Polymorphisms of Mismatch Repair Pathway Genes Predict Clinical Outcomes in Oral Squamous Cell Carcinoma Patients Receiving Adjuvant Concurrent Chemoradiotherapy
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Ethical Statement
4.2. Participants and Data Collection
4.3. DNA Extraction and Genotyping
4.4. Adjuvant CCRT and Follow-Up
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chiang, C.-J.; Lo, W.-C.; Yang, Y.-W.; You, S.-L.; Chen, C.-J.; Lai, M.-S. Incidence and survival of adult cancer patients in Taiwan, 2002–2012. J. Formos. Med. Assoc. 2016, 115, 13. [Google Scholar] [CrossRef]
- Adelstein, D.; Gillison, M.L.; Pfister, D.G.; Spencer, S.; Adkins, D.; Brizel, D.M.; Burtness, B.; Busse, P.M.; Caudell, J.J.; Cmelak, A.J.; et al. NCCN Guidelines Insights: Head and Neck Cancers, Version 2.2017. J. Natl. Compr. Canc. Netw. 2017, 15, 761–770. [Google Scholar] [CrossRef] [PubMed]
- Ferris, R.L.; Geiger, J.L.; Trivedi, S.; Schmitt, N.C.; Heron, D.E.; Johnson, J.T.; Kim, S.; Duvvuri, U.; Clump, D.A.; Bauman, J.E.; et al. Phase II trial of post-operative radiotherapy with concurrent cisplatin plus panitumumab in patients with high-risk, resected head and neck cancer. Ann. Oncol. 2016, 27, 2257–2262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hill, B.T.; Price, L.A. Lack of survival advantage in patients with advanced squamous cell carcinomas of the oral cavity receiving neoadjuvant chemotherapy prior to local therapy, despite achieving an initial high clinical complete remission rate. Am. J. Clin. Oncol. 1994, 17, 1–5. [Google Scholar] [CrossRef]
- Zini, A.; Czerninski, R.; Sgan-Cohen, H.D. Oral cancer over four decades: epidemiology, trends, histology, and survival by anatomical sites. J. Oral Pathol. Med. 2010, 39, 299–305. [Google Scholar] [CrossRef] [PubMed]
- de Araujo, R.F., Jr.; Barboza, C.A.; Clebis, N.K.; de Moura, S.A.; Lopes Costa Ade, L. Prognostic significance of the anatomical location and TNM clinical classification in oral squamous cell carcinoma. Med. Oral Patol. Oral Cir. Bucal. 2008, 13, E344–E347. [Google Scholar] [PubMed]
- Lin, L.H.; Lin, M.W.; Mar, K.; Lin, C.S.; Ji, D.D.; Lee, W.P.; Lee, H.S.; Cheng, M.F.; Hsia, K.T. The hMLH1 -93G>A promoter polymorphism is associates with outcomes in oral squamous cell carcinoma patients. Ann. Surg. Oncol. 2014, 21, 4270–4277. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, M.; Kastan, M.B. The DNA damage response: Implications for tumor responses to radiation and chemotherapy. Annu. Rev. Med. 2015, 66, 129–143. [Google Scholar] [CrossRef] [PubMed]
- Jin, B.; Robertson, K.D. DNA methyltransferases, DNA damage repair, and cancer. Adv. Exp. Med. Biol. 2013, 754, 3–29. [Google Scholar] [CrossRef]
- Khanna, A. DNA damage in cancer therapeutics: a boon or a curse? Cancer Res. 2015, 75, 2133–2138. [Google Scholar] [CrossRef]
