Why Has Breast Cancer Screening Failed to Decrease the Incidence of de Novo Stage IV Disease?
Abstract
:1. Introduction
2. Methods
2.1. Data and Patient Selection
2.2. Incidence
2.3. Patient and Tumor Characteristics
3. Results
3.1. Breast Cancer Incidence Trends, 1973–2015
3.2. Demographic and Disease Characteristics of Stage IV Patients
3.3. Tumor Biology Distribution by Stage
3.4. Multivariable Analysis of Demographic and Disease Characteristics
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
SEER | Surveillance, Epidemiology, and End Results |
NCDB | National Cancer Data Base |
AJCC | American Joint Committee on Cancer |
APC | Annual Percent Change |
CI | Confidence Interval |
ER | Estrogen Receptor |
PR | Progesterone Receptor |
Her2 | Human Epidermal Growth Factor 2 |
LVI | Lymphovascular Invasion |
OR | Odds Ratio |
References
- Esserman, L.; Shieh, Y.; Thompson, I. Rethinking screening for breast cancer and prostate cancer. JAMA 2009, 302, 1685–1692. [Google Scholar] [CrossRef] [PubMed]
- Bleyer, A.; Welch, H.G. Effect of three decades of screening mammography on breast-cancer incidence. N. Engl. J. Med. 2012, 367, 1998–2005. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R.H.; Chien, F.L.; Bleyer, A. Incidence of breast cancer with distant involvement among women in the United States, 1976 to 2009. JAMA 2013, 309, 800–805. [Google Scholar] [CrossRef]
- Lannin, D.R.; Wang, S. Are small breast cancers good because they are small or small because they are good? N. Engl. J. Med. 2017, 376, 2286–2291. [Google Scholar] [CrossRef] [PubMed]
- Di Meglio, A.; Freedman, R.A.; Lin, N.U.; Barry, W.T.; Metzger-Filho, O.; Keating, N.L.; King, T.A.; Sertoli, M.R.; Boccardo, F.; Winer, E.P.; et al. Time trends in incidence rates and survival of newly diagnosed stage IV breast cancer by tumor histology: A population-based analysis. Breast Cancer Res. Treat. 2016, 157, 587–596. [Google Scholar] [PubMed]
- Welch, H.G.; Gorski, D.H.; Albertsen, P.C. Trends in metastatic breast and prostate cancer-lessons in cancer dynamics. N. Engl. J. Med. 2015, 373, 1685–1687. [Google Scholar] [PubMed]
- Welch, H.G.; Prorok, P.C.; O’Malley, A.J.; Kramer, B.S. Breast-cancer tumor size, overdiagnosis, and mammography screening effectiveness. N. Engl. J. Med. 2016, 375, 1438–1447. [Google Scholar] [CrossRef] [PubMed]
- Lannin, D.R. Treatment intensity for mammographically detected tumors: An alternative viewpoint. Ann. Surg. Oncol. 2018, 25, 2502–2505. [Google Scholar] [CrossRef]
- Feinstein, A.R.; Sosin, D.M.; Wells, C.K. The Will Rogers phenomenon—Stage migration and new diagnostic techniques as a source of misleading statistics for survival in cancer. N. Engl. J. Med. 1985, 312, 1604–1608. [Google Scholar] [CrossRef]
- Polednak, A.P. Increase in distant stage breast cancer incidence rates in us women aged 25–49 years, 2000–2011: The stage migration hypothesis. J. Cancer Epidemiol. 2015, 2015, 710106. [Google Scholar] [CrossRef]
- Chee, K.G.; Nguyen, D.V.; Brown, M.; Gandara, D.R.; Wun, T.; Lara, P.N. Jr. Positron emission tomography and improved survival in patients with lung cancer: The Will Rogers phenomenon revisited. Arch. Intern. Med. 2008, 168, 1541–1549. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention National Center for Health Statistics. Use of mammography among women aged 40 and over, by selected characteristics: United States, selected years 1987–2015. Available online: https://www.cdc.gov/nchs/hus/contents2016.htm#070 (accessed on 26 April 2018).
