Deleterious and Oncogenic Mutations in the IL7RA
Abstract
:1. Introduction
2. Structural Determinants of the IL7Rα Activity
3. Deleterious Mutations in the IL7R
4. Oncogenic Mutations in the IL7R
4.1. IL7Rα Cysteine Mutants
4.2. IL7Rα Cysteine-Lacking Mutants
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cui, L.; Fu, J.; Pang, J.C.-S.; Qiu, Z.-K.; Liu, X.-M.; Chen, F.-R.; Shi, H.-L.; Ng, H.-K.; Chen, Z. Overexpression of IL-7 enhances cisplatin resistance in glioma. Cancer Biol. Ther. 2012, 13, 496–503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Rawi, M.A.A.; Rmali, K.; Mansel, R.E.; Jiang, W.G. Interleukin 7 induces the growth of breast cancer cells through a wortmannin-sensitive pathway. Br. J. Surg. 2004, 91, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zeng, Z.; Peng, Y.; Chen, J.; Pan, L.; Pan, D. IL-7 splicing variant IL-7δ5 induces EMT and metastasis of human breast cancer cell lines MCF-7 and BT-20 through activation of PI3K/Akt pathway. Histochem. Cell Biol. 2014, 142, 401–410. [Google Scholar] [CrossRef] [PubMed]
- Ming, J.; Jiang, G.; Zhang, Q.; Qiu, X.; Wang, E. Interleukin-7 up-regulates cyclin D1 via activator protein-1 to promote proliferation of cell in lung cancer. Cancer Immunol. Immunother. 2012, 61, 79–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.-H.; Wang, M.-H.; Ren, H.-J.; Qu, W.; Sun, L.-M.; Zhang, Q.-F.; Qiu, X.-S.; Wang, E.-H. Interleukin 7 signaling prevents apoptosis by regulating bcl-2 and bax via the p53 pathway in human non-small cell lung cancer cells. Int. J. Clin. Exp. Pathol. 2014, 7, 870–881. [Google Scholar] [PubMed]
- Suzuki, K.; Kadota, K.; Sima, C.S.; Nitadori, J.; Rusch, V.W.; Travis, W.D.; Sadelain, M.; Adusumilli, P.S. Clinical Impact of Immune Microenvironment in Stage I Lung Adenocarcinoma: Tumor Interleukin-12 Receptor β2 (IL-12Rβ2), IL-7R, and Stromal FoxP3/CD3 Ratio Are Independent Predictors of Recurrence. J. Clin. Oncol. 2013, 31, 490–498. [Google Scholar] [CrossRef] [Green Version]
- Cosenza, L.; Gorgun, G.; Urbano, A.; Foss, F. Interleukin-7 receptor expression and activation in nonhaematopoietic neoplastic cell lines. Cell. Signal. 2002, 14, 317–325. [Google Scholar] [CrossRef]
- Mazzucchelli, R.; Durum, S.K. Interleukin-7 receptor expression: Intelligent design. Nat. Rev. Immunol. 2007, 7, 144–154. [Google Scholar] [CrossRef]
- Carrette, F.; Surh, C.D. IL-7 signaling and CD127 receptor regulation in the control of T cell homeostasis. Semin. Immunol. 2012, 24, 209–217. [Google Scholar] [CrossRef] [Green Version]
- Barata, J.T.; Durum, S.K.; Seddon, B. Flip the coin: IL-7 and IL-7R in health and disease. Nat. Immunol. 2019, 20, 1584–1593. [Google Scholar] [CrossRef]
- Goodwin, R. Cloning of the human and murine interleukin-7 receptors: Demonstration of a soluble form and homology to a new receptor superfamily. Cell 1990, 60, 941–951. [Google Scholar] [CrossRef]
- Lundstrom, W.; Highfill, S.; Walsh, S.T.R.; Beq, S.; Morse, E.; Kockum, I.; Alfredsson, L.; Olsson, T.; Hillert, J.; Mackall, C.L. Soluble IL7R potentiates IL-7 bioactivity and promotes autoimmunity. Proc. Natl. Acad. Sci. USA 2013, 110, E1761–E1770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rose, T.; Pillet, A.-H.; Lavergne, V.; Tamarit, B.; Lenormand, P.; Rousselle, J.-C.; Namane, A.; Thèze, J. Interleukin-7 Compartmentalizes Its Receptor Signaling Complex to Initiate CD4 T Lymphocyte Response. J. Biol. Chem. 2010, 285, 14898–14908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McElroy, C.A.; Holland, P.J.; Zhao, P.; Lim, J.-M.; Wells, L.; Eisenstein, E.; Walsh, S.T.R. Structural reorganization of the interleukin-7 signaling complex. Proc. Natl. Acad. Sci. USA 2012, 109, 2503–2508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, Q.; Li, W.Q.; Hofmeister, R.R.; Young, H.A.; Hodge, D.R.; Keller, J.R.; Khaled, A.R.; Durum, S.K. Distinct Regions of the Interleukin-7 Receptor Regulate Different Bcl2 Family Members. Mol. Cell. Biol. 2004, 24, 6501–6513. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Q.; Li, W.Q.; Aiello, F.B.; Mazzucchelli, R.; Asefa, B.; Khaled, A.R.; Durum, S.K. Cell biology of IL-7, a key lymphotrophin. Cytokine Growth Factor Rev. 2005, 16, 513–533. [Google Scholar] [CrossRef]
- Jiang, Q.; Li, W.-Q.; Aiello, F.B.; Klarmann, K.D.; Keller, J.R.; Durum, S.K. Retroviral transduction of IL-7Rα into IL-7Rα−/− bone marrow progenitors: Correction of lymphoid deficiency and induction of neutrophilia. Gene Ther. 2005, 12, 1761–1768. [Google Scholar] [CrossRef] [Green Version]
