The Use of microRNAs in the Management of Endometrial Cancer: A Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Expression Profile of miRs Associated with Malignant Endometrial Tissues Compared to Healthy or Hyperplastic Endometrial Tissues
3.2. Expression Profile of miRs According to Lymph Node Status
3.3. Expression Profile of miRs According to Survival
3.4. Relationship between Specific miRs in the Plasma/Serum and the Presence of Endometrial Cancer
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- World Health Organization. Datas from International Agency for Research on Cancer. Available online: http://gco.iarc.fr/today/online-analysis-table?v=2018&mode=cancer&mode_population=continents&population=900&populations=900&key=asr&sex=0&cancer=39&type=0&statistic=5&prevalence=0&population_group=0&ages_group%5B%5D=0&ages_group%5B%5D=17&nb_items=5&group_cancer=1&include_nmsc=1&include_nmsc_other=1 (accessed on 31 January 2019).
- Morice, P.; Leary, A.; Creutzberg, C.; Abu-Rustum, N.; Darai, E. Endometrial cancer. Lancet 2016, 387, 1094–1108. [Google Scholar] [CrossRef]
- Soslow, R.A.; Tornos, C.; Park, K.J.; Malpica, A.; Matias-Guiu, X.; Oliva, E.; Parkash, V.; Carlson, J.; McCluggage, W.G.; Gilks, C.B. Endometrial carcinoma diagnosis: Use of figo grading and genomic subcategories in clinical practice: Recommendations of the international society of gynecological pathologists. Int. J. Gynecol. Pathol. 2019, 38 (Suppl. 1), S64–S74. [Google Scholar] [CrossRef] [PubMed]
- Cancer Genome Atlas Research Network; Kandoth, C.; Schultz, N. Integrated genomic characterization of endometrial carcinoma. Nature 2013, 497, 67–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Felli, N.; Fontana, L.; Pelosi, E.; Botta, R.; Bonci, D.; Facchiano, F.; Liuzzi, F.; Lulli, V.; Morsilli, O.; Santoro, S.; et al. MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc. Natl. Acad. Sci. USA 2005, 102, 18081–18086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iorio, M.V.; Ferracin, M.; Liu, C.-G.; Veronese, A.; Spizzo, R.; Sabbioni, S.; Magri, E.; Pedriali, M.; Fabbri, M.; Campiglio, M.; et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 2005, 65, 7065–7070. [Google Scholar] [CrossRef] [PubMed]
- Jeanteur, P. miRNAs and cancer. Bull. Cancer 2010, 97, 1231–1239. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Ingolia, N.T.; Weissman, J.S.; Bartel, D.P. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 2010, 466, 835–840. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.; Lu, J.; Wang, S.; Li, H.; Ge, Q.; Lu, Z. Application of next-generation sequencing technology to profile the circulating microRNAs in the serum of preeclampsia versus normal pregnant women. Clin. Chim. Acta 2011, 412, 2167–2173. [Google Scholar] [CrossRef]
- Lee, T.S.; Jeon, H.W.; Kim, Y.B.; Kim, Y.A.; Kim, M.A.; Kang, S.B. Aberrant MicroRNA expression in endometrial carcinoma using formalin-fixed paraffin-embedded (FFPE) tissues. PLoS ONE 2013, 8, e81421. [Google Scholar] [CrossRef]
- Jia, W.; Wu, Y.; Zhang, Q.; Gao, G.; Zhang, C.; Xiang, Y. Identification of four serum microRNAs from a genome-wide serum microRNA expression profile as potential non-invasive biomarkers for endometrioid endometrial cancer. Oncol. Lett. 2013, 6, 261–267. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Gao, H.; Yang, M.; Zhao, T.; Liu, Y.; Lou, G. Correlation of TNFAIP8 overexpression with the proliferation, metastasis, and disease-free survival in endometrial cancer. Tumor Boil. 2014, 35, 5805–5814. [Google Scholar] [CrossRef] [PubMed]
- Tsukamoto, O.; Miura, K.; Mishima, H.; Abe, S.; Kaneuchi, M.; Higashijima, A.; Miura, S.; Kinoshita, A.; Yoshiura, K.-I.; Masuzaki, H. Identification of endometrioid endometrial carcinoma-associated microRNAs in tissue and plasma. Gynecol. Oncol. 2014, 132, 715–721. [Google Scholar] [CrossRef] [PubMed]
- Torres, A.; Torres, K.; Pesci, A.; Ceccaroni, M.; Paszkowski, T.; Cassandrini, P.; Zamboni, G.; Maciejewski, R. Diagnostic and prognostic significance of miRNA signatures in tissues and plasma of endometrioid endometrial carcinoma patients. Int. J. Cancer 2013, 132, 1633–1645. [Google Scholar] [CrossRef] [PubMed]