- Taplin, S.H.; Ichikawa, L.; Yood, M.U.; Manos, M.M.; Geiger, A.M.; Weinmann, S.; Gilbert, J.; Mouchawar, J.; Leyden, W.A.; Altaras, R.; et al. Reason for late-stage breast cancer: Absence of screening or detection, or breakdown in follow-up? J. Natl. Cancer Inst. 2004, 96, 1518–1527. [Google Scholar] [CrossRef]
- SEER Cancer Statistics Review, 1975–2015. Table 4.18. Cancer of the female breast (invasive): Age-adjusted rates and trends by race/ethnicity, 2011–2015. National Cancer Institute. Bethesda, MD. Available online: http://seer.cancer.gov/csr/1975_2015/ (accessed on 26 April 2018).
- American Cancer Society. Cancer Prevention & Early Detection Facts & Figures, 2017–2018. Available online: https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/cancer-prevention-and-early-detection-facts-and-figures/cancer-prevention-and-early-detection-facts-and-figures-2017.pdf (accessed on 26 April 2018).
- Fayanju, O.M.; Kraenzle, S.; Drake, B.F.; Oka, M.; Goodman, M.S. Perceived barriers to mammography among underserved women in a Breast Health Center Outreach Program. Am. J. Surg. 2014, 208, 425–434. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, A.; Snyder, F.R.; Katz, M.L.; Darnell, J.S.; Dudley, D.J.; Patierno, S.R.; Sanders, M.R.; Valverde, P.A.; Simon, M.A.; Warren-Mears, V.; et al. Barriers to health care contribute to delays in follow-up among women with abnormal cancer screening: Data from the Patient Navigation Research Program. Cancer 2015, 121, 4016–4024. [Google Scholar] [CrossRef] [PubMed]
- Harding, C.; Pompei, F.; Burmistrov, D.; Welch, H.G.; Abebe, R.; Wilson, R. Breast cancer screening, incidence and mortality across US counties. JAMA Intern. Med. 2015, 175, 1483–1489. [Google Scholar] [CrossRef] [PubMed]
- Welch, H.G.; Fisher, E.S. Income and cancer overdiagnosis—When too much care is harmful. N. Engl. J. Med. 2017, 376, 2208–2209. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Buxton, M.B.; Moore, D.; Krontiras, H.; Carey, L.; DeMichele, A.; Montgomery, L.; Tripathy, D.; Lehman, C.; Liu, M.; et al. Locally advanced breast cancers are more likely to present as Interval Cancers: Results from the I-SPY 1 TRIAL. Breast Cancer Res. Treat. 2012, 132, 871–879. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, D.M.; Andersson, I.; Wattsgard, C.; Janzon, L.; Linell, F. Interval carcinomas in the Malmo Mammographic Screening Trial. Am. J. Roentgenol. 1992, 159, 287–294. [Google Scholar] [CrossRef]
- Wu, S.; Li, H.; Tang, L.; Sun, J.Y.; Zhang, W.W.; Li, F.Y.; Chen, Y.X.; He, Z.Y. The effect of distant metastases sites on survival in de novo Stage-IV breast cancer: A SEER database analysis. Tumour Biol. 2017, 39. [Google Scholar] [CrossRef]
- Eccles, S.A. The role of c-erbB-2/HER2/neu in breast cancer progression and metastasis. J. Mammary Gland Biol. Neoplasia 2001, 6, 393–406. [Google Scholar] [CrossRef]
- Piccart, M.; Lohrisch, C.; Di Leo, A.; Larsimont, D. The predictive value of HER2 in breast cancer. Oncology 2001, 61, 73–82. [Google Scholar] [CrossRef]
- Yarden, Y. Biology of HER2 and its importance in breast cancer. Oncology. 2001, 61, 1–13. [Google Scholar] [CrossRef]
- Rosenthal, S.I.; Depowski, P.L.; Sheehan, C.E.; Ross, J.S. Comparison of HER-2/neu oncogene amplification detected by fluorescence in situ hybridization in lobular and ductal breast cancer. Appl. Immunohistochem. Mol. Morphol. 2002, 10, 40–46. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, D.; Yi, S.; Gong, M.; Lu, C.; Cai, Y.; Tang, X.; Zou, L. The relationship of lymphatic vessel density, lymphovascular invasion, and lymph node metastasis in breast cancer: A systematic review and meta-analysis. Oncotarget 2017, 8, 2863–2873. [Google Scholar] [CrossRef]
- Rakha, E.A.; Martin, S.; Lee, A.H.S.; Morgan, D.; Pharoah, P.D.; Hodi, Z.; Macmillan, D.; Ellis, I.O. The prognostic significance of lymphovascular invasion in invasive breast carcinoma. Cancer 2012, 118, 3670–3680. [Google Scholar] [CrossRef]
- AJCC 8th Edition Breast Cancer Staging System. The American College of Surgeons. Chicago, Illinois. Last updated 13 March 2018. Available online: https://cancerstaging.org/references-tools/deskreferences/Documents/AJCC%20Breast%20Cancer%20Staging%20System.pdf (accessed on 26 April 2018).
