SOURCE: A Registry-Based Prediction Model for Overall Survival in Patients with Metastatic Oesophageal or Gastric Cancer
Abstract
:1. Introduction
2. Results
2.1. Selected Predictors
2.2. Final Model Parameters
3. Discussion
4. Materials and Methods
4.1. Predictor Selection and Delphi Consensus
4.2. Development and Validation of the Prediction Model
4.3. Research Ethics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Enzinger, P.C.; Mayer, R.J. Esophageal Cancer. N. Engl. J. Med. 2003, 349, 2241–2252. [Google Scholar] [CrossRef] [PubMed]
- Napier, K.J.; Scheerer, M.; Misra, S. Esophageal cancer: A Review of epidemiology, pathogenesis, staging workup and treatment modalities. World J. Gastrointest. Oncol. 2014, 6, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Riihimäki, M.; Hemminki, A.; Sundquist, K.; Sundquist, J. Metastatic Spread in Patients with Gastric Cancer. 2016. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5239553/ (accessed on 16 April 2018).
- Wagner, A.D.; Unverzagt, S.; Grothe, W.; Kleber, G.; Grothey, A.; Haerting, J.; Fleig, W.E. Chemotherapy for advanced gastric cancer. In Cochrane Database of Systematic Reviews; Wagner, A.D., Ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2010; p. CD004064. [Google Scholar]
- Lordick, F.; Mariette, C.; Haustermans, K.; Obermannová, R.; Arnold, D.; ESMO Guidelines Committee. Oesophageal cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2016, 27, v50–v57. [Google Scholar] [CrossRef] [PubMed]
- Ajani, J.A.; D’Amico, T.A.; Almhanna, K.; Bentrem, D.J.; Chao, J.; Das, P.; Denlinger, C.S.; Fanta, P.; Farjah, F.; Fuchs, C.S.; et al. Gastric Cancer, Version 3.2016, Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2016, 14, 1286–1312. [Google Scholar] [CrossRef]
- Al-Batran, S.-E.; Ajani, J.A. Impact of chemotherapy on quality of life in patients with metastatic esophagogastric cancer. Cancer 2010, 116, 2511–2518. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.A. Update on metastatic gastric and esophageal cancers. J. Clin. Oncol. 2015, 33, 1760–1769. [Google Scholar] [CrossRef] [PubMed]
- Vickers, A.J. Prediction models in cancer care. CA Cancer J. Clin. 2011, 61, 315–326. [Google Scholar] [CrossRef] [PubMed]
- Ravdin, P.M.; Siminoff, L.A.; Davis, G.J.; Mercer, M.B.; Hewlett, J.; Gerson, N.; Parker, H.L. Computer program to assist in making decisions about adjuvant therapy for women with early breast cancer. J. Clin. Oncol. 2001, 19, 980–991. [Google Scholar] [CrossRef]
- Van den Boorn, H.G.; Engelhardt, E.G.; van Kleef, J.; Sprangers, M.A.G.; van Oijen, M.G.H.; Abu-Hanna, A.; Zwinderman, A.H.; Coupé, V.M.H.; van Laarhoven, H.W.M. Prediction models for patients with esophageal or gastric cancer: A systematic review and meta-analysis. PLoS ONE 2018, 13, e0192310. [Google Scholar] [CrossRef]
- Jung, H.A.; Adenis, A.; Lee, J.; Park, S.H.; Maeng, C.H.; Park, S.; Ahn, H.K.; Shim, Y.M.; Penel, N.; Im, Y.H. Nomogram to predict treatment outcome of fluoropyrimidine/platinum-based chemotherapy in metastatic esophageal squamous cell carcinoma. Cancer Res. Treat. 2013, 45, 285–294. [Google Scholar] [CrossRef]