- Jiricny, J. The multifaceted mismatch-repair system. Nat. Rev. Mol. Cell Biol. 2006, 7, 335. [Google Scholar] [CrossRef] [PubMed]
- Kunkel, T.A.; Erie, D.A. DNA mismatch repair. Annu. Rev. Biochem. 2005, 74, 681–710. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Rohde, L.H.; Emami, K.; Hammond, D.; Casey, R.; Mehta, S.K.; Jeevarajan, A.S.; Pierson, D.L.; Wu, H. Suppressed expression of non-DSB repair genes inhibits gamma-radiation-induced cytogenetic repair and cell cycle arrest. DNA Repair 2008, 7, 1835–1845. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, G.A.S.; Costa, E.F.D.; Lopes-Aguiar, L.; Lima, T.R.P.; Visacri, M.B.; Pincinato, E.C.; Lourenço, G.J.; Calonga, L.; Mariano, F.V.; Altemani, A.M.d.A.M.; et al. Polymorphisms in DNA mismatch repair pathway genes predict toxicity and response to cisplatin chemoradiation in head and neck squamous cell carcinoma patients. Oncotarget 2018, 9, 29538–29547. [Google Scholar] [CrossRef] [PubMed]
- Perera, S.; Mrkonjic, M.; Rawson, J.B.; Bapat, B. Functional effects of the MLH1-93G>A polymorphism on MLH1/EPM2AIP1 promoter activity. Oncol. Rep. 2011, 25, 809–815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nogueira, G.A.; Lourenco, G.J.; Oliveira, C.B.; Marson, F.A.; Lopes-Aguiar, L.; Costa, E.F.; Lima, T.R.; Liutti, V.T.; Leal, F.; Santos, V.C.; et al. Association between genetic polymorphisms in DNA mismatch repair-related genes with risk and prognosis of head and neck squamous cell carcinoma. Int. J. Cancer. 2015, 137, 810–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiu, C.-H.; Ho, H.-L.; Doong, H.; Yeh, Y.-C.; Chen, M.-Y.; Chou, T.-Y.; Tsai, C.-M. MLH1 V384D polymorphism associates with poor response to EGFR tyrosine kinase inhibitors in patients with EGFR L858R-positive lung adenocarcinoma. Oncotarget 2015, 6, 8407–8417. [Google Scholar] [CrossRef] [Green Version]
- Pereira, C.S.; Oliveira, M.V.M.d.; Barros, L.O.; Bandeira, G.A.; Santos, S.H.S.; Basile, J.R.; Guimarães, A.L.S.; De Paula, A.M.B. Low expression of MSH2 DNA repair protein is associated with poor prognosis in head and neck squamous cell carcinoma. J. Appl. Oral Sci. 2013, 21, 416–421. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Zheng, Y.; Tian, T.; Wang, M.; Liu, X.; Liu, K.; Zhai, Y.; Dai, C.; Deng, Y.; Li, S.; et al. Pooling-analysis on hMLH1 polymorphisms and cancer risk: evidence based on 31,484 cancer cases and 45,494 cancer-free controls. Oncotarget 2017, 8, 93063–93078. [Google Scholar] [CrossRef] [Green Version]
- Tsai, M.H.; Tseng, H.C.; Liu, C.S.; Chang, C.L.; Tsai, C.W.; Tsou, Y.A.; Wang, R.F.; Lin, C.C.; Wang, H.C.; Chiu, C.F.; et al. Interaction of Exo1 genotypes and smoking habit in oral cancer in Taiwan. Oral Oncol. 2009, 45, e90–e94. [Google Scholar] [CrossRef]