- Braunstein, L.Z.; Niemierko, A.; Shenouda, M.N. Outcome following local-regional recurrence in women with early-stage breast cancer: Impact of biologic subtype. Breast J. 2015, 21, 161–167. [Google Scholar] [CrossRef]
- Paik, S.; Shak, S.; Tang, G.; Kim, C.; Baker, J.; Cronin, M.; Baehner, F.L.; Walker, M.G.; Watson, D.; Park, T.; et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N. Engl. J. Med. 2004, 351, 2817–2826. [Google Scholar] [CrossRef] [PubMed]
Group | n | ER | PR | HER2 | Grade | LVI | Row % with Stage IV | N Subtype | Subtype |
---|---|---|---|---|---|---|---|---|---|
1 | 119 | − | + | − | 1 | − | 0 | 165,150 | Indolent |
2 | 7 | − | + | − | 1 | + | 0 | ||
3 | 3 | − | + | + | 1 | + | 0 | ||
4 | 146,900 | + | + | − | 1 | − | 0.006 | ||
5 | 12,409 | + | − | − | 1 | − | 0.01 | ||
6 | 3917 | + | + | + | 1 | − | 0.012 | ||
7 | 1795 | − | − | − | 1 | − | 0.013 | ||
8 | 204,447 | + | + | − | 2 | − | 0.014 | 456,894 | Intermediate |
9 | 726 | + | − | + | 1 | − | 0.018 | ||
10 | 691 | − | + | − | 2 | − | 0.019 | ||
11 | 21,860 | + | − | − | 2 | − | 0.022 | ||
12 | 12,597 | − | − | − | 2 | − | 0.022 | ||
13 | 52,160 | − | − | − | 3 | − | 0.022 | ||
14 | 9908 | + | + | − | 1 | + | 0.022 | ||
15 | 18,147 | + | + | + | 2 | − | 0.026 | ||
16 | 48,280 | + | + | − | 3 | − | 0.026 | ||
17 | 3123 | − | + | − | 3 | − | 0.026 | ||
18 | 373 | − | − | + | 1 | − | 0.027 | ||
19 | 754 | + | − | − | 1 | + | 0.027 | ||
20 | 14,045 | + | − | − | 3 | − | 0.029 | ||
21 | 98 | + | − | + | 1 | + | 0.031 | ||
22 | 49,161 | + | + | − | 2 | + | 0.031 | ||
23 | 15,296 | + | + | + | 3 | − | 0.033 | ||
24 | 5228 | + | − | + | 2 | − | 0.034 | ||
25 | 5224 | − | − | + | 2 | − | 0.038 | 118,202 | Aggressive |
26 | 14,608 | − | − | + | 3 | − | 0.038 | ||
27 | 6336 | + | − | + | 3 | − | 0.042 | ||
28 | 23 | − | + | + | 1 | − | 0.043 | ||
29 | 949 | − | + | + | 3 | − | 0.044 | ||
30 | 2805 | − | − | − | 2 | + | 0.045 | ||
31 | 411 | + | + | + | 1 | + | 0.046 | ||
32 | 5502 | + | + | + | 2 | + | 0.046 | ||
33 | 318 | − | + | + | 2 | − | 0.047 | ||
34 | 4922 | + | − | − | 2 | + | 0.048 | ||
35 | 28,757 | + | + | − | 3 | + | 0.051 | ||
36 | 17,799 | − | − | − | 3 | + | 0.056 | ||
37 | 6178 | + | − | − | 3 | + | 0.059 | ||
38 | 8808 | + | + | + | 3 | + | 0.059 | ||
39 | 1031 | − | + | − | 3 | + | 0.065 | ||
40 | 147 | − | − | − | 1 | + | 0.068 | ||
41 | 1468 | + | − | + | 2 | + | 0.068 | ||
42 | 473 | − | + | + | 3 | + | 0.068 | ||
43 | 175 | − | + | − | 2 | + | 0.069 | ||
44 | 3168 | + | − | + | 3 | + | 0.083 | ||