- Palmer, M.J.; Mahajan, V.S.; Trajman, L.C.; Irvine, D.J.; Lauffenburger, D.A.; Chen, J. Interleukin-7 Receptor Signaling Network: An Integrated Systems Perspective. Cell. Mol. Immunol. 2008, 5, 79–89. [Google Scholar] [CrossRef]
- Venkitaraman, A.R.; Cowling, R.J. Interleukin-7 induces the association of phosphatidylinositol 3-kinase with the α chain of the interleukin-7 receptor. Eur. J. Immunol. 1994, 24, 2168–2174. [Google Scholar] [CrossRef]
- Crawley, J.B.; Willcocks, J.; Foxwell, B.M.J. Interleukin-7 induces T cell proliferation in the absence of Erk/MAP kinase activity. Eur. J. Immunol. 1996, 26, 2717–2723. [Google Scholar] [CrossRef]
- Osborne, L.C.; Dhanji, S.; Snow, J.W.; Priatel, J.J.; Ma, M.C.; Miners, M.J.; Teh, H.-S.; Goldsmith, M.A.; Abraham, N. Impaired CD8 T cell memory and CD4 T cell primary responses in IL-7Rα mutant mice. J. Exp. Med. 2007, 204, 619–631. [Google Scholar] [CrossRef] [Green Version]
- Canté-Barrett, K.; Spijkers-Hagelstein, J.A.P.; Buijs-Gladdines, J.G.C.A.M.; Uitdehaag, J.C.M.; Smits, W.K.; van der Zwet, J.; Buijsman, R.C.; Zaman, G.J.R.; Pieters, R.; Meijerink, J.P.P. MEK and PI3K-AKT inhibitors synergistically block activated IL7 receptor signaling in T-cell acute lymphoblastic leukemia. Leukemia 2016, 30, 1832–1843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bousoik, E.; Montazeri Aliabadi, H. “Do We Know Jack” About JAK? A Closer Look at JAK/STAT Signaling Pathway. Front. Oncol. 2018, 8, 1–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winston, L.A.; Hunter, T. Intracellular signalling: Putting JAKs on the kinase MAP. Curr. Biol. 1996, 6, 668–671. [Google Scholar] [CrossRef] [Green Version]
- Pandey, A.; Ozaki, K.; Baumann, H.; Levin, S.D.; Puel, A.; Farr, A.G.; Ziegler, S.F.; Leonard, W.J.; Lodish, H.F. Cloning of a receptor subunit required for signaling by thymic stromal lymphopoietin. Nat. Immunol. 2000, 1, 59–64. [Google Scholar] [CrossRef]
- Levin, S.D.; Koelling, R.M.; Friend, S.L.; Isaksen, D.E.; Ziegler, S.F.; Perlmutter, R.M.; Farr, A.G. Thymic stromal lymphopoietin: A cytokine that promotes the development of IgM+ B cells in vitro and signals via a novel mechanism. J. Immunol. 1999, 162, 677–683. [Google Scholar]
- Isaksen, D.E.; Baumann, H.; Trobridge, P.A.; Farr, A.G.; Levin, S.D.; Ziegler, S.F. Requirement for stat5 in thymic stromal lymphopoietin-mediated signal transduction. J. Immunol. 1999, 163, 5971–5977. [Google Scholar]
- McElroy, C.A.; Dohm, J.A.; Walsh, S.T.R. Structural and Biophysical Studies of the Human IL-7/IL-7Rα Complex. Structure 2009, 17, 54–65. [Google Scholar] [CrossRef] [Green Version]
- Pillet, A.-H.; Juffroy, O.; Mazard-Pasquier, V.; Moreau, J.-L.; Gesbert, F.; Chastagner, P.; Colle, J.-H.; Thèze, J.; Rose, T. Human IL-Rbeta chains form IL-2 binding homodimers. Eur. Cytokine Netw. 2008, 19, 49–59. [Google Scholar]
- Tamarit, B.; Bugault, F.; Pillet, A.-H.; Lavergne, V.; Bochet, P.; Garin, N.; Schwarz, U.; Thèze, J.; Rose, T. Membrane Microdomains and Cytoskeleton Organization Shape and Regulate the IL-7 Receptor Signalosome in Human CD4 T-cells. J. Biol. Chem. 2013, 288, 8691–8701. [Google Scholar] [CrossRef] [Green Version]
- Henriques, C.M.; Rino, J.; Nibbs, R.J.; Graham, G.J.; Barata, J.T. IL-7 induces rapid clathrin-mediated internalization and JAK3-dependent degradation of IL-7Rα in T cells. Blood 2010, 115, 3269–3277. [Google Scholar] [CrossRef] [PubMed]
- Dooms, H. Interleukin-7: Fuel for the autoimmune attack. J. Autoimmun. 2013, 45, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Giliani, S.; Mori, L.; de Saint Basile, G.; Le Deist, F.; Rodriguez-Perez, C.; Forino, C.; Mazzolari, E.; Dupuis, S.; Elhasid, R.; Kessel, A.; et al. Interleukin-7 receptor alpha (IL-7Ralpha) deficiency: Cellular and molecular bases. Analysis of clinical, immunological, and molecular features in 16 novel patients. Immunol. Rev. 2005, 203, 110–126. [Google Scholar] [CrossRef] [PubMed]
- Ye, S.K.; Maki, K.; Kitamura, T.; Sunaga, S.; Akashi, K.; Domen, J.; Weissman, I.L.; Honjo, T.; Ikuta, K. Induction of germline transcription in the TCRγ, locus by Stat5: Implications for accessibility control by the IL-7 receptor. Immunity 1999, 11, 213–223. [Google Scholar] [CrossRef] [Green Version]