- Canlorbe, G.; Castela, M.; Bendifallah, S.; Wang, Z.; Lefevre, M.; Chabbert-Buffet, N.; Aractingi, S.; Darai, E.; Méhats, C.; Ballester, M. Micro-RNA signature of lymphovascular space involvement in type 1 endometrial cancer. Histol. Histopathol. 2017, 32, 941–950. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, M.; Yang, Q. A six-microRNA signature predicts survival of patients with uterine corpus endometrial carcinoma. Curr. Probl. Cancer 2019, 43, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Sun, B.; Zhang, Y.; Li, Y.; Huang, C.; Feng, F.; Li, C. Upregulation of miR-183-5p is responsible for the promotion of apoptosis and inhibition of the epithelial-mesenchymal transition, proliferation, invasion and migration of human endometrial cancer cells by downregulating Ezrin. Int. J. Mol. Med. 2018, 42, 2469–2480. [Google Scholar] [CrossRef] [Green Version]
- Deng, X.; Hou, C.; Liang, Z.; Wang, H.; Zhu, L.; Xu, H. miR-202 suppresses cell proliferation by targeting FOXR2 in endometrial adenocarcinoma. Dis. Mark. 2017, 2017, 2827435. [Google Scholar] [CrossRef]
- Bao, W.; Wang, H.-H.; Tian, F.-J.; He, X.-Y.; Qiu, M.-T.; Wang, J.-Y.; Zhang, H.-J.; Wang, L.-H.; Wan, X.-P. A TrkB–STAT3–miR-204-5p regulatory circuitry controls proliferation and invasion of endometrial carcinoma cells. Mol. Cancer 2013, 12, 155. [Google Scholar] [CrossRef]
- Dong, P.; Karaayvaz, M.; Jia, N.; Kaneuchi, M.; Hamada, J.; Watari, H.; Sudo, S.; Ju, J.; Sakuragi, N. Mutant p53 gain-of-function induces epithelial-mesenchymal transition through modulation of the miR-130b-ZEB1 axis. Oncogene 2013, 32, 3286–3295. [Google Scholar] [CrossRef]
- Zhang, X.; Dong, Y.; Ti, H.; Zhao, J.; Wang, Y.; Li, T.; Zhang, B. Down-regulation of miR-145 and miR-143 might be associated with DNA methyltransferase 3B overexpression and worse prognosis in endometrioid carcinomas. Hum. Pathol. 2013, 44, 2571–2580. [Google Scholar] [CrossRef]
- Zhai, H.; Karaayvaz, M.; Dong, P.; Sakuragi, N.; Ju, J. Prognostic significance of miR-194 in endometrial cancer. Biomark. Res. 2013, 1, 12. [Google Scholar] [CrossRef] [PubMed]
- Karaayvaz, M.; Zhang, C.; Liang, S.; Shroyer, K.R.; Ju, J. Prognostic significance of miR-205 in endometrial cancer. PLoS ONE 2012, 7, e35158. [Google Scholar] [CrossRef] [PubMed]
- Torres, A.; Torres, K.; Pesci, A.; Ceccaroni, M.; Paszkowski, T.; Cassandrini, P.; Zamboni, G.; Maciejewski, R. Deregulation of miR-100, miR-99a and miR-199b in tissues and plasma coexists with increased expression of mTOR kinase in endometrioid endometrial carcinoma. BMC Cancer 2012, 12, 369. [Google Scholar] [CrossRef] [PubMed]
- Cohn, D.E.; Fabbri, M.; Valeri, N.; Alder, H.; Ivanov, I.; Liu, C.-G.; Croce, C.M.; Resnick, K.E. Comprehensive miRNA profiling of surgically staged endometrial cancer. Am. J. Obstet. Gynecol. 2010, 202, 656.e1–656.e8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hiroki, E.; Akahira, J.-I.; Suzuki, F.; Nagase, S.; Ito, K.; Suzuki, T.; Sasano, H.; Yaegashi, N. Changes in microRNA expression levels correlate with clinicopathological features and prognoses in endometrial serous adenocarcinomas. Cancer Sci. 2010, 101, 241–249. [Google Scholar] [CrossRef]
- Huang, Y.-W.; Liu, J.C.; Deatherage, D.E.; Luo, J.; Mutch, D.G.; Goodfellow, P.J.; Miller, D.S.; Huang, T.H.-M. Epigenetic repression of microRNA-129-2 leads to overexpression of SOX4 oncogene in endometrial cancer. Cancer Res. 2009, 69, 9038–9046. [Google Scholar] [CrossRef]
- Liu, Y.; Li, H.; Zhao, C.; Jia, H. MicroRNA-101 inhibits angiogenesis via COX-2 in endometrial carcinoma. Mol. Cell. Biochem. 2018, 448, 61–69. [Google Scholar] [CrossRef]
- Liu, J.; Li, C.; Jiang, Y.; Wan, Y.; Zhou, S.; Cheng, W. Tumor-suppressor role of miR-139-5p in endometrial cancer. Cancer Cell Int. 2018, 18, 51. [Google Scholar] [CrossRef]
- Ma, J.; Li, D.; Kong, F.-F.; Yang, D.; Yang, H.; Ma, X.-X. miR-302a-5p/367-3p-HMGA2 axis regulates malignant processes during endometrial cancer development. J. Exp. Clin. Cancer Res. 2018, 37, 19. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Hu, G. Shikonin suppresses proliferation and induces apoptosis in endometrioid endometrial cancer cells via modulating miR-106b/PTEN/AKT/mTOR signaling pathway. Biosci. Rep. 2018, 38, 3055–3060. [Google Scholar] [CrossRef]
- Ushakov, D.S.; Dorozhkova, A.S.; Babayants, E.V.; Ovchinnikov, V.Y.; Kushlinskii, D.N.; Adamyan, L.V.; Gulyaeva, L.F.; Kushlinskii, N.E. Expression of microRNA Potentially Regulated by AhR and CAR in Malignant Tumors of the Endometrium. Bull. Exp. Boil. Med. 2018, 165, 688–691. [Google Scholar] [CrossRef] [PubMed]
- Xie, P.; Cao, H.; Li, Y.; Wang, J.; Cui, Z. Knockdown of lncRNA CCAT2 inhibits endometrial cancer cells growth and metastasis via sponging miR-216b. Cancer Biomark. 2017, 21, 123–133. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Wang, M.; Li, Q.; Zhu, P. MiR-101 reduces cell proliferation and invasion and enhances apoptosis in endometrial cancer via regulating PI3K/Akt/mTOR. Cancer Biomark. 2017, 21, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Xu, W.; Meng, Y.; Fang, D.; Wang, J.; Chen, H. Exploration of miR-1202 and miR-196a in human endometrial cancer based on high throughout gene screening analysis. Oncol. Rep. 2017, 37, 3493–3501. [Google Scholar] [Green Version]