- Shiozaki, H.; Slack, R.S.; Chen, H.C.; Elimova, E.; Planjery, V.; Charalampakis, N.; Wadhwa, R.; Shimodaira, Y.; Skinner, H.; Lee, J.H.; et al. Metastatic Gastroesophageal Adenocarcinoma Patients Treated with Systemic Therapy Followed by Consolidative Local Therapy: A Nomogram Associated with Long-Term Survivors. Oncology 2016, 91, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Ter Veer, E.; van Kleef, J.J.; Schokker, S.; van Der Woude, S.; Laarman, M.; Haj Mohammad, N.; van Oijen, M.G.H.; van Laarhoven, H.W.M. Prognostic and predictive factors for overall survival (OS) in metastatic esophagogastric cancer (EGC): A meta-analysis. J. Clin. Oncol. 2017, 35 (Suppl. 15), 4048. [Google Scholar] [CrossRef]
- Steyerberg, E.W.; Harrell, F.E., Jr. Prediction models need appropriate internal, internal-external, and external validation. J. Clin. Epidemiol. 2016, 69, 245–247. [Google Scholar] [CrossRef] [PubMed]
- Van der Heijden, G.J.M.G.; TDonders, A.R.; Stijnen, T.; Moons, K.G.M. Imputation of missing values is superior to complete case analysis and the missing-indicator method in multivariable diagnostic research: A clinical example. J. Clin. Epidemiol. 2006, 59, 1102–1109. [Google Scholar] [CrossRef] [PubMed]
- Gensheimer, M.F.; Henry, A.S.; Wood, D.J.; Hastie, T.J.; Aggarwal, S.; Dudley, S.A.; Pradhan, P.; Banerjee, I.; Cho, E.; Ramchandran, K.; et al. Automated Survival Prediction in Metastatic Cancer Patients Using High-Dimensional Electronic Medical Record Data. J. Natl Cancer Inst. 2018. [Google Scholar] [CrossRef] [PubMed]
- Maltoni, M.; Scarpi, E.; Pittureri, C.; Martini, F.; Montanari, L.; Amaducci, E.; Derni, S.; Fabbri, L.; Rosati, M.; Amadori, D.; et al. Prospective comparison of prognostic scores in palliative care cancer populations. Oncologist 2012, 17, 446–454. [Google Scholar] [CrossRef]
- Yates, J.W.; Chalmer, B.; McKegney, F.P. Evaluation of patients with advanced cancer using the Karnofsky performance status. Cancer 1980, 45, 2220–2224. [Google Scholar] [CrossRef]
- Henselmans, I.; van Laarhoven, H.W.M.; van der Vloodt, J.; de Haes, H.C.J.M.; Smets, E.M. Shared decision making about palliative chemotherapy: A qualitative observation of talk about patients’ preferences. Palliat. Med. 2017, 31, 625–633. [Google Scholar] [CrossRef]
- Van den Boorn, H.G.; van de Water, L.F.; Hoxha, F.; Henselmans, I.; van Kleef, J.J.; Sprangers, M.A.G.; van Oijen, M.G.H.; Abu-Hanna, A.; Zwinderman, A.H.; Smets, E.M.A.; et al. Designing a user-friendly web-interface with prediction models for survival, health-related quality-of-life and toxicity for cancer patients. In Proceedings of the ISOQOL 25th Annual Conference, Dublin, Ireland, 24–27 October 2018. [Google Scholar]
- Collins, G.S.; Reitsma, J.B.; Altman, D.G.; Moons, K.G. Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): The TRIPOD statement. Ann. Intern. Med. 2015, 162, 55–63. [Google Scholar] [CrossRef]
- Ter Veer, E.; van Rijssen, L.B.; Besselink, M.G.; Mali, R.M.A.; Berlin, J.D.; Boeck, S.; Bonnetain, F.; Chau, I.; Conroy, T.; van Cutsem, E.; et al. Consensus statement on mandatory measurements in pancreatic cancer trials (COMM-PACT) for systemic treatment of unresectable disease. Lancet Oncol. 2018, 19, e151–e160. [Google Scholar] [CrossRef]
- Harrell, F.E., Jr. rms: Regression Modeling Strategies. 2018. Available online: https://cran.r-project.org/package=rms (accessed on 4 February 2019).
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2018; Available online: https://www.r-project.org/ (accessed on 4 February 2019).