- Puel, A.; Ziegler, S.F.; Buckley, R.H.; Leonard, W.J. Defective IL7R expression in T-B+NK+ severe combined immunodeficiency. Nat. Genet. 1998, 20, 394–397. [Google Scholar] [CrossRef] [PubMed]
- Roifman, C.M.; Zhang, J.; Chitayat, D.; Sharfe, N. A partial deficiency of interleukin-7R alpha is sufficient to abrogate T-cell development and cause severe combined immunodeficiency. Blood 2000, 96, 2803–2807. [Google Scholar] [CrossRef]
- Buckley, R.H. Primary cellular immunodeficiencies. J. Allergy Clin. Immunol. 2002, 109, 747–757. [Google Scholar] [CrossRef]
- Kwan, A.; Abraham, R.S.; Currier, R.; Brower, A.; Andruszewski, K.; Abbott, J.K.; Baker, M.; Ballow, M.; Bartoshesky, L.E.; Bonilla, F.A.; et al. Newborn screening for severe combined immunodeficiency in 11 screening programs in the United States. JAMA J. Am. Med. Assoc. 2014, 312, 729. [Google Scholar] [CrossRef]
- Giliani, S.; Bonfim, C.; de Saint Basile, G.; Lanzi, G.; Brousse, N.; Koliski, A.; Malvezzi, M.; Fischer, A.; Notarangelo, L.D.; Le Deist, F. Omenn syndrome in an infant with IL7RA gene mutation. J. Pediatr. 2006, 148, 272–274. [Google Scholar] [CrossRef]
- Lebet, T.; Chiles, R.; Hsu, A.P.; Mansfield, E.S.; Warrington, J.A.; Puck, J.M. Mutations causing severe combined immunodeficiency: Detection with a custom resequencing microarray. Genet. Med. 2008, 10, 575–585. [Google Scholar] [CrossRef] [Green Version]
- Lev, A.; Simon, A.J.; Barel, O.; Eyal, E.; Glick-Saar, E.; Nayshool, O.; Birk, O.; Stauber, T.; Hochberg, A.; Broides, A.; et al. Reduced Function and Diversity of T Cell Repertoire and Distinct Clinical Course in Patients With IL7RA Mutation. Front. Immunol. 2019, 10, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Engelhardt, K.R.; Xu, Y.; Grainger, A.; Germani Batacchi, M.G.C.; Swan, D.J.; Willet, J.D.P.; Abd Hamid, I.J.; Agyeman, P.; Barge, D.; Bibi, S.; et al. Identification of Heterozygous Single- and Multi-exon Deletions in IL7R by Whole Exome Sequencing. J. Clin. Immunol. 2017, 37, 42–50. [Google Scholar] [CrossRef] [Green Version]
- Lundtoft, C.; Awuah, A.A.-A.; Güler, A.; Harling, K.; Schaal, H.; Mayatepek, E.; Phillips, R.O.; Nausch, N.; Owusu-Dabo, E.; Jacobsen, M. An IL7RA exon 5 polymorphism is associated with impaired IL-7Rα splicing and protection against tuberculosis in Ghana. Genes Immun. 2019, 20, 514–519. [Google Scholar] [CrossRef] [PubMed]
- Hahn, W.-H.; Suh, J.-S.; Park, H.-J.; Cho, B.-S. Interleukin 7 receptor gene polymorphisms and haplotypes are associated with susceptibility to IgA nephropathy in Korean children. Exp. Ther. Med. 2011, 2, 1121–1126. [Google Scholar] [CrossRef] [PubMed]
- Gallego-Bustos, F.; Gotea, V.; Ramos-Amador, J.T.; Rodríguez-Pena, R.; Gil-Herrera, J.; Sastre, A.; Delmiro, A.; Rai, G.; Elnitski, L.; González-Granado, L.I.; et al. A Case of IL-7R Deficiency Caused by a Novel Synonymous Mutation and Implications for Mutation Screening in SCID Diagnosis. Front. Immunol. 2016, 7, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Bayer, D.K.; Martinez, C.A.; Sorte, H.S.; Forbes, L.R.; Demmler-Harrison, G.J.; Hanson, I.C.; Pearson, N.M.; Noroski, L.M.; Zaki, S.R.; Bellini, W.J.; et al. Vaccine-associated varicella and rubella infections in severe combined immunodeficiency with isolated CD4 lymphocytopenia and mutations in IL 7 R detected by tandem whole exome sequencing and chromosomal microarray. Clin. Exp. Immunol. 2014, 178, 459–469. [Google Scholar] [CrossRef] [Green Version]
- Shamim, Z.; Spellman, S.; Haagenson, M.; Wang, T.; Lee, S.J.; Ryder, L.P.; Müller, K. Polymorphism in the Interleukin-7 Receptor-alpha and Outcome after Allogeneic Hematopoietic Cell Transplantation with Matched Unrelated Donor. Scand. J. Immunol. 2013, 78, 214–220. [Google Scholar] [CrossRef] [Green Version]
- Liao, C.-Y.; Yu, H.-W.; Cheng, C.-N.; Chen, J.-S.; Lin, C.-W.; Chen, P.-C.; Shieh, C.-C. A novel pathogenic mutation on Interleukin-7 receptor leading to severe combined immunodeficiency identified with newborn screening and whole exome sequencing. J. Microbiol. Immunol. Infect. 2018, 18, 1–7. [Google Scholar] [CrossRef]
- Lundmark, F.; Duvefelt, K.; Iacobaeus, E.; Kockum, I.; Wallström, E.; Khademi, M.; Oturai, A.; Ryder, L.P.; Saarela, J.; Harbo, H.F.; et al. Variation in interleukin 7 receptor α chain (IL7R) influences risk of multiple sclerosis. Nat. Genet. 2007, 39, 1108–1113. [Google Scholar] [CrossRef]