- He, Z.; Xu, H.; Meng, Y.; Kuang, Y. miR-944 acts as a prognostic marker and promotes the tumor progression in endometrial cancer. Biomed. Pharmacother. 2017, 88, 902–910. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wang, W.; Huang, K.; Wang, Y.; Li, J.; Yang, X. MicroRNA-34a inhibits cells proliferation and invasion by downregulating Notch1 in endometrial cancer. Oncotarget 2017, 8, 111258–111270. [Google Scholar] [CrossRef]
- Cai, Y.; He, T.; Liang, L.; Zhang, X.; Yuan, H. Upregulation of microRNA-337 promotes the proliferation of endometrial carcinoma cells via targeting PTEN. Mol. Med. Rep. 2016, 13, 4827–4834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, X.; Zhu, D.; Lu, C.; Yan, D.; Li, L.; Chen, Z. MicroRNA-126 inhibits the migration and invasion of endometrial cancer cells by targeting insulin receptor substrate 1. Oncol. Lett. 2016, 11, 1207–1212. [Google Scholar] [CrossRef]
- Yoneyama, K.; Ishibashi, O.; Kawase, R.; Kurose, K.; Takeshita, T. miR-200a, miR-200b and miR-429 are onco-miRs that target the PTEN gene in endometrioid endometrial carcinoma. Anticancer. Res. 2015, 35, 1401–1410. [Google Scholar]
- Zeng, S.; Zhou, Z.-W.; He, Z.-X.; Zhou, S.-F.; He, S.-M.; He, Z. Hsa-microRNA-181a is a regulator of a number of cancer genes and a biomarker for endometrial carcinoma in patients: A bioinformatic and clinical study and the therapeutic implication. Drug Des. Dev. Ther. 2015, 9, 1103–1175. [Google Scholar]
- Kong, X.; Xu, X.; Yan, Y.; Guo, F.; Li, J.; Hu, Y.; Zhou, H.; Xun, Q. Estrogen regulates the tumour suppressor MiRNA-30c and its target gene, MTA-1, in endometrial cancer. PLoS ONE 2014, 9, e90810. [Google Scholar] [CrossRef] [PubMed]
- Jurcevic, S.; Klinga-Levan, K.; Olsson, B.; Ejeskär, K. Verification of microRNA expression in human endometrial adenocarcinoma. BMC Cancer 2016, 16, 227. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.-Y.; Wu, H.-J.; Ma, H.-D.; Xu, L.-P.; Huo, Y.; Yin, L.-R. MicroRNA-503 suppresses proliferation and cell-cycle progression of endometrioid endometrial cancer by negatively regulating cyclin D1. FEBS J. 2013, 280, 3768–3779. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Choi, H.J.; Kang, C.S.; Lee, H.J.; Lee, W.S.; Park, C.S. Expression of miRNAs and PTEN in endometrial specimens ranging from histologically normal to hyperplasia and endometrial adenocarcinoma. Mod. Pathol. 2012, 25, 1508–1515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Snowdon, J.; Zhang, X.; Childs, T.; Tron, V.A.; Feilotter, H. The MicroRNA-200 family is upregulated in endometrial carcinoma. PLoS ONE 2011, 6, e22828. [Google Scholar] [CrossRef] [PubMed]
- Ratner, E.S.; Tuck, D.; Richter, C.; Nallur, S.; Patel, R.M.; Schultz, V.; Hui, P.; Schwartz, P.E.; Rutherford, T.J.; Weidhaas, J.B. MicroRNA signatures differentiate uterine cancer tumor subtypes. Gynecol. Oncol. 2010, 118, 251–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, T.K.; Cheung, T.-H.; Huen, N.-Y.; Wong, K.W.; Lo, K.W.; Yim, S.-F.; Siu, N.S.; Wong, Y.-M.; Tsang, P.-T.; Pang, M.-W.; et al. Dysregulated microRNAs and their predicted targets associated with endometrioid endometrial adenocarcinoma in Hong Kong women. Int. J. Cancer 2009, 124, 1358–1365. [Google Scholar] [CrossRef]
- Wu, W.; Lin, Z.; Zhuang, Z.; Liang, X. Expression profile of mammalian microRNAs in endometrioid adenocarcinoma. Eur. J. Cancer Prev. 2009, 18, 50–55. [Google Scholar] [CrossRef]
- Boren, T.; Xiong, Y.; Hakam, A.; Wenham, R.; Apte, S.; Wei, Z.; Kamath, S.; Chen, D.-T.; Dressman, H.; Lancaster, J.M. MicroRNAs and their target messenger RNAs associated with endometrial carcinogenesis. Gynecol. Oncol. 2008, 110, 206–215. [Google Scholar] [CrossRef]
- Fang, Q.; Sang, L.; Du, S. Long noncoding RNA LINC00261 regulates endometrial carcinoma progression by modulating miRNA/FOXO1 expression. Cell Biochem. Funct. 2018, 36, 323–330. [Google Scholar] [CrossRef]
- Xiong, H.; Li, Q.; Liu, S.; Wang, F.; Xiong, Z.; Chen, J.; Chen, H.; Yang, Y.; Tan, X.; Luo, Q.; et al. Integrated microRNA and mRNA transcriptome sequencing reveals the potential roles of miRNAs in stage I endometrioid endometrial carcinoma. PLoS ONE 2014, 9, e110163. [Google Scholar] [CrossRef] [PubMed]
