Oligodeoxynucleotides ODN 2006 and M362 Exert Potent Adjuvant Effect through TLR-9/-6 Synergy to Exaggerate Mammaglobin-A Peptide Specific Cytotoxic CD8+T Lymphocyte Responses against Breast Cancer Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Lines and Healthy Human CD8+T Lymphocytes
2.2. Animal Studies Section
2.3. Immunogenic Peptide Stimulation
2.4. Cytotoxicity Assay
2.5. Western Blot
2.6. Luminex
2.7. Enzyme Linked Immunosorbent Assay (ELISA)
2.8. Quantitative Real Time Polymerase Chain Reaction (qRT-PCR)
2.9. Flow Cytometry
2.10. Statistical Analysis
3. Results
3.1. Enhanced MamA2.1 Specific CD8+T-Cell Mediated Breast Cancer Cell Cytotoxicity following Treatment with ODN2006 and M362
3.2. ODN2006 and M362 Induced differential Phenotypic Changes in THP-1 Cells
3.3. Upregulation of TLR-9/6 Pathways in THP-1 Cells following Co-Treatment with ODN2006 and M362
3.4. Critical Role of IL-12 in Synergistic Effect of TLR-9/-6 Signaling following Treatment with ODN2006 and M362
3.5. In Vivo Reduction in Tumor Progression following Adoptive Transfer of CD8+T Lymphocytes from MamA2.1 Peptide Vaccinated Mice with Co-Treatment of ODN2006 and M362
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- American Cancer Society. Cancer Facts & Figures (2018); American Cancer Society: Atlanta, GA, USA, 2018. [Google Scholar]
- Williams, J.A. Vector Design for Improved DNA Vaccine Efficacy, Safety and Production. Vaccines (Basel) 2013, 1, 225–249. [Google Scholar] [CrossRef]
- Guo, C.; Manjili, M.H.; Subjeck, J.R.; Sarkar, D.; Fisher, P.B.; Wang, X.Y. Therapeutic cancer vaccines: Past, present, and future. Adv. Cancer Res. 2013, 119, 421–475. [Google Scholar] [PubMed]
- Amara, S.; Tiriveedhi, V. The Five Immune Forces Impacting DNA-Based Cancer Immunotherapeutic Strategy. Int. J. Mol. Sci. 2017, 18, 650. [Google Scholar] [CrossRef]
- Demaria, M.; Giorgi, C.; Lebiedzinska, M.; Esposito, G.; D’Angeli, L.; Bartoli, A.; Gough, D.J.; Turkson, J.; Levy, D.E.; Watson, C.J.; et al. A STAT3-mediated metabolic switch is involved in tumour transformation and STAT3 addiction. Aging 2010, 2, 823–842. [Google Scholar] [CrossRef] [Green Version]
- Mikhitarian, K.; Gillanders, W.E.; Almeida, J.S.; Hebert Martin, R.; Varela, J.C.; Metcalf, J.S.; Cole, D.J.; Mitas, M. An innovative microarray strategy identities informative molecular markers for the detection of micrometastatic breast cancer. Clin. Cancer Res. 2005, 11, 3697–3704. [Google Scholar] [CrossRef] [PubMed]
- Fleming, T.P.; Watson, M.A. Mammaglobin, a breast-specific gene, and its utility as a marker for breast cancer. Ann. NY Acad. Sci. 2000, 923, 78–89. [Google Scholar] [CrossRef] [PubMed]
- Goedegebuure, P.S.; Watson, M.A.; Viehl, C.T.; Fleming, T.P. Mammaglobin-based strategies for treatment of breast cancer. Curr. Cancer Drug Targets 2004, 4, 531–542. [Google Scholar] [CrossRef] [PubMed]