- Gregory, S.G.; Schmidt, S.; Seth, P.; Oksenberg, J.R.; Hart, J.; Prokop, A.; Caillier, S.J.; Ban, M.; Goris, A.; Barcellos, L.F.; et al. Interleukin 7 receptor α chain ( IL7R ) shows allelic and functional association with multiple sclerosis. Nat. Genet. 2007, 39, 1083–1091. [Google Scholar] [CrossRef]
- Todd, J.A.; Walker, N.M.; Cooper, J.D.; Smyth, D.J.; Downes, K.; Plagnol, V.; Bailey, R.; Nejentsev, S.; Field, S.F.; Payne, F.; et al. Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nat. Genet. 2007, 39, 857–864. [Google Scholar] [CrossRef] [PubMed]
- O’Doherty, C.; Alloza, I.; Rooney, M.; Vandenbroeck, K. IL7RA polymorphisms and chronic inflammatory arthropathies. Tissue Antigens 2009, 74, 429–431. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Duvefelt, K.; Svensson, F.; Masterman, T.; Jonasdottir, G.; Salter, H.; Emahazion, T.; Hellgren, D.; Falk, G.; Olsson, T.; et al. Two genes encoding immune-regulatory molecules (LAG3 and IL7R) confer susceptibility to multiple sclerosis. Genes Immun. 2005, 6, 145–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heron, M.; Grutters, J.C.; van Moorsel, C.H.M.; Ruven, H.J.T.; Huizinga, T.W.J.; van der Helm-van Mil, A.H.M.; Claessen, A.M.E.; van den Bosch, J.M.M. Variation in IL7R predisposes to sarcoid inflammation. Genes Immun. 2009, 10, 647–653. [Google Scholar] [CrossRef] [Green Version]
- Bodian, D.L.; McCutcheon, J.N.; Kothiyal, P.; Huddleston, K.C.; Iyer, R.K.; Vockley, J.G.; Niederhuber, J.E. Germline Variation in Cancer-Susceptibility Genes in a Healthy, Ancestrally Diverse Cohort: Implications for Individual Genome Sequencing. PLoS ONE 2014, 9, e94554. [Google Scholar] [CrossRef]
- Genain, C.P.; Cannella, B.; Hauser, S.L.; Raine, C.S. Identification of autoantibodies associated with myelin damage in multiple sclerosis. Nat. Med. 1999, 5, 170–175. [Google Scholar] [CrossRef]
- Hafler, D.A.; Compston, A.; Sawcer, S.; Lander, E.S.; Daly, M.J.; De Jager, P.L.; De Bakker, P.I.W.; Gabriel, S.B.; Mirel, D.B.; Ivinson, A.J.; et al. Risk Alleles for Multiple Sclerosis Identified by a Genomewide Study. N. Engl. J. Med. 2007, 357, 851–862. [Google Scholar]
- Cox, A.L.; Thompson, S.A.J.; Jones, J.L.; Robertson, V.H.; Hale, G.; Waldmann, H.; Compston, D.A.S.; Coles, A.J. Lymphocyte homeostasis following therapeutic lymphocyte depletion in multiple sclerosis. Eur. J. Immunol. 2005, 35, 3332–3342. [Google Scholar] [CrossRef]
- Traggiai, E.; Biagioli, T.; Rosati, E.; Ballerini, C.; Mazzanti, B.; Ben Nun, A.; Massacesi, L.; Vergelli, M. IL-7-enhanced T-cell response to myelin proteins in multiple sclerosis. J. Neuroimmunol. 2001, 121, 111–119. [Google Scholar] [CrossRef]
- Galarza-Muñoz, G.; Briggs, F.B.S.; Evsyukova, I.; Schott-Lerner, G.; Kennedy, E.M.; Nyanhete, T.; Wang, L.; Bergamaschi, L.; Widen, S.G.; Tomaras, G.D.; et al. Human Epistatic Interaction Controls IL7R Splicing and Increases Multiple Sclerosis Risk. Cell 2017, 169, 72–84. [Google Scholar] [CrossRef] [Green Version]
- Zenatti, P.P.; Ribeiro, D.; Li, W.; Zuurbier, L.; Silva, M.C.; Paganin, M.; Tritapoe, J.; Hixon, J.A.; Silveira, A.B.; Cardoso, B.A.; et al. Oncogenic IL7R gain-of-function mutations in childhood T-cell acute lymphoblastic leukemia. Nat. Genet. 2011, 43, 932–939. [Google Scholar] [CrossRef] [PubMed]
- Shochat, C.; Tal, N.; Bandapalli, O.R.; Palmi, C.; Ganmore, I.; te Kronnie, G.; Cario, G.; Cazzaniga, G.; Kulozik, A.E.; Stanulla, M.; et al. Gain-of-function mutations in interleukin-7 receptor -α ( IL7R ) in childhood acute lymphoblastic leukemias. J. Exp. Med. 2011, 208, 1333. [Google Scholar] [CrossRef] [Green Version]
- Shochat, C.; Tal, N.; Gryshkova, V.; Birger, Y.; Bandapalli, O.R.; Cazzaniga, G.; Gershman, N.; Kulozik, A.E.; Biondi, A.; Mansour, M.R.; et al. Novel activating mutations lacking cysteine in type I cytokine receptors in acute lymphoblastic leukemia. Blood 2014, 124, 106–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huh, H.J.; Lee, S.H.; Yoo, K.H.; Sung, K.W.; Koo, H.H.; Jang, J.H.; Kim, K.; Kim, S.J.; Kim, W.S.; Jung, C.W.; et al. Gene mutation profiles and prognostic implications in Korean patients with T-lymphoblastic leukemia. Ann. Hematol. 2013, 92, 635–644. [Google Scholar] [CrossRef]
- Kim, M.S.; Chung, N.G.; Kim, M.S.; Yoo, N.J.; Lee, S.H. Somatic mutation of IL7R exon 6 in acute leukemias and solid cancers. Hum. Pathol. 2013, 44, 551–555. [Google Scholar] [CrossRef]