- Fox, J.; Weisberg, S. Cox proportional-hazards regression for survival data. An R Companion to Applied Regression. 2002. Available online: https://socialsciences.mcmaster.ca/jfox/Books/Companion-1E/appendix-cox-regression.pdf (accessed on 4 February 2019).
- Van Buuren, S.; Groothuis-Oudshoorn, K. mice: Multivariate Imputation by Chained Equations. 2017. Available online: https://dspace.library.uu.nl/handle/1874/44635 (accessed on 16 April 2018).
- Sobin, L.H.; Gospodarowicz, M.K.; Wittekind, C. TNM Classification of Malignant Tumours, 6th ed.; John Wiley & Sons: Chichester, UK, 2002. [Google Scholar]
- Edge, S.B.; Byrd, D.R.; Compton, C.C.; Fritz, A.G.; Greene, F.L.; Trotti, A. AJCC Cancer Staging Handbook; American Joint Committee on Cancer: Chicago, IL, USA, 2010. [Google Scholar]
- Bozdogan, H. Model selection and Akaike’s Information Criterion (AIC): The general theory and its analytical extensions. Psychometrika 1987, 52, 345–370. [Google Scholar] [CrossRef]
- Obuchowski, N.A. Receiver Operating Characteristic Curves and Their Use in Radiology. Radiology 2003, 229, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Steyerberg, E.W.; Vickers, A.J.; Cook, N.R.; Gerds, T.; Gonen, M.; Obuchowski, N.; Pencina, M.J.; Kattan, M.W. Assessing the performance of prediction models: A framework for traditional and novel measures. Epidemiology 2010, 21, 128–138. [Google Scholar] [CrossRef] [PubMed]
- Gerds, T.A.; Schumacher, M. Consistent estimation of the expected brier score in general survival models with right-censored event times. Biometrical. J. 2006, 48, 1029–1040. [Google Scholar] [CrossRef]
Variable | Oesophagus | Gastric |
---|---|---|
N (deaths) | 8,010 (7,825) | 4,763 (4,673) |
Median overall survival in months (IQR) | 5.1 (2.2–10.1) | 3.9 (1.7–8.4) |
Age (mean (sd)) | 66.80 (10.91) | 68.58 (12.34) |
Sex (%) | ||
Male | 6,284 (78.5) | 2,858 (60.0) |
Female | 1,726 (21.5) | 1,905 (40.0) |
cT stage (%) | ||
Missing | 1 (0.0) | 1 (0.0) |
cT1 | 108 (1.3) | 58 (1.2) |
cT2 | 1,388 (17.3) | 659 (13.8)* |
cT3 | 1,822 (22.7) | 672 (14.1)* |
cT4 | 694 (8.7) | 802 (16.8) |
cTX | 3,997 (49.9) | 2,571 (54.0) |
cN stage (%) | ||
Missing | 1 (0.0) | 0 (0.0) |
cN0 | 2,127 (26.6) | 2,366 (49.7) |
cN1 | 2,502 (31.2)* | 1,012 (21.7)* |
cN2 | 2,391 (29.9)* | 1,264 (27.0)* |
cN3 | 989 (12.3)* | 121 (2.5) |
Primary oespohageal tumour topography (%) | ||
Cervical | 44 (0.5) | |
Upper thoracic | 205 (2.6) | |
Mid-thoracic | 713 (8.9) | |
Lower thoracic | 4,461 (55.7) | |
Overlapping lesion | 315 (3.9) | |
Junction | 2,112 (26.4) | |
NOS | 160 (2.0) | |
Primary gastric tumour topography (%) | ||
Fundus | 162 (3.4) | |
Corpus | 954 (20.0) | |
Antrum Pylori | 1,075 (22.6) | |
Pylorus | 239 (5.0) | |
Lesser curvature NOS | 181 (3.8) | |
Greater curvature NOS | 106 (2.2) | |
Overlapping lesion | 1,645 (34.5) | |
NOS | 401 (8.4) |