- Gillanders, W.E.; Mikhitarian, K.; Hebert, R.; Mauldin, P.D.; Palesch, Y.; Walters, C.; Urist, M.M.; Mann, G.B.; Doherty, G.; Herrmann, V.M.; et al. Molecular detection of micrometastatic breast cancer in histopathology-negative axillary lymph nodes correlates with traditional predictors of prognosis: An interim analysis of a prospective multi-institutional cohort study. Ann. Surg. 2004, 239, 828–837. [Google Scholar] [CrossRef] [PubMed]
- Jaramillo, A.; Narayanan, K.; Campbell, L.G.; Benshoff, N.D.; Lybarger, L.; Hansen, T.H.; Fleming, T.P.; Dietz, J.R.; Mohanakumar, T. Recognition of HLA-A2-restricted mammaglobin-A-derived epitopes by CD8+ cytotoxic T lymphocytes from breast cancer patients. Breast Cancer Res. Treat. 2004, 88, 29–41. [Google Scholar] [CrossRef] [PubMed]
- Bharat, A.; Benshoff, N.; Fleming, T.P.; Dietz, J.R.; Gillanders, W.E.; Mohanakumar, T. Characterization of the role of CD8+T cells in breast cancer immunity following mammaglobin-A DNA vaccination using HLA-class-I tetramers. Breast Cancer Res. Treat. 2008, 110, 453–463. [Google Scholar] [CrossRef] [PubMed]
- Tiriveedhi, V.; Tucker, N.; Herndon, J.; Li, L.; Sturmoski, M.; Ellis, M.; Ma, C.; Naughton, M.; Lockhart, A.C.; Gao, F.; et al. Safety and preliminary evidence of biologic efficacy of a mammaglobin—A DNA vaccine in patients with stable metastatic breast cancer. Clin. Cancer Res. 2014, 20, 5964–5975. [Google Scholar] [CrossRef]
- Tiriveedhi, V.; Fleming, T.P.; Goedegebuure, P.S.; Naughton, M.; Ma, C.; Lockhart, C.; Gao, F.; Gillanders, W.E.; Mohanakumar, T. Mammaglobin—A cDNA vaccination of breast cancer patients induces antigen-specific cytotoxic CD4+ICOShi T cells. Breast Cancer Res. Treat. 2013, 138, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Gursel, M.; Gursel, I. Development of CpG ODN Based Vaccine Adjuvant Formulations. Methods Mol. Biol. 2016, 1404, 289–298. [Google Scholar]
- Mortezagholi, S.; Babaloo, Z.; Rahimzadeh, P.; Namdari, H.; Ghaedi, M.; Gharibdoost, F.; Mirzaei, R.; Bidad, K.; Salehi, E. Evaluation of TLR9 expression on PBMCs and CpG ODN-TLR9 ligation on IFN-alpha production in SLE patients. Immunopharmacol. Immunotoxicol. 2017, 39, 11–18. [Google Scholar] [CrossRef]
- Bode, C.; Zhao, G.; Steinhagen, F.; Kinjo, T.; Klinman, D.M. CpG DNA as a vaccine adjuvant. Expert. Rev. Vaccines 2011, 10, 499–511. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.C.; Liu, S.J. A TLR9 agonist enhances the anti-tumor immunity of peptide and lipopeptide vaccines via different mechanisms. Sci. Rep. 2015, 5, 12578. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, P.; Pathangey, L.B.; Bradley, J.B.; Tinder, T.L.; Basu, G.D.; Akporiaye, E.T.; Gendler, S.J. MUC1-specific immune therapy generates a strong anti-tumor response in a MUC1-tolerant colon cancer model. Vaccine 2007, 25, 1607–1618. [Google Scholar] [CrossRef]
- Tiriveedhi, V.; Sarma, N.J.; Subramanian, V.; Fleming, T.P.; Gillanders, W.E.; Mohanakumar, T. Identification of HLA-A24-restricted CD8(+) cytotoxic T-cell epitopes derived from mammaglobin-A, a human breast cancer-associated antigen. Hum. Immunol. 2011, 73, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Ilias Basha, H.; Tiriveedhi, V.; Fleming, T.P.; Gillanders, W.E.; Mohanakumar, T. Identification of immunodominant HLA-B7-restricted CD8+ cytotoxic T cell epitopes derived from mammaglobin-A expressed on human breast cancers. Breast Cancer Res. Treat. 2011, 127, 81–89. [Google Scholar] [CrossRef]