- Richter-Pechańska, P.; Kunz, J.B.; Hof, J.; Zimmermann, M.; Rausch, T.; Bandapalli, O.R.; Orlova, E.; Scapinello, G.; Sagi, J.C.; Stanulla, M.; et al. Identification of a genetically defined ultra-high-risk group in relapsed pediatric T-lymphoblastic leukemia. Blood Cancer J. 2017, 7, e523. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Ding, L.; Holmfeldt, L.; Wu, G.; Heatley, S.L.; Payne-Turner, D.; Easton, J.; Chen, X.; Wang, J.; Rusch, M.; et al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature 2012, 481, 157–163. [Google Scholar] [CrossRef] [Green Version]
- Roberts, K.G.; Li, Y.; Payne-Turner, D.; Harvey, R.C.; Yang, Y.-L.; Pei, D.; McCastlain, K.; Ding, L.; Lu, C.; Song, G.; et al. Targetable Kinase-Activating Lesions in Ph-like Acute Lymphoblastic Leukemia. N. Engl. J. Med. 2014, 371, 1005–1015. [Google Scholar] [CrossRef] [Green Version]
- Roberts, K.G.; Morin, R.D.; Zhang, J.; Hirst, M.; Zhao, Y.; Su, X.; Chen, S.-C.; Payne-Turner, D.; Churchman, M.L.; Harvey, R.C.; et al. Genetic Alterations Activating Kinase and Cytokine Receptor Signaling in High-Risk Acute Lymphoblastic Leukemia. Cancer Cell 2012, 22, 153–166. [Google Scholar] [CrossRef]
- Roberts, K.G.; Yang, Y.-L.; Payne-Turner, D.; Lin, W.; Files, J.K.; Dickerson, K.; Gu, Z.; Taunton, J.; Janke, L.J.; Chen, T.; et al. Oncogenic role and therapeutic targeting of ABL-class and JAK-STAT activating kinase alterations in Ph-like ALL. Blood Adv. 2017, 1, 1657–1671. [Google Scholar]
- Rozovski, U.; Li, P.; Harris, D.; Ohanian, M.; Kantarjian, H.; Estrov, Z. Interleukin-7 receptor- α gene mutations are not detected in adult T-cell acute lymphoblastic leukemia. Cancer Med. 2014, 3, 550–554. [Google Scholar] [CrossRef]
- Hixon, J.A.; Andrews, C.; Kashi, L.; Kohnhorst, C.L.; Senkevitch, E.; Czarra, K.; Barata, J.T.; Li, W.; Schneider, J.P.; Walsh, S.T.R.; et al. New anti-IL-7Rα monoclonal antibodies show efficacy against T cell acute lymphoblastic leukemia in pre-clinical models. Leukemia 2019, 1–15. [Google Scholar] [CrossRef]
- Akkapeddi, P.; Fragoso, R.; Hixon, J.A.; Ramalho, A.S.; Oliveira, M.L.; Carvalho, T.; Gloger, A.; Matasci, M.; Corzana, F.; Durum, S.K.; et al. A fully human anti-IL-7Rα antibody promotes antitumor activity against T-cell acute lymphoblastic leukemia. Leukemia 2019, 33, 2155–2168. [Google Scholar] [CrossRef] [PubMed]
- Mendes, R.D.; Sarmento, L.M.; Cante-Barrett, K.; Zuurbier, L.; Buijs-Gladdines, J.G.C.A.M.; Povoa, V.; Smits, W.K.; Abecasis, M.; Yunes, J.A.; Sonneveld, E.; et al. PTEN microdeletions in T-cell acute lymphoblastic leukemia are caused by illegitimate RAG-mediated recombination events. Blood 2014, 124, 567–578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papaemmanuil, E.; Rapado, I.; Li, Y.; Potter, N.E.; Wedge, D.C.; Tubio, J.; Alexandrov, L.B.; Van Loo, P.; Cooke, S.L.; Marshall, J.; et al. RAG-mediated recombination is the predominant driver of oncogenic rearrangement in ETV6-RUNX1 acute lymphoblastic leukemia. Nat. Genet. 2014, 46, 116–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirkham, C.M.; Scott, J.N.F.; Wang, X.; Smith, A.L.; Kupinski, A.P.; Ford, A.M.; Westhead, D.R.; Stockley, P.G.; Tuma, R.; Boyes, J. Cut-and-Run: A Distinct Mechanism by which V(D)J Recombination Causes Genome Instability. Mol. Cell 2019, 74, 584–597. [Google Scholar] [CrossRef]
- Stroud, R.M.; Wells, J.A. Mechanistic Diversity of Cytokine Receptor Signaling Across Cell Membranes. Sci. Signal. 2004, 2004, re7. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Gross, A.W.; Lodish, H.F. Active Conformation of the Erythropoietin Receptor. J. Biol. Chem. 2006, 281, 7002–7011. [Google Scholar] [CrossRef] [Green Version]
- Brooks, A.J.; Dai, W.; O’Mara, M.L.; Abankwa, D.; Chhabra, Y.; Pelekanos, R.A.; Gardon, O.; Tunny, K.A.; Blucher, K.M.; Morton, C.J.; et al. Mechanism of Activation of Protein Kinase JAK2 by the Growth Hormone Receptor. Science 2014, 344, 1249783. [Google Scholar] [CrossRef]
- Liu, Y.; Easton, J.; Shao, Y.; Maciaszek, J.; Wang, Z.; Wilkinson, M.R.; McCastlain, K.; Edmonson, M.; Pounds, S.B.; Shi, L.; et al. The genomic landscape of pediatric and young adult T-lineage acute lymphoblastic leukemia. Nat. Genet. 2017, 49, 1211–1218. [Google Scholar] [CrossRef] [Green Version]