- Canlorbe, G.; Wang, Z.; Laas, E.; Bendifallah, S.; Castela, M.; Lefèvre, M.; Chabbert-Buffet, N.; Daraï, E.; Aractingi, S.; Méhats, C.; et al. Identification of microRNA expression profile related to lymph node status in women with early-stage grade 1–2 endometrial cancer. Mod. Pathol. 2016, 29, 391–401. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, Z.; Zhang, X.; Lin, Y.; Luo, T.; Xiao, Z.; Zhou, Q. A dual PI3K/AKT/mTOR signaling inhibitor miR-99a suppresses endometrial carcinoma. Am. J. Transl. Res. 2016, 8, 719–731. [Google Scholar] [PubMed]
- Liu, B.; Che, Q.; Qiu, H.; Bao, W.; Chen, X.; Lü, W.; Li, B.; Wan, X. Elevated MiR-222-3p Promotes Proliferation and Invasion of Endometrial Carcinoma via Targeting ERα. PLoS ONE 2014, 9, e87563. [Google Scholar] [CrossRef] [PubMed]
- Montagnana, M.; Benati, M.; Danese, E.; Giudici, S.; Perfranceschi, M.; Ruzzenenete, O.; Salvagno, G.L.; Bassi, A.; Gelati, M.; Paviati, E.; et al. Aberrant MicroRNA expression in patients with endometrial cancer. Int. J. Gynecol. Cancer 2017, 27, 459–466. [Google Scholar] [CrossRef]
- Wang, L.; Chen, Y.-J.; Xu, K.; Xu, H.; Shen, X.-Z.; Tu, R.-Q. Circulating microRNAs as a fingerprint for endometrial endometrioid adenocarcinoma. PLoS ONE 2014, 9, e110767. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Zhong, S.; Zhang, H.; Zhang, W.; Zhang, H.; Wu, X.; Chen, B. Prognostic value of MicroRNA-182 in cancers: A meta-analysis. Dis. Mark. 2015, 2015, 482146. [Google Scholar] [CrossRef]
- Zhang, X.L.; Pan, S.H.; Yan, J.J.; Xu, G. The prognostic value of microRNA-183 in human cancers: A meta-analysis. Medicine 2018, 97, e11213. [Google Scholar] [CrossRef]
- Lu, R.-L.; Li, J.-X.; Rong, L.-J.; Wu, Q. MiR-200a and miR-200b target PTEN to regulate the endometrial cancer cell growth in vitro. Asian Pac. J. Trop. Med. 2017, 10, 498–502. [Google Scholar]
- Zhuo, Z.; Yu, H. miR-205 inhibits cell growth by targeting AKT-mTOR signaling in progesterone-resistant endometrial cancer Ishikawa cells. Oncotarget 2017, 8, 28042–28051. [Google Scholar] [CrossRef]
- Hayes, M.P.; Wang, H.; Espinal-Witter, R.; Douglas, W.; Solomon, G.J.; Baker, S.J.; Ellenson, L.H. PIK3CA and PTEN mutations in uterine endometrioid carcinoma and complex atypical hyperplasia. Clin. Cancer Res. 2006, 12, 5932–5935. [Google Scholar] [CrossRef] [PubMed]
- Oda, K.; Stokoe, D.; Taketani, Y.; McCormick, F. High frequency of coexistent mutations ofPIK3CA and PTENGenes in endometrial carcinoma. Cancer Res. 2005, 65, 10669–10673. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhao, K.-N.; Li, R.; Shao, R.; Chen, C. Activation of PI3K/Akt/mTOR pathway and dual inhibitors of PI3K and mTOR in endometrial cancer. Curr. Med. Chem. 2014, 21, 3070–3080. [Google Scholar] [CrossRef] [PubMed]
- Weigelt, B.; Warne, P.H.; Lambros, M.B.; Reis-Filho, J.S.; Downward, J. PI3K pathway dependencies in endometrioid endometrial cancer cell lines. Clin. Cancer Res. 2013, 19, 3533–3544. [Google Scholar] [CrossRef] [PubMed]
- Devor, E.J.; Schickling, B.M.; Reyes, H.D.; Warrier, A.; Lindsay, B.; Goodheart, M.J.; Santillan, D.A.; Leslie, K.K. Cullin-5, a ubiquitin ligase scaffold protein, is significantly underexpressed in endometrial adenocarcinomas and is a target of miR-182. Oncol. Rep. 2016, 35, 2461–2465. [Google Scholar] [CrossRef] [Green Version]
- Xiong, H.; Chen, R.; Liu, S.; Lin, Q.; Chen, H.; Jiang, Q. MicroRNA-183 induces epithelial-mesenchymal transition and promotes endometrial cancer cell migration and invasion in by targeting CPEB1. J. Cell. Biochem. 2018, 119, 8123–8137. [Google Scholar] [CrossRef] [PubMed]
- Djati, M.S.; Rifa’i, M. Role of MicroRNAs in carcinogenesis that potential for biomarker of endometrial cancer. Ann. Med. Surg. 2016, 7, 9–13. [Google Scholar] [CrossRef]
- Chi, D.; Barakat, R.; Palayekar, M.; Levine, D.; Sonoda, Y.; Alektiar, K.; Brown, C.; Abu-Rustum, N. The incidence of pelvic lymph node metastasis by FIGO staging for patients with adequately surgically staged endometrial adenocarcinoma of endometrioid histology. Int. J. Gynecol. Cancer 2008, 18, 269–273. [Google Scholar] [CrossRef]
- Frumovitz, M.; Singh, D.K.; Meyer, L.; Smith, D.H.; Wertheim, I.; Resnik, E.; Bodurka, D.C. Predictors of final histology in patients with endometrial cancer. Gynecol. Oncol. 2004, 95, 463–468. [Google Scholar] [CrossRef]
- Phelippeau, J.; Canlorbe, G.; Bendifallah, S.; Naoura, I.; Lefevre, M.; Ballester, M.; Daraï, E. Preoperative diagnosis of tumor grade and type in endometrial cancer by pipelle sampling and hysteroscopy: Results of a French study. Surg. Oncol. 2016, 25, 370–377. [Google Scholar] [CrossRef]