- Ilvesaro, J.M.; Merrell, M.A.; Li, L.; Wakchoure, S.; Graves, D.; Brooks, S.; Rahko, E.; Jukkola-Vuorinen, A.; Vuopala, K.S.; Harris, K.W.; et al. Toll-like receptor 9 mediates CpG oligonucleotide-induced cellular invasion. Mol. Cancer Res. 2008, 6, 1534–1543. [Google Scholar] [CrossRef] [PubMed]
- Amara, S.; Majors, C.; Roy, B.; Hill, S.; Rose, K.L.; Myles, E.L.; Tiriveedhi, V. Critical role of SIK3 in mediating high salt and IL-17 synergy leading to breast cancer cell proliferation. PLoS ONE 2017, 12, e0180097. [Google Scholar] [CrossRef] [PubMed]
- Amara, S.; Ivy, M.T.; Myles, E.L.; Tiriveedhi, V. Sodium channel gammaENaC mediates IL-17 synergized high salt induced inflammatory stress in breast cancer cells. Cell Immunol. 2016, 302, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Amara, S.; Alotaibi, D.; Tiriveedhi, V. NFAT5/STAT3 interaction mediates synergism of high salt with IL-17 towards induction of VEGF-A expression in breast cancer cells. Oncol. Lett. 2016, 12, 933–943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tiriveedhi, V.; Takenaka, M.; Ramachandran, S.; Gelman, A.E.; Subramanian, V.; Patterson, G.A.; Mohanakumar, T. T regulatory cells play a significant role in modulating MHC class I antibody-induced obliterative airway disease. Am. J. Transplant 2012, 12, 2663–2674. [Google Scholar] [CrossRef] [PubMed]
- Daigneault, M.; Preston, J.A.; Marriott, H.M.; Whyte, M.K.; Dockrell, D.H. The identification of markers of macrophage differentiation in PMA-stimulated THP-1 cells and monocyte-derived macrophages. PLoS ONE 2010, 5, e8668. [Google Scholar] [CrossRef] [PubMed]
- Berges, C.; Naujokat, C.; Tinapp, S.; Wieczorek, H.; Hoh, A.; Sadeghi, M.; Opelz, G.; Daniel, V. A cell line model for the differentiation of human dendritic cells. Biochem. Biophys. Res. Commun. 2005, 333, 896–907. [Google Scholar] [CrossRef]
- Pilling, D.; Fan, T.; Huang, D.; Kaul, B.; Gomer, R.H. Identification of markers that distinguish monocyte-derived fibrocytes from monocytes, macrophages, and fibroblasts. PLoS ONE 2009, 4, e7475. [Google Scholar] [CrossRef] [PubMed]
- Mosser, D.M.; Edwards, J.P. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 2008, 8, 958–969. [Google Scholar] [CrossRef]
- Mifsud, E.J.; Tan, A.C.; Jackson, D.C. TLR Agonists as Modulators of the Innate Immune Response and Their Potential as Agents Against Infectious Disease. Front. Immunol. 2014, 5, 79. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Cao, S.; Kim, S.; Chung, E.Y.; Homma, Y.; Guan, X.; Jimenez, V.; Ma, X. Interleukin-12: An update on its immunological activities, signaling and regulation of gene expression. Curr. Immunol. Rev. 2005, 1, 119–137. [Google Scholar] [CrossRef]
- Grohmann, U.; Belladonna, M.L.; Vacca, C.; Bianchi, R.; Fallarino, F.; Orabona, C.; Fioretti, M.C.; Puccetti, P. Positive regulatory role of IL-12 in macrophages and modulation by IFN-gamma. J. Immunol. 2001, 167, 221–227. [Google Scholar] [CrossRef]