- Porcu, M.; Kleppe, M.; Gianfelici, V.; Geerdens, E.; De Keersmaecker, K.; Tartaglia, M.; Foà, R.; Soulier, J.; Cauwelier, B.; Uyttebroeck, A.; et al. Mutation of the receptor tyrosine phosphatase PTPRC (CD45) in T-cell acute lymphoblastic leukemia. Blood 2012, 119, 4476–4479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weijenborg Campos, L.; Pini Zenatti, P.; Granato Pissinato, L.; Libanio Rodrigues, G.O.; Artico, L.L.; Rafael Guimarães, T.; Fröhlich Archangelo, L.; Martínez, L.; Brooks, A.J.; Yunes, J.A. Oncogenic basic amino acid insertions at the extracellular juxtamembrane region of IL7RA cause receptor hypersensitivity. Blood 2019, 133, 1259–1263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fry, T.J.; Mackall, C.L. The Many Faces of IL-7: From Lymphopoiesis to Peripheral T Cell Maintenance. J. Immunol. 2005, 174, 6571–6576. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.; Laranjeira, A.B.A.; Martins, L.R.; Cardoso, B.A.; Demengeot, J.; Yunes, J.A.; Seddon, B.; Barata, J.T. IL-7 Contributes to the Progression of Human T-cell Acute Lymphoblastic Leukemias. Cancer Res. 2011, 71, 4780–4789. [Google Scholar] [CrossRef] [Green Version]
Mutation/PolyMorphism | Nucleotide Change | Exon | Protein Site | Effect/Possible Effect | Associated Diseases |
---|---|---|---|---|---|
p.Q26X | c.76C>T | Exon 1 | Extracellular | Premature stop-codon | SCID [42] |
p.G28R | c.82G>A | Exon 2 | Extracellular | Structural: Ligand affinity | SCID [33] |
p.G28fsX35 | c.221+2T>G | Exon 2 | Extracellular | Splicing: Exon skipping | SCID [42] |
p.G28fsX51 | delExon2-4 | Exon 2 | Extracellular | Frameshift | SCID [42] |
p.L35Q | c.104T>A | Exon 2 | Extracellular/D1-D2 | Structural: Ligand affinity | SCID [40] |
p.F40L | c.120C>G | Exon 2 | Extracellular/D1-D2 | Protein thermo-stability | SCID [41] |
p.C42Y | c.125G>A | Exon 2 | Extracellular/SS-bond | Structural: Ligand affinity | SCID |
p.S44R | c.132C>A | Exon 2 | Extracellular/D1-D2 | Structural: Ligand affinity | SCID [33] |
p.V48fsX59 | c.143delTG | Exon 2 | Extracellular/D1-D2 | Frameshift | SCID [33] |
p.L55Q | c.164T>A | Exon 2 | Extracellular/D1-D2 | Structural: Ligand affinity | SCID [33] |
p.I66T | c.197T>C | Exon 2 | Extracellular/D1-D2 | Splicing: Exon skipping | SCID [35]/Tuberculosis [43]/IgAN [44] |
p.C74Y | c.221G>A | Exon 2 | Extracellular/SS-bond | Structural: Ligand affinity | SCID [33] |
p.G75fsX75 | delExon3 | Exon 3 | Extracellular/D1-D2 | Frameshift | SCID [42] |
p.C82S | c.244T>A | Exon 3 | Extracellular/SS-bond | Structural: Ligand affinity | SCID |
p.V111= | c.333T>A | Exon 3 | Extracellular/D1-D2 | Splicing: Exon truncation | SCID [45] |
p.C118Y | c.353G>A | Exon 3 | Extracellular/SS-bond | Structural: Ligand affinity | OS [39]/SCID [45] |
p.I121fsX128 | c.361dupA | Exon 3 | Extracellular/D1-D2 | Frameshift | SCID [46] |
p.P132S | c.394C>T | Exon 4 | Extracellular/D1-D2 | Structural: Ligand affinity | SCID [36] |
p.L135R | c.404T>G | Exon 4 | Extracellular/D1-D2 | Structural: Ligand affinity | SCID [33] |
p.V138I | c.412G>A | Exon 4 | Extracellular/D1-D2 | Splicing: Exon truncation | SCID [35]/GvHD [47] |
p.H165= | c.495C>T | Exon 4 | Extracellular/D1-D2 | Splicing: Exon truncation | SCID |
p.K187= | c.561G>A | Exon 5 | Extracellular/D1-D2 | Splicing: Exon truncation | Tuberculosis [43] |
p.L188fsX188 | c.562delC | Exon 5 | Extracellular/D1-D2 | Frameshift | SCID [48] |
p.G215V | c.644G>T | Exon 5 | Extracellular/D1-D2 | Structural: Ligand affinity | SCID [40] |
p.W217X | c.651G>A | Exon 5 | Extracellular/WSXWS | Premature stop-codon | SCID [35] |
p.S218N | c.653G>A | Exon 5 | Extracellular/WSXWS | Structural: Ligand affinity | SCID [33] |
p.W220C | c.660G>C | Exon 5 | Extracellular/WSXWS | Structural: Ligand affinity | SCID [33] |
p.S221I | c.662G>T | Exon 5 | Extracellular/WSXWS | Structural: Ligand affinity | SCID [40] |
p.T244I | c.731C>T | Exon 6 | Transmembrane | Splicing: Exon skipping | MS [49,50]/T1D [51]/RA [52] |
p.K269fsX269 | c.876+6T>G | Exon 7 | Intracellular | Splicing: Exon skipping | SCID [42] |
p.I356V | c.1066A>G | Exon 8 | Intracellular | Splicing: Exon truncation | MS [49,53]/T1D [51] |
- | Int. A>C, T (35857748) | Intron 1 | - | Unknown | Sarcoidosis [54] |
- | c.83-2A>T,G (35860850) | Intron 1 | - | Splicing defect | SCID [33] |
Protein Mutation | TM Sequence | Associated Disease |
---|---|---|
WT | YFRTPEINNSSGEMDPILLTISILSFFSVALLVILACVLWKKRIK | |
-------------ABCDEFGHIJKLM------------------- | ||
p.L242>FCTPVP | EINNSSGEMDPIFCTPVPLTISILSFFSVALLVILACVLWKKRIK | T-ALL [80] |
p.I241_L242>insCLEG | RTPEINNSSGEMDPCLEGLTISILSFFSVALLVILACVLWKKRIK | T-ALL [61] |