- Eltabbakh, G.H.; Shamonki, J.; Mount, S.L. Surgical stage, final grade, and survival of women with endometrial carcinoma whose preoperative endometrial biopsy shows well-differentiated tumors. Gynecol. Oncol. 2005, 99, 309–312. [Google Scholar] [CrossRef] [PubMed]
- Agostini, M.; Knight, R.A. miR-34: From bench to bedside. Oncotarget 2014, 5, 872–881. [Google Scholar] [CrossRef] [PubMed]
- Navarro, F.; Lieberman, J. miR-34 and p53: New insights into a complex functional relationship. PLoS ONE 2015, 10. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-Q.; Ren, X.-Y.; He, Q.-M.; Xu, Y.-F.; Tang, X.-R.; Sun, Y.; Zeng, M.-S.; Kang, T.-B.; Liu, N.; Ma, J. MiR-34c suppresses tumor growth and metastasis in nasopharyngeal carcinoma by targeting MET. Cell Death Dis. 2015, 6, e1618. [Google Scholar] [CrossRef] [PubMed]
- Hagman, Z.; Haflidadottir, B.S.; Ansari, M.; Persson, M.; Bjartell, A.; Edsjö, A.; Ceder, Y. The tumour suppressor miR-34c targets MET in prostate cancer cells. Br. J. Cancer 2013, 109, 1271–1278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Welch, C.; Chen, Y.; Stallings, R.L. MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene 2007, 26, 5017–5022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, H.; Zhao, H.; Xiang, W. Expression level of human miR-34a correlates with glioma grade and prognosis. J. Neuro Oncol. 2013, 113, 221–228. [Google Scholar] [CrossRef]
- Yu, F.; Jiao, Y.; Zhu, Y.; Wang, Y.; Zhu, J.; Cui, X.; Liu, Y.; He, Y.; Park, E.Y.; Zhang, H.; et al. MicroRNA 34c gene down-regulation via DNA methylation promotes self-renewal and epithelial-mesenchymal transition in breast tumor-initiating cells. J. Biol. Chem. 2012, 287, 465–473. [Google Scholar] [CrossRef]
- Li, F.; Chen, H.; Huang, Y.; Zhang, Q.; Xue, J.; Liu, Z.; Zheng, F. miR-34c plays a role of tumor suppressor in HEC-1-B cells by targeting E2F3 protein. Oncol. Rep. 2015, 33, 3069–3074. [Google Scholar] [CrossRef]
- De Foucher, T.; Sbeih, M.; Uzan, J.; Bendifallah, S.; Lefevre, M.; Chabbert-Buffet, N.; Aractingi, S.; Uzan, C.; Alsalam, I.A.; Mitri, R.; et al. Identification of micro-RNA expression profile related to recurrence in women with ESMO low-risk endometrial cancer. J. Transl. Med. 2018, 16, 131. [Google Scholar] [CrossRef]
- Iguchi, H.; Kosaka, N.; Ochiya, T. Secretory microRNAs as a versatile communication tool. Commun. Integr. Boil. 2010, 3, 478–481. [Google Scholar] [CrossRef] [PubMed]
- Mestdagh, P.; Hartmann, N.; Baeriswyl, L.; Andreasen, D.; Bernard, N.; Chen, C.; Cheo, D.; D’Andrade, P.; DeMayo, M.; Dennis, L.; et al. Evaluation of quantitative miRNA expression platforms in the microRNA quality control (miRQC) study. Nat. Methods 2014, 11, 809–815. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-W.; Park, Y.-A.; Choi, J.-J.; Lee, Y.Y.; Kim, C.-J.; Choi, C.; Kim, T.-J.; Lee, N.W.; Kim, B.-G.; Bae, D.-S. The expression of the miRNA-200 family in endometrial endometrioid carcinoma. Gynecol. Oncol. 2011, 120, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Qiu, X.; Xu, J.; Guo, J.; Ammar, A.Y.; Kapetanakis, N.-I.; Duroux-Richard, I.; Unterluggauer, J.J.; Golob-Schwarzl, N.; Regeard, C.; Uzan, C.; et al. Advanced microRNA-based cancer diagnostics using amplified time-gated FRET. Chem. Sci. 2018, 9, 8046–8055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kottaridi, C.; Spathis, A.; Margari, N.; Koureas, N.; Terzakis, E.; Chrelias, C.; Pappas, A.; Bilirakis, E.; Pouliakis, A.; Panayiotides, I.J.; et al. Evaluation analysis of miRNAs overexpression in liquid-based cytology endometrial samples. J. Cancer 2017, 8, 2699–2703. [Google Scholar] [CrossRef] [PubMed]
- Lawrie, C.H.; Gal, S.; Dunlop, H.M.; Pushkaran, B.; Liggins, A.P.; Pulford, K.; Banham, A.H.; Pezzella, F.; Boultwood, J.; Wainscoat, J.S.; et al. Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br. J. Haematol. 2008, 141, 672–675. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Bonnefoi, H.; Diebold-Berger, S.; Lyautey, J.; Lederrey, C.; Faltin-Traub, E.; Stroun, M.; Anker, P. Detecting tumor-related alterations in plasma or serum DNA of patients diagnosed with breast cancer. Clin. Cancer Res. 1999, 5, 2297–2303. [Google Scholar]
- Resnick, K.E.; Alder, H.; Hagan, J.P.; Richardson, D.L.; Croce, C.M.; Cohn, D.E. The detection of differentially expressed microRNAs from the serum of ovarian cancer patients using a novel real-time PCR platform. Gynecol. Oncol. 2009, 112, 55–59. [Google Scholar] [CrossRef]
- Profiling. Profiling of microRNA in Blood, Serum/Plasma. Available online: http://www.exiqon.com/ls/Documents/Scientific/microRNA-serum-plasma-guidelines.pdf (accessed on 1 November 2018).