Delphi Consensus | SOURCE Oesophagus Model | SOURCE Gastric Model | |
---|---|---|---|
Age | X | X | X |
Sex | X | ||
cT stage | X | X | |
cN stage | X | X | |
Topography of primary tumour | X | X | |
Histological type | X | X | |
Tumour differentiation grade | X | X | |
Lymph node metastasis in head/neck area | X | ||
Intra-thoracic lymph node metastasis | X | ||
Intra-abdominal lymph node metastasis | X | X | |
Only distant lymph node metastasis | X | X | |
Liver metastases | X | X | |
Peritoneal metastases | X | X | |
Number of metastatic sites | X | X | |
Initial treatment | X | X | X |
Peritoneal metastases with ascites | X | ||
Performance status | X | ||
Histology (lauren) | X | ||
Weight loss | X | ||
Tumour Microsatellite Instability (MSI) status | X | ||
Region/country | X | ||
HER status | X | ||
Disease status(unresectable vs recurrent) | X | ||
Bilirubin | X |
Metastatic Oesophageal Cancer Prediction Model | |
---|---|
Covariate | Hazard Ratio (CI) |
Age | 1.001 (0.996–1.005) |
cT stage | |
cT1 | 1 |
cT2 | 1.204 (0.983–1.474) |
cT3 | 1.103 (0.901–1.349) |
cT4 | 1.459 (1.182–1.800) |
cTX | 1.459 (1.197–1.777) |
cN stage | |
cN0 | 1 |
cN1 | 0.974 (0.918–1.034) |
cN2 | 1.030 (0.969–1.096) |
cN3 | 1.154 (1.061–1.255) |
Tumour topography | |
Cervical | 1 |
Upper thoracic | 1.039 (0.744–1.450) |
Mid-thoracic | 0.989 (0.723–1.351) |
Lower thoracic | 1.062 (0.779–1.447) |
Overlapping lesion | 1.226 (0.886–1.697) |
Junction | 0.999 (0.730–1.367) |
NOS | 1.181 (0.837–1.665) |
Histological type | |
Adenocarcinoma | 1 |
Squamous cell | 1.011 (0.942–1.085) |
Other | 1.168 (1.005–1.358) |
Differentiation grade | |
G1 | 1 |
G2 | 0.949 (0.825–1.090) |
G3 | 1.124 (0.981–1.288) |
G4 | 1.396 (1.051–1.854) |
Lymph node metastasis in head/neck area | |
No | 1 |
Yes | 0.868 (0.790–0.954) |
Intra-thoracic lymph node metastasis | |
No | 1 |
Yes | 0.548 (0.430–0.698) |
Intra-abdominal lymph node metastasis | |
No | 1 |
Yes | 0.834 (0.742–0.938) |
Only distant lymph node metastasis | |
No | 1 |
Yes | 0.788 (0.732–0.849) |
Liver metastasis | |
No | 1 |
Yes | 1.222 (1.156–1.292) |
Peritoneal metastasis | |
No | 1 |
Yes | 1.274 (1.158–1.401) |
Number of metastatic sites | 1.347 (1.270–1.429) |
Initial treatment (IT) | |
None | 1 |
Chemotherapy | 0.237 (0.151–0.372) |
Radiotherapy (primary tumour) | 0.238 (0.151–0.375) |
Radiotherapy (metastasis) | 0.386 (0.169–0.884) |
Chemoradiation | 0.246 (0.042–1.455) |
Chemotherapy + short-term radiation | 0.280 (0.110–0.715) |
Resection (metastasis) | 0.029 (0.004–0.227) |
Stent | 0.881 (0.313–2.478) |
Other | 0.121 (0.058–0.250) |
IT = Chemotherapy | |
Intra-thoracic lymph node metastasis | 1.798 (1.255–2.577) |
Intra-abdominal lymph node metastasis | 1.091 (0.935–1.275) |
Age | 1.005 (0.999–1.011) |
Number of metastatic sites | 0.825 (0.760–0.895) |
IT = Radiotherapy (primary tumour) | |
Intra-thoracic lymph node metastasis | 1.481 (1.080–2.031) |