- Marra, G.; D’Atri, S.; Corti, C.; Bonmassar, L.; Cattaruzza, M.S.; Schweizer, P.; Heinimann, K.; Bartosova, Z.; Nystrom-Lahti, M.; Jiricny, J. Tolerance of human MSH2+/- lymphoblastoid cells to the methylating agent temozolomide. Proc. Natl. Acad. Sci. USA 2001, 98, 7164–7169. [Google Scholar] [CrossRef]
- Deng, N.; Zhou, H.; Fan, H.; Yuan, Y. Single nucleotide polymorphisms and cancer susceptibility. Oncotarget 2017, 8, 110635–110649. [Google Scholar] [CrossRef] [Green Version]
- Taubert, H.W.; Bartel, F.; Kappler, M.; Schuster, K.; Meye, A.; Lautenschlager, C.; Thamm-Mucke, B.; Bache, M.; Schmidt, H.; Holzhausen, H.J.; et al. Reduced expression of hMSH2 protein is correlated to poor survival for soft tissue sarcoma patients. Cancer 2003, 97, 2273–2278. [Google Scholar] [CrossRef] [Green Version]
- Velasco, A.; Hewitt, S.M.; Albert, P.S.; Hossein, M.; Rosenberg, H.; Martinez, C.; Sagalowsky, A.I.; McConnell, J.D.; Marston, W.; Leach, F.S. Differential expression of the mismatch repair gene hMSH2 in malignant prostate tissue is associated with cancer recurrence. Cancer 2002, 94, 690–699. [Google Scholar] [CrossRef]
- Huang, S.C.; Huang, S.F.; Chen, Y.T.; Chang, Y.; Chiu, Y.T.; Chang, I.C.; Wu, H.I.; Chen, J.S. Overexpression of MutL homolog 1 and MutS homolog 2 proteins have reversed prognostic implications for stage I-II colon cancer patients. Biomed. J. 2017, 40, 39–48. [Google Scholar] [CrossRef]
- Kang, B.W.; Kim, J.G.; Moon, J.H.; Sohn, S.K.; Chae, Y.S.; Park, J.Y.; Jeon, S.W.; Lee, M.-H.; Lim, K.-H.; Jun, S.-H.; et al. IVS10+12A>G polymorphism in hMSH2 gene associated with prognosis for patients with colorectal cancer. Ann. Oncol. 2009, 21, 525–529. [Google Scholar] [CrossRef] [Green Version]
- Shih, C.M.; Chen, C.Y.; Lee, I.H.; Kao, W.T.; Wang, Y.C. A polymorphism in the hMLH1 gene (-93G-->A) associated with lung cancer susceptibility and prognosis. Int. J. Mol. Med. 2010, 25, 165–170. [Google Scholar]
- Savio, A.J.; Bapat, B. Modulation of transcription factor binding and epigenetic regulation of the MLH1 CpG island and shore by polymorphism rs1800734 in colorectal cancer. Epigenetics 2017, 12, 441–448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.; Taylor, N.P.; Sotamaa, K.M.; Mutch, D.G.; Powell, M.A.; Schmidt, A.P.; Feng, S.; Hampel, H.L.; de la Chapelle, A.; Goodfellow, P.J. Evidence for heritable predisposition to epigenetic silencing of MLH1. Int. J. Cancer 2007, 120, 1684–1688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whiffin, N.; Broderick, P.; Lubbe, S.J.; Pittman, A.M.; Penegar, S.; Chandler, I.; Houlston, R.S. MLH1-93G > A is a risk factor for MSI colorectal cancer. Carcinogenesis 2011, 32, 1157–1161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mei, M.; Liu, D.; Dong, S.; Ingvarsson, S.; Goodfellow, P.J.; Chen, H. The MLH1 -93 promoter variant influences gene expression. Cancer Epidemiol. 2010, 34, 93–95. [Google Scholar] [CrossRef]