p.L242_L243insFCRKD | EINNSSGEMDPILFCRKDLTISILSFFSVALLVILACVLWKKRIK | T-ALL [62] |
p.L242>FDCIGV | EINNSSGEMDPIFDCIGVLTISILSFFSVALLVILACVLWKKRIK | T-ALL [62] |
p.L242_T243>CGIREI | TPEINNSSGEMDPICGIREIISILSFFSVALLVILACVLWKKRIK | T-ALL [62] |
p.I241_L242>CRPH | RTPEINNSSGEMDPCRPHLTISILSFFSVALLVILACVLWKKRIK | T-ALL [62] |
p.L242>CWMK | TPEINNSSGEMDPICWMKLTISILSFFSVALLVILACVLWKKRIK | T-ALL [62] |
p.P240_I241insCS | RTPEINNSSGEMDPCSILLTISILSFFSVALLVILACVLWKKRIK | T-ALL [65] |
p.L242>CSQI | TPEINNSSGEMDPICSQILTISILSFFSVALLVILACVLWKKRIK | T-ALL [80] |
p.L243>PCAQGI | EINNSSGEMDPILPCAQGITISILSFFSVALLVILACVLWKKRIK | T-ALL [80] |
p.L242delinsLCHRK | PEINNSSGEMDPILCHRKLTISILSFFSVALLVILACVLWKKRIK | T-ALL [66] |
p.I241>ITLYCKT | INNSSGEMDPITLYCKTLLTISILSFFSVALLVILACVLWKKRIK | T-ALL [67] |
p.L242>FSCGP | PEINNSSGEMDPIFSCGPLTISILSFFSVALLVILACVLWKKRIK | T-ALL [62] |
p.L242_L243insCPS | TPEINNSSGEMDPILCPSLTISILSFFSVALLVILACVLWKKRIK | T-ALL [80] |
p.L243>CPSP | TPEINNSSGEMDPILCPSPTISILSFFSVALLVILACVLWKKRIK | T-ALL [62] |
p.T244_I245insCPDGR | EINNSSGEMDPILLTCPDGRISILSFFSVALLVILACVLWKKRIK | ph-Like ALL [80] |
p.L242delinsLTACQP | EINNSSGEMDPILTACQPLTISILSFFSVALLVILACVLWKKRIK | T-ALL [66] |
p.L243>RCPS | TPEINNSSGEMDPILRCPSTISILSFFSVALLVILACVLWKKRIK | T-ALL [62] |
p.T244_I245insPPVCSVT | NNSSGEMDPILLTPPVCSVTISILSFFSVALLVILACVLWKKRIK | B-ALL [62] |
p.IL241-242TC | RTPEINNSSGEMDPITCLLTISILSFFSVALLVILACVLWKKRIK | T-ALL [67] |
p.L242_L243insNPC | TPEINNSSGEMDPILNPCLTISILSFFSVALLVILACVLWKKRIK | T-ALL [61] |
p.T244_I245insCPT | TPEINNSSGEMDPILLTCPTISILSFFSVALLVILACVLWKKRIK | T-ALL [61] |
p.I241_T244>SANCGA | RTPEINNSSGEMDPSANCGAISILSFFSVALLVILACVLWKKRIK | T-ALL [61] |
p.L243_T244insVSCP | PEINNSSGEMDPILLVSCPTISILSFFSVALLVILACVLWKKRIK | T-ALL [61] |
p.P240_L242>QSPSC | RTPEINNSSGEMDQSPSCLIISILSFFSVALLVILACVLWKKRIK | T-ALL [61] |
p.P240_T244>RFCPH | YFRTPEINNSSGEMDRFCPHISILSFFSVALLVILACVLWKKRIK | T-ALL [61] |
p.L242_T244>FHPFNCGP | EINNSSGEMDPIFHPFNCGPISILSFFSVALLVILACVLWKKRIK | T-ALL [61] |
p.L243_T244insMCP | TPEINNSSGEMDPILLMCPTISILSFFSVALLVILACVLWKKRIK | T-ALL [61] |
p.L243>RLECV | PEINNSSGEMDPILRLECVTISILSFFSVALLVILACVLWKKRIK | T-ALL [61] |
p.L242_L243>WAALLNCE | INNSSGEMDPIWAALLNCETISILSFFSVALLVILACVLWKKRIK | T-ALL [81] |
p.L242_L243insRC | RTPEINNSSGEMDPILRCLTISILSFFSVALLVILACVLWKKRIK | T-ALL [62] |
p.L243_T244>PCPL | RTPEINNSSGEMDPILPCPLISILSFFSVALLVILACVLWKKRIK | T-ALL [62] |
p.244 Ins MPEQDCP +S246T | NNSSGEMDPILLMPEQDCPTITILSFFSVALLVILACVLWKKRIK | T-ALL [62] |
p.E237_L242>ASWC | SYYFRTPEINNSSGASWCLTISILSFFSVALLVILACVLWKKRIK | T-ALL [62] |
p.L242_T244>CPP | YFRTPEINNSSGEMDPICPPISILSFFSVALLVILACVLWKKRIK | T-ALL [62] |
p.L243_T244>PLCSA | TPEINNSSGEMDPILPLCSAISILSFFSVALLVILACVLWKKRIK | T-ALL [62] |
p.L243_T244>PIYRCVL | EINNSSGEMDPILPIYRCVLISILSFFSVALLVILACVLWKKRIK | T-ALL [62] |
p.L242>FEC | RTPEINNSSGEMDPIFECLTISILSFFSVALLVILACVLWKKRIK | T-ALL [62] |
p.L242_T244>FTCPS | RTPEINNSSGEMDPIFTCPSISILSFFSVALLVILACVLWKKRIK | T-ALL [62] |
p.S249_F250insCSTISILS | NSSGEMDPILLTISILSCSTISILSFFSVALLVILACVLWKKRIK | T-ALL [62] |
p.243 Ins RCI | RTPEINNSSGEMDPILRCITISILSFFSVALLVILACVLWKKRIK | T-ALL [62] |
p.L242_L243insGC | RTPEINNSSGEMDPILGCLTISILSFFSVALLVILACVLWKKRIK | T-ALL [62] |
p.L243>GCI | RTPEINNSSGEMDPILGCITISILSFFSVALLVILACVLWKKRIK | T-ALL [62] |
p.T244_I245insLPCVY | EINNSSGEMDPILLTLPCVYISILSFFSVALLVILACVLWKKRIK | T-ALL [62] |
p.T244>KKCTN | PEINNSSGEMDPILLKKCTNISILSFFSVALLVILACVLWKKRIK | T-ALL [62] |
p.L243_T244insPPCL | PEINNSSGEMDPILLPPCLTISILSFFSVALLVILACVLWKKRIK | B-ALL [62] |
p.T244_I245insCHL | TPEINNSSGEMDPILLTCHLISILSFFSVALLVILACVLWKKRIK | B-ALL [62] |
p.L243_T244insSRCL | PEINNSSGEMDPILLSRCLTISILSFFSVALLVILACVLWKKRIK | T-ALL [65] |
p.M238_L243>PCK | PSYYFRTPEINNSSGEPCKTISILSFFSVALLVILACVLWKKRIK | B-ALL [65] |
p.L242_L243insLTARGC | INNSSGEMDPILLTARGCLTISILSFFSVALLVILACVLWKKRIK | B-ALL [65] |
p.T244_I245insNPPCGT | INNSSGEMDPILLTNPPCGTISILSFFSVALLVILACVLWKKRIK | T-ALL [64] |
P.L243>RCL | RTPEINNSSGEMDPILRCLTISILSFFSVALLVILACVLWKKRIK | T-ALL [80] |
P.L243>RGCL | TPEINNSSGEMDPILRGCLTISILSFFSVALLVILACVLWKKRIK | T-ALL [80] |
p.L242_L243SRC | TPEINNSSGEMDPILSRCLTISILSFFSVALLVILACVLWKKRIK | T-ALL [80] |
p.T244>RRCSS | PEINNSSGEMDPILLRRCSSISILSFFSVALLVILACVLWKKRIK | T-ALL [80] |
p.L243>LQRCT | PEINNSSGEMDPILLQRCTTISILSFFSVALLVILACVLWKKRIK | T-ALL [80] |
p.T244>RGFHITCQT | NSSGEMDPILLRGFHITCQTISILSFFSVALLVILACVLWKKRIK | T-ALL [80] |
p.P240_T244>SCLI | YYFRTPEINNSSGEMDSCLIISILSFFSVALLVILACVLWKKRIK | ph-Like ALL [68] |