Intra-abdominal lymph node metastasis | 1.266 (1.086–1.476) |
Age | 1.009 (1.003–1.015) |
Number of metastatic sites | 0.910 (0.836–0.990) |
IT = Radiotherapy (metastasis) | |
Intra-thoracic lymph node metastasis | 0.972 (0.354–2.668) |
Intra-abdominal lymph node metastasis | 1.432 (0.963–2.130) |
Age | 1.009 (0.997–1.020) |
Number of metastatic sites | 0.901 (0.790–1.028) |
IT = Chemoradiation | |
Intra-thoracic lymph node metastasis | 4.522 (0.594–34.393) |
Intra-abdominal lymph node metastasis | 4.407 (0.588–33.038) |
Age | 1.005 (0.981–1.031) |
Number of metastatic sites | 0.746 (0.459–1.212) |
IT = Chemotherapy + short-term radiation | |
Intra-thoracic lymph node metastasis | 0.940 (0.495–1.784) |
Intra-abdominal lymph node metastasis | 0.921 (0.689–1.231) |
Age | 1.004 (0.991–1.018) |
Number of metastatic sites | 0.819 (0.706–0.949) |
IT = Resection (metastasis) | |
Intra-thoracic lymph node metastasis | 7.155 (0.947–53.490) |
Intra-abdominal lymph node metastasis | 1.089 (0.385–3.084) |
Age | 1.038 (1.005–1.071) |
Number of metastatic sites | 0.810 (0.541–1.213) |
IT = Stent | |
Intra-thoracic lymph node metastasis | 2.640 (1.175–5.931) |
Intra-abdominal lymph node metastasis | 1.027 (0.737–1.430) |
Age | 1.001 (0.988–1.014) |
Number of metastatic sites | 1.025 (0.871–1.206) |
IT = Other | |
Intra-thoracic lymph node metastasis | 1.195 (0.623–2.291) |
Intra-abdominal lymph node metastasis | 0.889 (0.685–1.153) |
Age | 1.019 (1.009–1.029) |
Number of metastatic sites | 1.229 (1.056–1.431) |
Metastatic Gastric Cancer Prediction Model | |
---|---|
Covariate | Hazard Ration (CI) |
Age | 1.003 (0.999–1.007) |
Sex | |
Male | 1 |
Female | 0.953 (0.898–1.012) |
cT stage | |
cT1 | 1 |
cT2 | 0.928 (0.704–1.223) |
cT3 | 0.856 (0.650–1.128) |
cT4 | 0.995 (0.756–1.309) |
cTX | 1.013 (0.775–1.324) |
cN stage | |
cN0 | 1 |
cN1 | 0.900 (0.834–0.971) |
cN2 | 0.996 (0.927–1.071) |
cN3 | 0.957 (0.793–1.156) |
Differentiation grade | |
G1 | 1 |
G2 | 1.294 (1.049–1.596) |
G3 | 1.524 (1.245–1.865) |
G4 | 1.734 (1.223–2.459) |
Intra-thoracic lymph node metastasis | |
No | 1 |
Yes | 0.739 (0.628–0.870) |
Intra-abdominal lymph node metastasis | |
No | 1 |
Yes | 0.902 (0.811–1.003) |
Only distant lymph node metastasis | |
No | 1 |
Yes | 0.771 (0.694–0.856) |
Number of metastatic sites | 1.335 (1.247–1.430) |
Initial treatment (IT) | |
None | 1 |
Chemotherapy | 0.436 (0.287–0.664) |
Radiotherapy (primary tumour) | 1.428 (0.363–5.619) |
Radiotherapy (metastasis) | 8.419 (1.754–40.411) |
Chemotherapy + short-term radiation | 1.268 (0.138–11.611) |
Resection (primary tumour) | 0.427 (0.169–1.080) |
Resection (metastasis) | 0.092 (0.027–0.313) |
Stent | 1.441 (0.132–15.795) |
Other | 0.422 (0.143–1.250) |
IT = Chemotherapy | |
Age | 1.000 (0.994–1.006) |
Number of metastatic sites | 0.864 (0.786–0.949) |
IT = Radiotherapy (primary tumour) | |
Age | 0.990 (0.974–1.007) |