- Vilkin, A.; Niv, Y.; Nagasaka, T.; Morgenstern, S.; Levi, Z.; Fireman, Z.; Fuerst, F.; Goel, A.; Boland, C.R. Microsatellite instability, MLH1 promoter methylation, and BRAF mutation analysis in sporadic colorectal cancers of different ethnic groups in Israel. Cancer 2009, 115, 760–769. [Google Scholar] [CrossRef] [PubMed]
- Lopes-Aguiar, L.; Visacri, M.B.; Nourani, C.M.; Costa, E.F.; Nogueira, G.A.; Lima, T.R.; Pincinato, E.C.; Moriel, P.; Altemani, J.M.; Lima, C.S. Do genetic polymorphisms modulate response rate and toxicity of Cisplatin associated with radiotherapy in laryngeal squamous cell carcinoma?: A case report. Medicine (Baltimore) 2015, 94, e578. [Google Scholar] [CrossRef] [PubMed]
- de Castro, G., Jr.; Snitcovsky, I.M.; Gebrim, E.M.; Leitao, G.M.; Nadalin, W.; Ferraz, A.R.; Federico, M.H. High-dose cisplatin concurrent to conventionally delivered radiotherapy is associated with unacceptable toxicity in unresectable, non-metastatic stage IV head and neck squamous cell carcinoma. Eur. Arch. Otorhinolaryngol. 2007, 264, 1475–1482. [Google Scholar] [CrossRef]
- Chen, P.-H.; Shieh, T.-Y.; Ho, P.-S.; Tsai, C.-C.; Yang, Y.-H.; Lin, Y.-C.; Ko, M.-S.; Tsai, P.-C.; Chiang, S.-L.; Tu, H.-P.; et al. Prognostic factors associated with the survival of oral and pharyngeal carcinoma in Taiwan. BMC Cancer 2007, 7, 101. [Google Scholar] [CrossRef] [PubMed]
- Ho, P.S.; Yang, Y.H.; Shieh, T.Y.; Chen, C.H.; Tsai, C.C.; Ko, Y.C. Ethnic differences in the occurrence of oropharyngeal cancer in Taiwan. Public Health 2007, 121, 765–773. [Google Scholar] [CrossRef] [PubMed]
- Edge, S.B.; Compton, C.C. The American Joint Committee on Cancer: The 7th edition of the AJCC cancer staging manual and the future of TNM. Ann. Surg. Oncol. 2010, 17, 1471–1474. [Google Scholar] [CrossRef] [PubMed]
Variable | Number (n = 319) | % |
---|---|---|
Mean age (SD), years | 49.72 (9.8) | |
Age, years (≥50) | 155 | 48.59 |
Ethnicity | ||
Taiwanese | 230 | 72.10 |
Hakka | 72 | 22.57 |
Mainland Chinese | 17 | 5.33 |
BMI, kg/m2 | ||
<18.5 | 22 | 6.90 |
18.5–23.9 | 157 | 49.22 |
≥24 | 140 | 43.89 |
Smoking cigarettes (ever) | 272 | 85.27 |
Drinking alcohol (ever) | 221 | 69.28 |
Chewing betel quid (ever) | 275 | 86.21 |
Drinking tea (ever) | 156 | 48.90 |
Drinking coffee (ever) | 76 | 23.82 |
Tumor differentiation * | ||
Well | 51 | 16.14 |
Moderate | 210 | 66.46 |
Poor | 55 | 17.40 |
Primary tumor size | ||
T1–T2 | 122 | 38.24 |
T3–T4 | 197 | 61.76 |
Nodal involvement | ||
N0 | 38 | 11.91 |
N+ | 281 | 88.09 |
Perineural invasion (yes) | 177 | 55.49 |
Vascular invasion (yes) | 19 | 5.96 |
Lymphatic invasion (yes) | 40 | 12.54 |
Extranodal extension (yes) | 205 | 64.26 |
Pathological TNM Stage | ||
III | 42 | 13.17 |
IV | 277 | 86.83 |