45 | 7249 | − | − | + | 3 | + | 0.086 | ||
46 | 1665 | − | − | + | 2 | + | 0.091 | ||
47 | 72 | − | − | + | 1 | + | 0.097 | ||
48 | 114 | − | + | + | 2 | + | 0.114 |
Demographic/Disease Variables | Stages I–III N (Row%) | Stage IV N (Row%) | p-Value |
---|---|---|---|
Race/Ethnicity | <0.001 | ||
White | 738,416 (95.1%) | 38,453 (4.9%) | |
Black | 103,646 (92.0%) | 8988 (8.0%) | |
Asian | 31,843 (95.6%) | 1455 (4.4%) | |
Hispanic | 50,958 (94.5%) | 2983 (5.5%) | |
Missing | 15,040 (94.3%) | 905 (5.7%) | |
Age | <0.001 | ||
<30 | 4594 (91.2%) | 446 (8.8%) | |
30–39 | 36,589 (93.5%) | 2560 (6.5%) | |
40–49 | 141,714 (95.6%) | 6553 (4.4%) | |
50–59 | 223,898 (94.6%) | 12,803 (5.4%) | |
60–69 | 259,993 (94.8%) | 14,212 (5.2%) | |
≥70 | 273,115 (94.4%) | 16,210 (5.6%) | |
Insurance | <0.001 | ||
None | 17,883 (85.8%) | 2961 (14.2%) | |
Private | 467,639 (95.9%) | 20,062 (4.1%) | |
Medicaid | 59,468 (90.2%) | 6476 (9.8%) | |
Medicare | 368,966 (94.5%) | 21,609 (5.5%) | |
Other Government | 9705 (95.9%) | 411 (4.1%) | |
Unknown | 16,242 (92.8%) | 1265 (7.2%) | |
Median Household Income | <0.001 | ||
≤$38,000 | 136,807 (93.2%) | 9982 (6.8%) | |
$38,000–$47,999 | 197,306 (94.3%) | 11,842 (5.7%) | |
$48,000–$62,999 | 251,060 (94.7%) | 13,934 (5.3%) | |
≥$63,000 | 351,943 (95.5%) | 16,758 (4.5%) | |
Missing | 2787 (91.2%) | 268 (8.8%) | |
Median Education (No HS Diploma) | <0.001 | ||
≥21% | 136,597 (93.3%) | 9811 (6.7%) | |
13–20.9% | 221,484 (94.1%) | 13,914 (5.9%) | |
7–12.9% | 309,839 (94.9%) | 16,810 (5.1%) | |
<7% | 269,536 (95.7%) | 12,002 (4.3%) | |
Missing | 2447 (90.8%) | 247 (9.2%) | |
Size (cm) | <0.001 | ||
0.1–2.0 | 606,385 (98.7%) | 8052 (1.3%) | |
2.1–5.0 | 268,290 (93.5%) | 18,615 (6.5%) | |
>5.0 | 56,294 (81.0%) | 13,216 (19.0%) | |
Missing | 8934 (40.9%) | 12,901 (59.1%) | |
Histology | <0.001 | ||
Ductal | 704,671 (95.5%) | 33,525 (4.5%) | |
Lobular | 90,608 (94.2%) | 5623 (5.8%) | |
Mixed Ductal/ Lobular | 49,264 (96.3%) | 1912 (3.7%) | |
Other | 95,360 (89.1%) | 11,724 (10.9%) | |
ER | <0.001 | ||
Negative | 155,062 (92.9%) | 11,810 (7.1%) | |
Positive | 771,633 (95.5%) | 36,720 (4.5%) | |
Missing | 13,208 (75.6%) | 4254 (24.4%) | |
PR | <0.001 | ||
Negative | 243,415 (93.0%) | 18,354 (7.0%) | |
Positive | 681,482 (95.8%) | 29,586 (4.2%) | |
Missing | 15,006 (75.6%) | 4844 (24.4%) | |
Her2 | <0.001 | ||
Negative | 763,436 (91.5%) | 33,677 (4.2%) | |
Positive | 119,352 (91.5%) | 11,146 (8.5%) | |
Missing | 57,115 (87.8%) | 7961 (12.2%) | |
Grade | <0.001 | ||