Number of metastatic sites | 0.918 (0.681–1.239) |
IT = Radiotherapy (metastasis) | |
Age | 0.976 (0.958–0.995) |
Number of metastatic sites | 0.706 (0.516–0.965) |
IT = Chemotherapy + short-term radiation | |
Age | 0.990 (0.962–1.020) |
Number of metastatic sites | 0.717 (0.507–1.015) |
IT = Resection (primary) | |
Age | 0.999 (0.987–1.011) |
Number of metastatic sites | 0.955 (0.717–1.271) |
IT = Resection (metastasis) | |
Age | 1.025 (1.009–1.042) |
Number of metastatic sites | 0.879 (0.668–1.156) |
IT = Stent | |
Age | 0.997 (0.968–1.027) |
Number of metastatic sites | 0.957 (0.656–1.396) |
IT = Other | |
Age | 1.012 (0.998–1.027) |
Number of metastatic sites | 0.803 (0.625–1.032) |
Oesophageal Cancer | Gastric Cancer | |||
---|---|---|---|---|
Complete Model | Internal-External Validation | Complete Model | Internal-External Validation | |
c-index | 0.713 (0.705–0.720) | 0.706 (0.698–0.714) | 0.686 (0.677–0.696) | 0.676 (0.665–0.686) |
calibration slope | 1.006 (1.005–1.007) | 1.017 (0.962–1.071) | 0.987 (0.985–0.989) | 1.009 (0.891–1.127) |
calibration intercept | −0.002 (−0.003–0.002) | −0.020 (−0.053–0.013) | −0.006 (−0.006–-0.005) | −0.011 (−0.058–0.036) |
calibration deviance | 0.002 (0.002–0.002) | 0.021 (0.011–0.035) | 0.011 (0.011–0.011) | 0.031 (0.021–0.042) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
van den Boorn, H.G.; Abu-Hanna, A.; ter Veer, E.; van Kleef, J.J.; Lordick, F.; Stahl, M.; Ajani, J.A.; Guimbaud, R.; Park, S.H.; Dutton, S.J.; et al. SOURCE: A Registry-Based Prediction Model for Overall Survival in Patients with Metastatic Oesophageal or Gastric Cancer. Cancers 2019, 11, 187. https://doi.org/10.3390/cancers11020187
van den Boorn HG, Abu-Hanna A, ter Veer E, van Kleef JJ, Lordick F, Stahl M, Ajani JA, Guimbaud R, Park SH, Dutton SJ, et al. SOURCE: A Registry-Based Prediction Model for Overall Survival in Patients with Metastatic Oesophageal or Gastric Cancer. Cancers. 2019; 11(2):187. https://doi.org/10.3390/cancers11020187
Chicago/Turabian Stylevan den Boorn, Héctor G., Ameen Abu-Hanna, Emil ter Veer, Jessy Joy van Kleef, Florian Lordick, Michael Stahl, Jaffer A. Ajani, Rosine Guimbaud, Se Hoon Park, Susan J. Dutton, and et al. 2019. "SOURCE: A Registry-Based Prediction Model for Overall Survival in Patients with Metastatic Oesophageal or Gastric Cancer" Cancers 11, no. 2: 187. https://doi.org/10.3390/cancers11020187
APA Stylevan den Boorn, H. G., Abu-Hanna, A., ter Veer, E., van Kleef, J. J., Lordick, F., Stahl, M., Ajani, J. A., Guimbaud, R., Park, S. H., Dutton, S. J., Bang, Y. -J., Boku, N., Mohammad, N. H., Sprangers, M. A. G., Verhoeven, R. H. A., Zwinderman, A. H., van Oijen, M. G. H., & van Laarhoven, H. W. M. (2019). SOURCE: A Registry-Based Prediction Model for Overall Survival in Patients with Metastatic Oesophageal or Gastric Cancer. Cancers, 11(2), 187. https://doi.org/10.3390/cancers11020187