Variable | No. | Event | OS | Event | DFS | ||
---|---|---|---|---|---|---|---|
HR (95% CI) | p Value | HR (95% CI) | p Value | ||||
Age, years | |||||||
<50 | 164 | 54 | 1.00 | 69 | 1.00 | ||
≥50 | 155 | 40 | 0.71 (0.47–1.07) | 0.104 | 60 | 0.82 (0.57–1.16) | 0.262 |
Ethnicity | |||||||
Taiwanese | 230 | 69 | 1.00 | 98 | 1.00 | ||
Hakka | 72 | 19 | 0.93 (0.56–1.56) | 0.786 | 19 | 0.64 (0.39–1.04) | 0.073 |
Mainland Chinese | 17 | 6 | 1.25 (0.54–2.88) | 0.601 | 12 | 1.80 (0.99–3.29) | 0.056 |
BMI, kg/m2 | |||||||
18.5–23.9 | 157 | 53 | 1.00 | 66 | 1.00 | ||
<18.5 | 22 | 7 | 0.90 (0.41–1.97) | 0.787 | 11 | 1.44 (0.76–2.72) | 0.269 |
≥24 | 140 | 34 | 0.66 (0.43–1.02) | 0.058 | 52 | 0.82 (0.57–1.20) | 0.306 |
Smoking cigarettes | |||||||
Never | 47 | 16 | 1.00 | 20 | 1.00 | ||
Ever | 272 | 78 | 0.89 (0.51–1.53) | 0.661 | 109 | 0.96 (0.59–1.57) | 0.874 |
Drinking alcohol | |||||||
Never | 98 | 31 | 1.00 | 41 | 1.00 | ||
Ever | 221 | 63 | 1.00 (0.65–1.54) | 0.994 | 88 | 1.00 (0.69–1.46) | 1.000 |
Chewing betel quid | |||||||
Never | 44 | 13 | 1.00 | 15 | 1.00 | ||
Ever | 275 | 81 | 0.96 (0.54–1.73) | 0.900 | 114 | 1.37 (0.79–2.39) | 0.268 |
Drinking tea | |||||||
Never | 163 | 50 | 1.00 | 63 | 1.00 | ||
Ever | 156 | 44 | 0.82 (0.55–1.24) | 0.359 | 66 | 1.06 (0.75–1.51) | 0.745 |
Drinking coffee | |||||||
Never | 243 | 78 | 1.00 | 93 | 1.00 | ||
Ever | 76 | 16 | 0.63 (0.37–1.07) | 0.088 | 36 | 1.26 (0.85–1.86) | 0.249 |
Tumor differentiation | |||||||
Well | 51 | 19 | 1.00 | 24 | 1.00 | ||
Moderate | 210 | 61 | 0.92 (0.55–1.53) | 0.735 | 80 | 0.89 (0.56–1.42) | 0.622 |
Poor | 55 | 13 | 0.81 (0.40–1.63) | 0.550 | 24 | 1.14 (0.64–2.02) | 0.662 |
Primary tumor size | |||||||
T1–T2 | 160 | 43 | 1.00 | 59 | 1.00 | ||
T3–T4 | 159 | 51 | 1.41 (0.93–2.13) | 0.102 | 70 | 1.47 (1.03–2.09) | 0.034 * |
Nodal involvement | |||||||
N0–N1 | 102 | 19 | 1.00 | 35 | 1.00 | ||
N2–N3 | 217 | 75 | 2.38 (1.43–3.94) | 0.0008 * | 94 | 1.76 (1.17–2.63) | 0.006 * |
Perineural invasion | |||||||
No | 142 | 41 | 1.00 | 56 | 1.00 | ||
Yes | 177 | 53 | 1.15 (0.77–1.74) | 0.493 | 73 | 1.19 (0.83–1.70) | 0.340 |
Vascular invasion | |||||||
No | 300 | 86 | 1.00 | 122 | 1.00 | ||
Yes | 19 | 8 | 1.51 (0.73–3.13) | 0.266 | 7 | 0.94 (0.44–2.02) | 0.876 |
Lymphatic invasion | |||||||
No | 279 | 75 | 1.00 | 110 | 1.00 | ||
Yes | 40 | 19 | 2.22 (1.32–3.72) | 0.003 * | 19 | 1.37 (0.82–2.30) | 0.224 |
Extranodal extension | |||||||
No | 114 | 14 | 1.00 | 36 | 1.00 | ||
Yes | 205 | 80 | 3.78 (2.14–6.68) | <0.0001 * | 93 | 1.87 (1.26–2.78) | 0.002 * |
Pathologic TNM Stage | |||||||
III | 42 | 10 | 1.00 | 14 | 1.00 | ||
IV | 277 | 84 | 1.62 (0.83–3.15) | 0.154 | 115 | 1.66 (0.93–2.94) | 0.086 |
Variable | No. | Event | OS | DFS | |||||
---|---|---|---|---|---|---|---|---|---|
HR (95% CI) | p Value | Event | HR (95% CI) | p Value | |||||
