.1%) | 104 (82.5%) | 469 (91.2%) | |
Yes | 23 (5.9%) | 22 (17.5%) | 45 (8.8%) | |
Chronic renal failure | ||||
No | 381 (98.2%) | 122 (96.8%) | 503 (97.9%) | |
Yes | 7 (1.8%) | 4 (3.2%) | 11 (2.1%) | |
Antihypertensive medication * | ||||
Beta-blockers | 126 (24.5%) | |||
Angiotensin-converting-enzyme inhibitors | 163 (31.7%) | |||
Angiotensin II receptor blockers | 48 (9.3%) | |||
Calcium channel blockers | 102 (19.8%) |
Medication | Progression-Free Survival (PFS) | Overall Survival (OS) | ||
---|---|---|---|---|
HR (95% CI) | p-Value | HR (95% CI) | p-Value | |
Angiotensin-converting-enzyme inhibitors | 0.932 (0.763–1.139) | 0.491 | 0.841 (0.669–1.056) | 0.136 |
Beta-blockers | 0.736 (0.592–0.915) | 0.006 | 0.714 (0.554–0.921) | 0.009 |
Angiotensin II receptor blockers | 0.847 (0.610–1.178) | 0.324 | 1.049 (0.739–1.488) | 0.789 |
Calcium channel blockers | 0.886 (0.700–1.121) | 0.313 | 0.932 (0.716–1.214) | 0.603 |
Survival | Use of Beta-Blockers | p-Value | |
---|---|---|---|
No | Yes | ||
Median PFS (95% CI) | 8.30 months (7.80–9.57) | 11.40 months (10.10–13.61) | 0.006 |
3-month PFS (95% CI) | 0.894 (0.863–0.925) | 0.960 (0.926–0.995) | |
6-month PFS (95% CI) | 0.665 (0.619–0.714) | 0.766 (0.695–0.844) | |
12-month PFS (95% CI) | 0.309 (0.264–0.361) | 0.472 (0.392–0.571) | |
18-month PFS (95% CI) | 0.136 (0.104–178) | 0.185 (0.126–0.272) | |
Median OS (95% CI) | 21.00 months (17.8–23.8) | 26.8 months (22.20–32.20) | 0.009 |
12-month OS (95% CI) | 0.734 (0.689–0.781) | 0.825 (0.760–0.896) | |
24-month OS (95% CI) | 0.439 (0.388–0.497) | 0.553 (0.465–0.656) | |
36-month OS (95% CI) | 0.269 (0.223–0.326) | 0.357 (0.271–0.471) |
Parameter | Category | Progression-Free Survival (PFS) | Overall Survival (OS) | ||
---|---|---|---|---|---|
HR (95% CI) | p-Value | HR (95% CI) | p-Value | ||
Gender | Male | 1.000 | 0.985 | 1.000 | 0.302 |
Female | 0.998 (0.805–1.238) | 1.133 (0.894–1.437) | |||
Age | <70 years | 1.000 | 0.459 | 1.000 | 0.813 |
≥70 years | 1.100 (0.855–1.414) | 1.034 (0.781–1.370) | |||
ECOG PS | 0 | 1.000 | 1.000 | ||
1 | 1.066 (0.776–1.464) | 0.693 | 1.136 (0.782–1.650) | 0.503 | |
2 | 0.614 (0.183–2.058) | 0.430 | 0.828 (0.244–2.810) | 0.763 | |
Primary tumour location | Left | 1.000 | 0.239 | 1.000 | 0.361 |
Right | 1.152 (0.910–1.460) | 1.131 (0.868–1.476) | |||
Line of therapy | First line | 1.000 | 1.000 | ||
Second line | 1.127 (0.816–1.557) | 0.468 | 1.011 (0.706–1.447) | 0.954 | |
Third line | 3.021 (0.956–9.551) | 0.060 | 2.199 (0.694–6.974) | 0.181 | |
Chemotherapy | FOLFIRI or XELIRI | 1.000 | 1.000 | ||
FOLFOX or XELOX | 0.782 (0.693–1.013) | 0.062 | 0.656 (0.496–0.870) | 0.003 | |
Other | 0.788 (0.563–1.101) | 0.163 | 0.854 (0.602–1.211) | 0.375 | |
Synchronous metastases | No | 1.000 | 0.500 | 1.000 | 0.743 |
Yes | 0.932 (0.759–1.144) | 0.963 (0.768–1.207) | |||
Use of beta-blockers | No | 1.000 | 0.021 | 1.000 | 0.020 |
Yes | 0.763 (0.606–0.960) | 0.730 (0.560–0.951) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fiala, O.; Ostasov, P.; Sorejs, O.; Liska, V.; Buchler, T.; Poprach, A.; Finek, J. Incidental Use of Beta-Blockers Is Associated with Outcome of Metastatic Colorectal Cancer Patients Treated with Bevacizumab-Based Therapy: A Single-Institution Retrospective Analysis of 514 Patients. Cancers 2019, 11, 1856. https://doi.org/10.3390/cancers11121856
Fiala O, Ostasov P, Sorejs O, Liska V, Buchler T, Poprach A, Finek J. Incidental Use of Beta-Blockers Is Associated with Outcome of Metastatic Colorectal Cancer Patients Treated with Bevacizumab-Based Therapy: A Single-Institution Retrospective Analysis of 514 Patients. Cancers. 2019; 11(12):1856. https://doi.org/10.3390/cancers11121856
Chicago/Turabian StyleFiala, Ondrej, Pavel Ostasov, Ondrej Sorejs, Vaclav Liska, Tomas Buchler, Alexandr Poprach, and Jindrich Finek. 2019. "Incidental Use of Beta-Blockers Is Associated with Outcome of Metastatic Colorectal Cancer Patients Treated with Bevacizumab-Based Therapy: A Single-Institution Retrospective Analysis of 514 Patients" Cancers 11, no. 12: 1856. https://doi.org/10.3390/cancers11121856
APA StyleFiala, O., Ostasov, P., Sorejs, O., Liska, V., Buchler, T., Poprach, A., & Finek, J. (2019). Incidental Use of Beta-Blockers Is Associated with Outcome of Metastatic Colorectal Cancer Patients Treated with Bevacizumab-Based Therapy: A Single-Institution Retrospective Analysis of 514 Patients. Cancers, 11(12), 1856. https://doi.org/10.3390/cancers11121856