- Heneghan, H.M.; Miller, N.; Kerin, M.J. MiRNAs as biomarkers and therapeutic targets in cancer. Curr. Opin. Pharmacol. 2010, 10, 543–550. [Google Scholar] [CrossRef]
- Bernstein, E.; Kim, S.Y.; Carmell, M.A.; Murchison, E.P.; Alcorn, H.; Li, M.Z.; Mills, A.A.; Elledge, S.J.; Anderson, K.V.; Hannon, G.J. Dicer is essential for mouse development. Nat. Genet. 2003, 35, 215–217. [Google Scholar] [CrossRef]
- Krützfeldt, J.; Rajewsky, N.; Braich, R.; Rajeev, K.G.; Tuschl, T.; Manoharan, M.; Stoffel, M. Silencing of microRNAs in vivo with ‘antagomirs’. Nature 2005, 438, 685–689. [Google Scholar] [CrossRef] [PubMed]
- Weiler, J.; Hunziker, J.; Hall, J. Anti-miRNA oligonucleotides (AMOs): Ammunition to target miRNAs implicated in human disease? Gene Ther. 2006, 13, 496–502. [Google Scholar] [CrossRef] [PubMed]
- Croce, C.M. Causes and consequences of microRNA dysregulation in cancer. Nat. Rev. Genet. 2009, 10, 704–714. [Google Scholar] [CrossRef] [PubMed]
- Visone, R.; Croce, C.M. MiRNAs and cancer. Am. J. Pathol. 2009, 174, 1131–1138. [Google Scholar] [CrossRef]
- Iorio, M.V.; Croce, C.M. MicroRNAs in cancer: Small molecules with a huge impact. J. Clin. Oncol. 2009, 27, 5848–5856. [Google Scholar] [CrossRef] [PubMed]
- Esquela-Kerscher, A.; Slack, F.J. Oncomirs—microRNAs with a role in cancer. Nat. Rev. Cancer 2006, 6, 259–269. [Google Scholar] [CrossRef] [PubMed]
- Saumet, A.; Mathelier, A.; Lecellier, C.-H. The potential of MicroRNAs in personalized medicine against cancers. BioMed Res. Int. 2014, 2014, 642916. [Google Scholar] [CrossRef]
Reference | Sample Type | Case Sample | Control Sample | miR Increased (Case vs. Control) | miR Decreased (Case vs. Control) | Detection Technique |
---|---|---|---|---|---|---|
Liu Y. et al., 2018 [28] | - | Endometrioid endometrial cancers (n = 30): 15 FIGO IA, 15 FIGO Ib | Adjacent healthy endometrial tissue (n = 30) | - | miR-101 | RT-qPCR |
Liu J. et al., 2018 [29] | Endometrial cancers (n = 25) | Endometrial tissue of healthy cases (n = 15) | - | miR-139-5p | RT-qPCR | |
Ma J. et al., 2018 [30] | Fresh Tissue, Paraffin | Endometrial cancers (n = 80) | Endometrial tissue of healthy cases (n = 56) | miR-302a-5p miR-367-3p | RT-QPCR | |
Huang et al., 2018 [31] | −80 °C | Endometrial cancers (n = 20) | Endometrial tissue of healthy cases (n = 20) | miR-106b | - | Array RT-qPCR |
Fang et al., 2018 [51] | - | Endometrial cancers (n = 69): 33 N+ 36 N− | Endometrial tissue of healthy cases (n = 10) | miR-182, miR-183, miR-153, miR-27a, miR-96 | - | RT-qPCR |
Ushakov et al., 2018 [32] | - | Endometrioid endometrial cancers FIGO I-II (n = 32) | Adjacent healthy endometrial tissue (n = 32) | - | miR-29c, miR-31, miR-185, miR-652 | RT-qPCR |
Xie et al., 2017 [33] | Paraffin | Endometrioid endometrial cancers (n = 30): 12 FIGO I, 7 FIGO II, 11 FIGO III 15 Grade 1, 13 Grade 2, 2 Grade 3 | Adjacent healthy endometrial tissue (n = 30) | - | miR-216b | RT-qPCR |
Zhang S. et al., 2017 [34] | Paraffin | Endometrial cancers (n = 37): 21 FIGO I, 5 FIGO II, 4 FIGO III 5 FIGO IV‘ 25 Grade 1, 7 Grade 2, 5 Grade 3 | Endometrial tissue of healthy cases (n = 22) | - | miR-101 | RT-qPCR |
Chen et al., 2017 [35] | −80 °C | Endometrial cancers (n = 15) | Hyperplasic endometrial tissue (n = 15) Endometrial tissue of healthy cases (n = 15) | miR-5787, -6749-5p, -1202 | miR-338-3p, miR-449a, miR-196a | Array RT-qPCR |
He et al., 2017 [36] | Paraffin −80 °C | Endometrial cancers (n = 68): 54 endometrioid, 14 others 55 FIGO I–II, 13 FIGO III–IV 50 Grade 1–2, 18 Grade 3 59 N+, 9 N− | Endometrial tissue of healthy cases (n = 20) | miR-944 | - | RT-qPCR |
Wang Z. et al., 2017 [37] | - | Endometrial cancers | Endometrial tissue of healthy cases (n = 15) | miR-522, miR-139-3p, miR-520c-5p, miR-518d-5p, miR-146b-5p, miR-34a, miR-526a, miR-193a-3p, miR-221, miR-4674 | miR-760 | Array RT-qPCR |
Cai et al., 2016 [38] | −80 °C | Endometrial cancers (n = 24) | Adjacent healthy endometrial tissue (n = 24) | miR-337 | - | RT-qPCR |
Zhao et al., 2016 [39] | −70 °C | Endometrial cancers (n = 11) | Adjacent healthy endometrial tissue (n = 11) | - | miR-126 | RT-qPCR |