Well-Differentiated | 212,301 (98.6%) | 3107 (1.4%) | |
Moderately Differentiated | 398,667 (96.1%) | 16,333 (3.9%) | |
Poorly Differentiated | 270,103 (93.4%) | 18,953 (6.6%) | |
Missing | 58,832 (80.3%) | 14,391 (19.7%) | |
LVI | <0.001 | ||
Negative | 628,236 (98.1%) | 12,155 (1.9%) | |
Positive | 154,951 (95.0%) | 8237 (5.0%) | |
Missing | 156,716 (82.9%) | 32,392 (17.1%) |
Demographic/Disease Factors | Stage IV (De Novo) Odds Ratio | 95% Confidence Interval |
---|---|---|
Race/Ethnicity | ||
White | Reference | Reference |
Black | 1.09 | 1.04–1.15 |
Asian | 0.78 | 0.71–0.86 |
Hispanic | 0.71 | 0.66–0.77 |
Age | ||
<30 | 1.38 | 1.17–1.63 |
30–39 | 1.08 | 0.99–1.18 |
40–49 | 0.87 | 0.81–0.93 |
50–59 | 1.07 | 1.01–1.14 |
60–69 | 1.06 | 1.01–1.12 |
≥70 | Reference | Reference |
Insurance | ||
None | Reference | Reference |
Private | 0.43 | 0.39–0.46 |
Medicaid | 0.74 | 0.67–0.81 |
Medicare | 0.51 | 0.47–0.56 |
Other Government | 0.41 | 0.34–0.50 |
Unknown | 0.57 | 0.49–0.68 |
Median Household Income | ||
≤$38,000 | 1.12 | 1.06–1.18 |
$38,000–$47,999 | 1.09 | 1.04–1.14 |
$48,000–$62,999 | 1.04 | 0.99–1.08 |
≥$63,000 | Reference | Reference |
Size (cm) | ||
0.1–2.0 | Reference | Reference |
2.1–5.0 | 4.40 | 4.21–4.60 |
>5.0 | 15.6 | 14.9–16.5 |
Histology | ||
Ductal | Reference | Reference |
Lobular | 0.83 | 0.78–0.88 |
Mixed Ductal/Lobular | 0.82 | 0.75–0.88 |
Other | 0.84 | 0.79–0.89 |
Biological Subtype | ||
Indolent | Reference | Reference |
Intermediate | 2.05 | 1.91–2.20 |
Aggressive | 3.22 | 2.99–3.47 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heller, D.R.; Chiu, A.S.; Farrell, K.; Killelea, B.K.; Lannin, D.R. Why Has Breast Cancer Screening Failed to Decrease the Incidence of de Novo Stage IV Disease? Cancers 2019, 11, 500. https://doi.org/10.3390/cancers11040500
Heller DR, Chiu AS, Farrell K, Killelea BK, Lannin DR. Why Has Breast Cancer Screening Failed to Decrease the Incidence of de Novo Stage IV Disease? Cancers. 2019; 11(4):500. https://doi.org/10.3390/cancers11040500
Chicago/Turabian StyleHeller, Danielle R., Alexander S. Chiu, Kaitlin Farrell, Brigid K. Killelea, and Donald R. Lannin. 2019. "Why Has Breast Cancer Screening Failed to Decrease the Incidence of de Novo Stage IV Disease?" Cancers 11, no. 4: 500. https://doi.org/10.3390/cancers11040500
APA StyleHeller, D. R., Chiu, A. S., Farrell, K., Killelea, B. K., & Lannin, D. R. (2019). Why Has Breast Cancer Screening Failed to Decrease the Incidence of de Novo Stage IV Disease? Cancers, 11(4), 500. https://doi.org/10.3390/cancers11040500