MSH2 | |||||||||
rs3732183 a | |||||||||
AA | 150 | 44 | 1.00 | 61 | 1.00 | ||||
AG | 125 | 36 | 0.94 (0.60–1.46) | 0.779 | 54 | 1.02 (0.70–1.49) | 0.913 | ||
GG | 34 | 8 | 0.64 (0.30–1.37) | 0.253 | 8 | 0.47 (0.22–0.97) | 0.042 * | ||
Additive model | 0.85 (0.62–1.18) | 0.337 | 0.81 (0.62–1.06) | 0.120 | |||||
Dominant model | 154 | 44 | 0.87 (0.57–1.32) | 0.507 | 62 | 0.88 (0.61–1.26) | 0.481 | ||
Recessive model | 34 | 8 | 0.66 (0.32–1.37) | 0.268 | 8 | 0.46 (0.22–0.94) | 0.034 * | ||
G-allele | 0.84 (0.61–1.16) | 0.290 | 0.79 (0.60–1.05) | 0.102 | |||||
MSH3 | |||||||||
rs12515548 a | |||||||||
CC | 183 | 55 | 1.00 | 73 | 1.00 | ||||
CT | 122 | 35 | 0.93 (0.61–1.43) | 0.742 | 49 | 1.02 (0.71–1.48) | 0.909 | ||
TT | 13 | 3 | 0.83 (0.26–2.67) | 0.760 | 6 | 1.44 (0.63–3.33) | 0.391 | ||
Additive model | 0.93 (0.64–1.33) | 0.676 | 1.09 (0.80–1.48) | 0.590 | |||||
Dominant model | 135 | 38 | 0.92 (0.61–1.40) | 0.703 | 55 | 1.06 (0.74–1.51) | 0.764 | ||
Recessive model | 13 | 3 | 0.86 (0.27–2.72) | 0.795 | 6 | 1.43 (0.63–3.26) | 0.395 | ||
T-allele | 0.93 (0.66–1.32) | 0.691 | 1.08 (0.81–1.44) | 0.610 | |||||
rs26279 | |||||||||
AA | 184 | 55 | 1.00 | 74 | 1.00 | ||||
AG | 122 | 36 | 0.97 (0.64–1.48) | 0.885 | 49 | 1.02 (0.71–1.48) | 0.906 | ||
GG | 13 | 3 | 0.78 (0.24–2.49) | 0.671 | 6 | 1.30 (0.56–2.98) | 0.544 | ||
Additive model | 0.94 (0.66–1.34) | 0.729 | 1.07 (0.79–1.45) | 0.675 | |||||
Dominant model | 135 | 39 | 0.95 (0.63–1.44) | 0.812 | 55 | 1.05 (0.73–1.49) | 0.800 | ||
Recessive model | 13 | 3 | 0.79 (0.25–2.49) | 0.683 | 6 | 1.28 (0.56–2.92) | 0.552 | ||
G-allele | 0.94 (0.67–1.33) | 0.741 | 1.06 (0.79–1.42) | 0.689 | |||||
EXO1 | |||||||||
rs1047840 a | |||||||||
GG | 219 | 59 | 1.00 | 91 | 1.00 | ||||
GA | 93 | 31 | 1.34 (0.86–2.07) | 0.198 | 33 | 0.85 (0.57–1.28) | 0.438 | ||
AA | 6 | 3 | 2.84 (0.88–9.14) | 0.081 | 4 | 2.68 (0.97–7.36) | 0.056 | ||
Additive model | 1.43 (0.98–2.10) | 0.067 | 1.02 (0.71–1.46) | 0.934 | |||||
Dominant model | 99 | 34 | 1.40 (0.92–2.15) | 0.121 | 37 | 0.92 (0.62–1.36) | 0.683 | ||
Recessive model | 6 | 3 | 2.59 (0.81–8.27) | 0.108 | 4 | 2.80 (1.02–7.66) | 0.045 * | ||
A-allele | 1.39 (0.96–2.00) | 0.078 | 1.02 (0.72–1.43) | 0.937 | |||||
MLH1 | |||||||||
rs1800734 | |||||||||
AA | 100 | 36 | 1.00 | 44 | 1.00 | ||||
AG | 168 | 46 | 0.74 (0.47–1.14) | 0.170 | 70 | 0.91 (0.62–1.33) | 0.611 | ||
GG | 51 | 12 | 0.61 (0.32–1.17) | 0.137 | 15 | 0.59 (0.33–1.06) | 0.077 | ||
Additive model | 0.77 (0.56–1.04) | 0.092 | 0.80 (0.62–1.04) | 0.098 | |||||
Dominant model | 219 | 58 | 0.70 (0.46–1.07) | 0.101 | 85 | 0.82 (0.57–1.19) | 0.302 | ||
Recessive model | 51 | 12 | 0.73 (0.40–1.34) | 0.312 | 15 | 0.63 (0.36–1.07) | 0.089 | ||
G-allele | 0.78 (0.58–1.05) | 0.104 | 0.81 (0.63–1.05) | 0.106 |
Variable | OS | DFS | ||