Yoneyama et al., 2015 [40] | Fresh Tissue | Endometrioid endometrial cancers I (n = 7): IA Grade 1–2, IB Grade 1–3, IIIA Grade 1, IIIC Grade 2 | Adjacent healthy endometrial tissue (n = 7) | miR-200a, -200b, -429 | - | Array RT-qPCR |
He et al., 2015 [41] | Paraffin | Endometrioid endometrial cancers (n = 47): 38 FIGO I–II, 9 FIGO III–IV; 32 Grade 1, 15 Grade 2–3, 42 N, 5 N+ | Hyperplasic endometrial tissue (n = 18), Endometrial tissue of healthy cases (n = 13) | miR-181a | - | RT-qPCR |
Kong et al., 2014 [42] | - | Endometrioid endometrial cancers (n = 21) | Endometrial tissue of healthy cases (n = 14) | - | miR-30c | RT-qPCR |
Jurcevic et al., 2014 [43] | Paraffin | Endometrial cancers (n = 30): 10 FIGO I, 10 FIGO II, 10 FIGO III | Endometrial tissue of healthy cases (n = 20) | miR-183, -182, 429, -135a, -9-3p, -9, 135b, -200a-5p, -218, -18a-3p | miR-1247, -199b-5p, -214, -370, -424-3p, -376c, -542-5p, -758, -377, 337-5p | RT-qPCR |
Tsukamoto et al., 2014 [13] | - | Endometrioid endometrial cancers (n = 28): 4N+, 21 N−, 7 FIGO IA Grade 1 | Endometrial tissue of healthy cases (n = 14) | miR-499, -135b, -205 | miR-10b, -195, -30a-5p, -30a-3p, -21 | RNAseq RT-qPCR |
Xiong et al., 2014 [52] | −80 °C | Endometrioid endometrial cancers (n = 15) | Adjacent healthy endometrial tissue (n =15) | miR-181c-3p, -25-5p | miR-99a-3p, -96a-5p, -328-3p, -337-3p, let-7c-5p | RNAseq RT-qPCR |
Xu et al., 2013 [44] | −80 °C | Endometrioid endometrial cancers (n = 71) | Endometrial tissue of healthy cases (n = 5) Adjacent healthy endometrial tissue (n = 10) Hyperplasic endometrial tissue (n = 9) | - | miR-503 | RT-qPCR |
Torres et al., 2013 [14] | Paraffin −80 °C | Endometrioid endometrial cancers (n = 77): 50 FIGO I, 5 FIGO II, 20 FIGO III, 2 FIGO IV 29 Grade 1, 30 Grade 2, 18 Grade 3 29 N+, 15 N− | Endometrial tissue of healthy cases (n = 31) | miR-9, -141, -183, -200a, -200a*, -200b, -200b*, -200c, -203, -205, -429, -96, -182, -135b | miR-410 | Array RT-qPCR |
Torres et al., 2012 [24] | Paraffin −80 °C | Endometrioid endometrial cancers (n = 77): 50 FIGO I, 5 FIGO II, 20 FIGO III, 2 FIGO IV 29 Grade 1, 30 Grade 2, 18 Grade 3 29 N+, 15 N− | Endometrial tissue of healthy cases (n = 31) | - | miR-99a, -100, -199b | RT-qPCR |
Lee et al., 2012 [45] | Paraffin | Endometrial cancers (n = 22): 15 FIGO IA, 5 FIGO IB, 2 FIGO IIIC1 | Endometrial tissue of healthy cases (n = 10) Hyperplasic endometrial tissue (n = 21) Atypical hyperplasic endometrial tissue (n = 22) | miR-182, -183, -200a, -200c, -205 | - | RT-qPCR |
Karaayvaz et al., 2012 [23] | Paraffin | Endometrial cancers (n = 48): 24 endometrioid, 13 serous, 5 clear cell, 6 others 26 FIGO I, 4 FIGO II, 6 FIGO III, 12 FIGO IV | Adjacent healthy endometrial tissue (n = 48) | miR-200c miR-205 | - | RT-qPCR |
Snowdon et al., 2011 [46] | Paraffin | Endometrioid endometrial cancers (n = 19): 9 FIGO IA, 4 FIGO IB, 1 FIGO II. | Endometrial tissue of healthy cases (n = 10) Atypical hyperplasic endometrial tissue (n = 14) | miR-9/-9*, -18a, -96, -141, -146a, -200a/b/b*/c, -203, -205, -210, -421, -429, -516a-5p, -605, -614, -936 | miR-10b*, -23a*, -100, -127-3p, -152, -199b-3p, -199b-5p, -370, 376a/c, -381, -410, -424, -424*, -431, -432, -503, -542-3/5p, -596, 610,630,632, 760 | Array RT-qPCR |
Cohn et al., 2010 [25] | Paraffin | Endometrial cancers (n = 141): 121 endometrioid FIGO I (90 Grade 1, 27 Grade 2, 4 Grade 3), 3 endometrioid FIGO III, 7 serous FIGO III, 4 endometrioid FIGO IV 6 serous FIGO IV | Endometrial tissue of healthy cases: 10 pre-menopausal tissues 10 post-menopausal tissues | miR-9, -19b; -146, -181c, -183, -200c, -205, -223, -423, -425 | let-7a, miR-32, -33b, -369, -409, -424, -431, -451, -496, -503, -516 | Array RT-qPCR |
Ratner et al., 2010 [47] | Paraffin −80 °C | Endometrial cancers (n = 90): 57 endometrioid (27 FIGO I, 12 FIGO II, 18 FIGO III), 27 serous 6 carcinosarcoma. | Endometrial tissue of healthy cases (n = 5) | miR-182, -183, -200a, -205, -34a, -572, -622, -650 | miR-411, -487b | Array RT-qPCR |