- Xing, Z.; Zganiacz, A.; Santosuosso, M. Role of IL-12 in macrophage activation during intracellular infection: IL-12 and mycobacteria synergistically release TNF-alpha and nitric oxide from macrophages via IFN-gamma induction. J. Leukoc. Biol. 2000, 68, 897–902. [Google Scholar]
- Di Pasquale, A.; Preiss, S.; Tavares Da Silva, F.; Garcon, N. Vaccine Adjuvants: From 1920 to 2015 and Beyond. Vaccines (Basel) 2015, 3, 320–343. [Google Scholar] [CrossRef] [PubMed]
- Verthelyi, D.; Ishii, K.J.; Gursel, M.; Takeshita, F.; Klinman, D.M. Human peripheral blood cells differentially recognize and respond to two distinct CPG motifs. J. Immunol. 2001, 166, 2372–2377. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, G.; Battiany, J.; Poeck, H.; Wagner, M.; Kerkmann, M.; Lubenow, N.; Rothenfusser, S.; Endres, S. Rational design of new CpG oligonucleotides that combine B cell activation with high IFN-α induction in plasmacytoid dendritic cells. Eur. J. Immunol. 2003, 33, 1633–1641. [Google Scholar] [CrossRef] [Green Version]
- Samulowitz, U.; Weber, M.; Weeratna, R.; Uhlmann, E.; Noll, B.; Krieg, A.M.; Vollmer, J. A novel class of immune-stimulatory CpG oligodeoxynucleotides unifies high potency in type I interferon induction with preferred structural properties. Oligonucleotides 2010, 20, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Hemmi, H.; Takeuchi, O.; Kawai, T.; Kaisho, T.; Sato, S.; Sanjo, H.; Matsumoto, M.; Hoshino, K.; Wagner, H.; Takeda, K.; et al. A Toll-like receptor recognizes bacterial DNA. Nature 2000, 408, 740–745. [Google Scholar] [CrossRef] [PubMed]
- Shirota, H.; Tross, D.; Klinman, D.M. CpG Oligonucleotides as Cancer Vaccine Adjuvants. Vaccines (Basel) 2015, 3, 390–407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tighe, H.; Takabayashi, K.; Schwartz, D.; van Nest, G.; Tuck, S.; Eiden, J.J.; Kagey-Sobotka, A.; Creticos, P.S.; Lichtenstein, L.M.; Spiegelberg, H.L.; et al. Conjugation of immunostimulatory DNA to the short ragweed allergen amb a 1 enhances its immunogenicity and reduces its allergenicity. J. Allergy. Clin. Immunol. 2000, 106, 124–134. [Google Scholar] [CrossRef] [PubMed]
- Sen, G.; Chen, Q.; Snapper, C.M. Immunization of aged mice with a pneumococcal conjugate vaccine combined with an unmethylated CpG-containing oligodeoxynucleotide restores defective immunoglobulin G antipolysaccharide responses and specific CD4+-T-cell priming to young adult levels. Infect. Immun. 2006, 74, 2177–2186. [Google Scholar] [CrossRef] [PubMed]
Cytokines/Chemokines | No Pep | MamA2.1 | MamA2.1 + ODN2006 | MamA2.1 + ODN M362 | MamA2.1 + ODN2216 |
---|---|---|---|---|---|
Immunostimulatory Cytokines | |||||
IL-2 | 5.2 ± 0.9 | 6.1 ± 1.2 | 13.6 ± 2.7 | 17.2 ± 6.4 | 7.7 ± 1.4 |
IL-5 | n.d. | n.d. | 4.9 ± 1.4 | 6.3 ± 1.9 | n.d. |
IL-6 | 157 ± 27 | 148 ± 23 | 294 ± 62 * | 342 ± 78 * | 311 ± 57 * |
IL-7 | 6.1 ± 1.7 | 5.3 ± 2.2 | 10.9 ± 3.3 | 7.2 ± 2.7 | 6.8 ± 1.3 |
IL-8 | 7651 ± 918 | 8143 ± 1126 | 13278 ± 1989 | 14598 ± 1839 | 10367 ± 772 |
IL-12p70 | 163 ± 43 | 182 ± 31 | 1672 ± 231 * | 1981 ± 161 * | 593 ± 49 * |