---|---|---|---|---|
HR (95% CI) | p Value | HR (95% CI) | p Value | |
Age, years | ||||
<50 | 1.00 | 1.00 | ||
≥50 | 0.78 (0.51–1.19) | 0.243 | 0.94 (0.65–1.36) | 0.726 |
Ethnicity | ||||
Taiwanese | 1.00 | |||
Hakka | - | 0.68 (0.39–1.16) | 0.158 | |
Mainland Chinese | - | 1.99 (1.04–3.82) | 0.039 * | |
BMI kg/m2 | ||||
18.5–23.9 | 1.00 | |||
<18.5 | 0.97 (0.44–2.17) | 0.946 | - | |
≥24 | 0.73 (0.46–1.15) | 0.175 | - | |
Drinking coffee | ||||
Never | 1.00 | |||
Ever | 0.67 (0.39–1.17) | 0.157 | - | |
Primary tumor size | ||||
T1–T2 | 1.00 | |||
T3–T4 | - | 1.88 (1.19–2.98) | 0.007 * | |
Nodular involvement | ||||
N0–N1 | 1.00 | 1.00 | ||
N2–N3 | 1.63 (0.96–2.79) | 0.072 | 1.96 (1.04–3.69) | 0.038 * |
Lymphatic invasion | ||||
No | 1.00 | |||
Yes | 1.56 (0.91–2.66) | 0.105 | - | |
Extranodal extension | ||||
No | 1.00 | 1.00 | ||
Yes | 2.91 (1.58–5.34) | 0.0006 * | 1.38 (0.87–2.20) | 0.172 |
Pathologic TNM Stage | ||||
III | 1.00 | |||
IV | - | 0.66 (0.27–1.66) | 0.380 | |
MSH2 rs3732183 | ||||
AA | 1.00 | |||
AG | - | 0.97 (0.65–1.44) | 0.872 | |
GG | - | 0.45 (0.22–0.96) | 0.039* | |
EXO1 rs1047840 | ||||
GG | 1.00 | 1.00 | ||
GA | 1.16 (0.73–1.83) | 0.532 | 0.83 (0.54–1.29) | 0.411 |
AA | 2.36 (0.72–7.80) | 0.159 | 1.15 (0.34–3.88) | 0.818 |
MLH1 rs1800734 | ||||
AA | 1.00 | 1.00 | ||
AG | 0.67 (0.42–1.07) | 0.091 | 0.74 (0.49–1.12) | 0.158 |
GG | 0.52 (0.27–1.01) | 0.054 | 0.49 (0.26–0.92) | 0.028 * |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Senghore, T.; Wang, W.-C.; Chien, H.-T.; Chen, Y.-X.; Young, C.-K.; Huang, S.-F.; Yeh, C.-C. Polymorphisms of Mismatch Repair Pathway Genes Predict Clinical Outcomes in Oral Squamous Cell Carcinoma Patients Receiving Adjuvant Concurrent Chemoradiotherapy. Cancers 2019, 11, 598. https://doi.org/10.3390/cancers11050598
Senghore T, Wang W-C, Chien H-T, Chen Y-X, Young C-K, Huang S-F, Yeh C-C. Polymorphisms of Mismatch Repair Pathway Genes Predict Clinical Outcomes in Oral Squamous Cell Carcinoma Patients Receiving Adjuvant Concurrent Chemoradiotherapy. Cancers. 2019; 11(5):598. https://doi.org/10.3390/cancers11050598
Chicago/Turabian StyleSenghore, Thomas, Wen-Chang Wang, Huei-Tzu Chien, You-Xin Chen, Chi-Kuang Young, Shiang-Fu Huang, and Chih-Ching Yeh. 2019. "Polymorphisms of Mismatch Repair Pathway Genes Predict Clinical Outcomes in Oral Squamous Cell Carcinoma Patients Receiving Adjuvant Concurrent Chemoradiotherapy" Cancers 11, no. 5: 598. https://doi.org/10.3390/cancers11050598
APA StyleSenghore, T., Wang, W. -C., Chien, H. -T., Chen, Y. -X., Young, C. -K., Huang, S. -F., & Yeh, C. -C. (2019). Polymorphisms of Mismatch Repair Pathway Genes Predict Clinical Outcomes in Oral Squamous Cell Carcinoma Patients Receiving Adjuvant Concurrent Chemoradiotherapy. Cancers, 11(5), 598. https://doi.org/10.3390/cancers11050598