p.L243_T244>CAN | FRTPEINNSSGEMDPILCANISILSFFSVALLVILACVLWKKRIK | ph-Like ALL [68] |
p.L243_T244>RCPP | RTPEINNSSGEMDPILRCPPISILSFFSVALLVILACVLWKKRIK | ph-Like ALL [68] |
p.GCinsL243 | RTPEINNSSGEMDPILGCLTISILSFFSVALLVILACVLWKKRIK | ETP-ALL [67] |
p.L242>DTRVYNSIC | NSSGEMDPIDTRVYNSICLTISILSFFSVALLVILACVLWKKRIK | ETP-ALL [67] |
p.LL242-243>SPCI | RTPEINNSSGEMDPISPCITISILSFFSVALLVILACVLWKKRIK | ETP-ALL [67] |
p.L242delinsLPC | RTPEINNSSGEMDPILPCLTISILSFFSVALLVILACVLWKKRIK | T-ALL [66] |
p.L243delinsLMCP | TPEINNSSGEMDPILLMCPTISILSFFSVALLVILACVLWKKRIK | T-ALL [66] |
p.L242delinsLSRPC | PEINNSSGEMDPILSRPCLTISILSFFSVALLVILACVLWKKRIK | T-ALL [66] |
p.P240_L242>SC | YFRTPEINNSSGEMDSCLTISILSFFSVALLVILACVLWKKRIK | ph-Like ALL [69] |
p.L242>FPGVC | PEINNSSGEMDPIFPGVCLTISILSFFSVALLVILACVLWKKRIK | B-ALL [69] |
p.L243_T244>RCGA | TPEINNSSGEMDPILLRCGAISILSFFSVALLVILACVLWKKRIK | B-ALL [69] |
p.L242_L243>FPHQHC | PEINNSSGEMDPIFPHQHCTISILSFFSVALLVILACVLWKKRIK | T-ALL [61] |
p.T244_I245insRPCG | PEINNSSGEMDPILLTRPCGISILSFFSVALLVILACVLWKKRIK | T-ALL [62] |
p.T244>SRCG | TPEINNSSGEMDPILLSRCGISILSFFSVALLVILACVLWKKRIK | T-ALL [64] |
T244>TSPPCG | EINNSSGEMDPILLTSPPCGISILSFFSVALLVILACVLWKKRIK | T-ALL [80] |
p.I245>TKPCII | EINNSSGEMDPILLTTKPCIISILSFFSVALLVILACVLWKKRIK | T-ALL [80] |
p.L243_T244>RQGCP | TPEINNSSGEMDPILRQGCPISILSFFSVALLVILACVLWKKRIK | ph-Like ALL [68] |
p.T244>TGPCF | PEINNSSGEMDPILLTGPCFISILSFFSVALLVILACVLWKKRIK | B-ALL [69] |
p.T244>NDCS | RTPEINNSSGEMDPILLNDCSSILSFFSVALLVILACVLWKKRIK | T-ALL [77] |
p.D239_T244>SFC | YFRTPEINNSSGEMSFCISILSFFSVALLVILACVLWKKRIK | ph-Like ALL [68] |
p.P240_S246>LKC | SPSYYFRTPEINNSSGEMDLKCILSFFSVALLVILACVLWKKRIK | T-ALL [61] |
p.L242_S246>PQGGC | YFRTPEINNSSGEMDPIPQGGCILSFFSVALLVILACVLWKKRIK | T-ALL [61] |
p.P240_S246>LQSC | PSYYFRTPEINNSSGEMDLQSCILSFFSVALLVILACVLWKKRIK | T-ALL [61] |
p.I245_S246>HRGC | RTPEINNSSGEMDPILLTHRGCILSFFSVALLVILACVLWKKRIK | T-ALL [62] |
p.I245_S246>SHQPC | TPEINNSSGEMDPILLTSHQPCILSFFSVALLVILACVLWKKRIK | T-ALL [62] |
p.I247>KCH | RTPEINNSSGEMDPILLTISKCHLSFFSVALLVILACVLWKKRIK | T-ALL [62] |
p.I241_S246>TC | SPSYYFRTPEINNSSGEMDPTCILSFFSVALLVILACVLWKKRIK | ph-Like ALL [68] |
p.L243_S246>RVPGC | FRTPEINNSSGEMDPILRVPGCILSFFSVALLVILACVLWKKRIK | ph-Like ALL [68] |
p.P240_S246>RAYC | YFRTPEINNSSGEMDRAYCILSFFSVALLVILACVLWKKRIK | ph-Like ALL [68] |
p.L248_S251>CQ | SYYFRTPEINNSSGEMDPILLTISICQSVALLVILACVLWKKRIK | T-ALL [62] |
Protein Mutation | TM Sequence | Associated Disease |
---|---|---|
IL7R_WT | FRTPEINNSSGEMDPILLTISILSFFSVALLVILACVLWKKRIK | - |
TM mutations | ||
p.I247_L248insQW | TPEINNSSGEMDPILLTISIQWLSFFSVALLVILACVLWKKRIK | T-ALL [61] |
p.S252_A254>WN | YFRTPEINNSSGEMDPILLTISILSFFWNLLVILACVLWKKRIK | T-ALL [61] |
p.V253>GPSL | PEINNSSGEMDPILLTISILSFFSGPSLALLVILACVLWKKRIK | T-ALL [61] |
p.V253_L254insGEA | PEINNSSGEMDPILLTISILSFFSVGEAALLVILACVLWKKRIK | T-ALL [62] |
p.A254_L255>EKV | RTPEINNSSGEMDPILLTISILSFFSVEKVLVILACVLWKKRIK | T-ALL [62] |
p.V253G | FRTPEINNSSGEMDPILLTISILSFFSGALLVILACVLWKKRIK | T-ALL [62] |
p.F250_V253>PLGE | FRTPEINNSSGEMDPILLTISILSPLGEALLVILACVLWKKRIK | T-ALL [81] |
p.V253>GPLV | PEINNSSGEMDPILLTISILSFFSGPLVALLVILACVLWKKRIK | T-ALL [80] |
p.L256>FLEL | PEINNSSGEMDPILLTISILSFFSVALFLELVILACVLWKKRIK | T-ALL [80] |
p.V253>GFSV | PEINNSSGEMDPILLTISILSFFSGFSVALLVILACVLWKKRIK | ETP-ALL [67] |
EJM mutations | ||
p.L243>RRI | TPEINNSSGEMDPILRRITISILSFFSVALLVILACVLWKKRIK | T-ALL [65] |
p.T244>RI | RTPEINNSSGEMDPILLRIISILSFFSVALLVILACVLWKKRIK | T-ALL [64] |
p.L243>RRL | TPEINNSSGEMDPILRRLTISILSFFSVALLVILACVLWKKRIK | T-ALL [80] |
p.I241>IH | RTPEINNSSGEMDPIHLLTISILSFFSVALLVILACVLWKKRIK | T-ALL [80] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campos, L.W.; Pissinato, L.G.; Yunes, J.A. Deleterious and Oncogenic Mutations in the IL7RA. Cancers 2019, 11, 1952. https://doi.org/10.3390/cancers11121952
Campos LW, Pissinato LG, Yunes JA. Deleterious and Oncogenic Mutations in the IL7RA. Cancers. 2019; 11(12):1952. https://doi.org/10.3390/cancers11121952
Chicago/Turabian StyleCampos, Lívia Weijenborg, Leonardo Granato Pissinato, and José Andrés Yunes. 2019. "Deleterious and Oncogenic Mutations in the IL7RA" Cancers 11, no. 12: 1952. https://doi.org/10.3390/cancers11121952
APA StyleCampos, L. W., Pissinato, L. G., & Yunes, J. A. (2019). Deleterious and Oncogenic Mutations in the IL7RA. Cancers, 11(12), 1952. https://doi.org/10.3390/cancers11121952