IL-13 | 2.9 ± 0.6 | 3.3 ± 1.1 | 11.9 ± 2.4 | 14.7 ± 4.3 | 4.8 ± 1.3 |
IL-15 | n.d. | n.d. | 7.2 ± 1.9 | 9.3 ± 3.7 | n.d. |
Eotaxin | 47 ± 16 | 34 ± 9 | 59 ± 17 | 52 ± 18 | 41 ± 9 |
IP-10 | 12 ± 4 | 14 ± 5 | 31 ± 9 | 27 ± 9 | 21 ± 7 |
Anti-inflammatory Cytokines | |||||
IL-4 | n.d. | n.d. | n.d. | 2.9 ± 0.6 | n.d. |
IL-10 | 42 ± 12 | 37 ± 12 | 19 ± 6 | 14 ± 6 | 33 ± 12 |
IL-1RA | 2981 ± 343 | 2719 ± 469 | 1516 ± 121 * | 1673 ± 131 * | 2528 ± 154 |
Chemoattractants | |||||
MCP-1 | 390 ± 56 | 422 ± 109 | 736 ± 152 | 787 ± 172 | 496 ± 101 |
MIP-1α | 312 ± 121 | 431 ± 76 | 784 ± 112 | 856 ± 143 | 533 ± 163 |
MIP-1β | 665 ± 116 | 726 ± 91 | 1167 ± 128 | 1218 ± 109 | 881 ± 179 |
RANTES | 2139 ± 158 | 2432 ± 338 | 7819 ± 911 * | 8337 ± 763 * | 7917 ± 967 * |
Effector Cytokines | |||||
TNF-α | 598 ± 72 | 538 ± 69 | 3871 ± 403 * | 5178 ± 476 * | 1267 ± 391 * |
IFN-γ | 127 ± 19 | 146 ± 21 | 449 ± 127 | 503 ± 93 | 312 ± 72 |
IL-1β | 1439 ± 96 | 1235 ± 108 | 1922 ± 216 | 1822 ± 177 | 1432 ± 876 |
IL-17 | 11 ± 3 | 14 ± 4 | 19 ± 4 | 15 ± 4 | 16 ± 5 |
Growth Factors/Cell differentiation factors | |||||
IL-9 | n.d. | n.d. | 6.4 ± 2.1 | 6.1 ± 1.7 | 3.2 ± 0.8 |
FGF-basic | n.d. | n.d. | n.d. | n.d. | n.d. |
PDGF-BB | 23 ± 8 | 19 ± 3 | 27 ± 7 | 24 ± 8 | 31 ± 6 |
VEGF | 3415 ± 482 | 2769 ± 511 | 5853 ± 721 * | 7241 ± 818 * | 7471 ± 917 * |
G-CSF | 456 ± 89 | 514 ± 132 | 738 ± 171 | 674 ± 133 | 598 ± 123 |
GM-CSF | 31 ± 9 | 36 ± 8 | 53 ± 14 | 44 ± 12 | 54 ± 16 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Babaer, D.; Amara, S.; McAdory, B.S.; Johnson, O.; Myles, E.L.; Zent, R.; Rathmell, J.C.; Tiriveedhi, V. Oligodeoxynucleotides ODN 2006 and M362 Exert Potent Adjuvant Effect through TLR-9/-6 Synergy to Exaggerate Mammaglobin-A Peptide Specific Cytotoxic CD8+T Lymphocyte Responses against Breast Cancer Cells. Cancers 2019, 11, 672. https://doi.org/10.3390/cancers11050672
Babaer D, Amara S, McAdory BS, Johnson O, Myles EL, Zent R, Rathmell JC, Tiriveedhi V. Oligodeoxynucleotides ODN 2006 and M362 Exert Potent Adjuvant Effect through TLR-9/-6 Synergy to Exaggerate Mammaglobin-A Peptide Specific Cytotoxic CD8+T Lymphocyte Responses against Breast Cancer Cells. Cancers. 2019; 11(5):672. https://doi.org/10.3390/cancers11050672
Chicago/Turabian StyleBabaer, Duaa, Suneetha Amara, Brenda S. McAdory, Owen Johnson, Elbert L. Myles, Roy Zent, Jeffrey C. Rathmell, and Venkataswarup Tiriveedhi. 2019. "Oligodeoxynucleotides ODN 2006 and M362 Exert Potent Adjuvant Effect through TLR-9/-6 Synergy to Exaggerate Mammaglobin-A Peptide Specific Cytotoxic CD8+T Lymphocyte Responses against Breast Cancer Cells" Cancers 11, no. 5: 672. https://doi.org/10.3390/cancers11050672
APA StyleBabaer, D., Amara, S., McAdory, B. S., Johnson, O., Myles, E. L., Zent, R., Rathmell, J. C., & Tiriveedhi, V. (2019). Oligodeoxynucleotides ODN 2006 and M362 Exert Potent Adjuvant Effect through TLR-9/-6 Synergy to Exaggerate Mammaglobin-A Peptide Specific Cytotoxic CD8+T Lymphocyte Responses against Breast Cancer Cells. Cancers, 11(5), 672. https://doi.org/10.3390/cancers11050672