Chung et al., 2009 [48] | −80 °C | Endometrioid endometrial cancers (n = 30): 25 FIGO I–II, 5 FIGO III 19 Grade 1, 11 Grade 2 3 N+, 27 N− | Endometrial tissue of healthy cases (n = 22): 7 in proliferating phase 7 in the secretory phase 8 post-menopausal tissues | miR-10a, -17-5p, -23a*, -25, -28, -34a, -95, -103, -106a, -107, -130b, -141, -151, -155, -182, -183, -184, -191, -194, -200a/c, -203, -205, -210, -215, -223, -301, -325, -326, -330 | - | RT-qPCR |
Wu et al., 2009 [49] | −80 °C | Endometrioid endometrial cancers (n = 10): 5 FIGO I, 5 FIGO II | Adjacent healthy endometrial tissue (n = 10) | miR-200c, -449, -205, -182, -429, -200b, -96, -31, -141, -200a, -363, -210, -432, -203, -10a, -155, -142-5p | miR-204, -193a, -368, -133b, -193b, -99b | Array RT-qPCR |
Boren et al., 2008 [50] | −80 °C | Endometrioid endometrial cancers (n = 37) | Endometrial tissue of healthy cases (n = 20) Atypical hyperplasic endometrial tissue (n = 4) | Let-7c, miR-103, -106a, -107, -181a, -185, -210, -423 | let 7i, miR-30c, -152, -193, -221 | Puce RT-qPCR |
Reference | Sample Type | Sample Case | Conclusion |
---|---|---|---|
Wang Y. et al., 2018 [16] | - | Endometrial cancers (n = 348) | The signature of 6 miRs (miR-15a, miR-142-3p, hsa-miR-142-5P, miR-3170, miR-1976, miR-146a) is associated with a significant decrease in OS (HR = 0.446; 95% CI: 0.218–0.913) |
Yan et al., 2018 [17] | Paraffin | Endometrial cancers (n = 156): 87 FIGO I, 35 FIGO II, 23 FIGO III, 11 FIGO IV | Increased expression of miR-183-5p is associated with improved prognosis of OS |
Deng et al., 2017 [18] | −80 °C | Endometrioid endometrial cancers (n = 90) | A decrease in miR-202 expression is associated with a significant decrease in OS (p < 0.05) |
Tsukamoto et al., 2014 [13] | - | Endometrioid endometrial cancers (n = 28): 7 FIGO IA Grade 1, 21 other grades 4 N+, 21 N− | The expression levels of miR-135b, -205, -21, -30a-3p, -499, -10b, -30a-5p, and -195 are not correlated with RFS |
Bao et al., 2013 [19] | - | Endometrioid endometrial cancers from Cancer Genome Atlas database (n = 279) | Increased expression of miR-204-5p is associated with a nonsignificant improvement in OS (OR = 1.32, p = 0.12) |
Dong et al., 2013 [20] | Paraffin | Endometrial cancers followed for 15 years (n = 32): 15 endometrioid, 8 serous, 5 clear cell, 4 others, -18 FIGO I, 1 FIGO II, 5 FIGO III, 8 FIGO IV | Increased expression of miR-130b is associated with better OS (p = 0.05) |
Zhang et al., 2013 [21] | Paraffin | Endometrial cancers (n = 107): 85 endometrioid, 22 others 30 Grade 1, 39 Grade 2, 16 Grade 3 18 LVSI+, 87 LVSI− 74 FIGO I, 17 FIGO II, 13 FIGO III, 1 FIGO IV 6 N+, 42 N− | The decrease in expression of miR-145 and miR-143 is associated with a nonsignificant decrease in OS (p > 0.05) |
Torres et al., 2013 [14] | Paraffin −80 °C | Endometrioid endometrial cancers (n = 77): 29 Grade 1, 30 Grade 2, 18 Grade 3 15 N+, 29 N− | The expression levels of miR-1228/miR-200c/miR-429 and miR-1228/miR-429 are respectively associated with OS (HR: 2.978, 95% CI: 1.580–5.614, p < 0.001) and RFS (HR: 4.149, 95% CI: 2.193–7.852, p < 0.001) |
Zhai et al., 2013 [22] | Paraffin | Endometrial cancers followed for 15 years (n = 32): 15 endometrioid, 8 serous, 5 clear cell, 4 others 17 FIGO I, 1 FIGO II, 5 FIGO III, 9 FIGO IV | Increased expression of miR-194 is associated with better OS (p = 0.007) |
Karaayvaz et al., 2012 [23] | Paraffin | Endometrial cancers (n = 48): 24 endometrioid, 13 serous, 5 clear cell, 6 others 26 FIGO I, 4 FIGO II, 6 FIGO III, 12 FIGO IV | Increased expression of miR-205 is associated with poorer OS (p = 0.03) Expression of miR-200c is not correlated with OS (p = 0.58) |
Torres et al., 2012 [24] | Paraffin −80 °C | Endometrioid endometrial cancers (n = 77): 29 Grade 1, 30 Grade 2, 18 Grade 3 50 FIGO I, 5 FIGO II, 15 FIGO III, 2 FIGO IV 29 N+, 15 N− | Increased expression of miR-100 is associated with better OS (p = 0.02) |
Cohn et al., 2010 [25] | Paraffin | Endometrial cancers (n = 141): 128 endometrioid: 121 FIGO I, 3 FIGO III, 4 FIGO IV 13 serous: 7 FIGO III, 6 FIGO IV | Increased expression of miR-199a-5p is associated with better OS (p = 0.007) and better RFS (p = 0.048) |
Hiroki et al., 2010 [26] | −80 °C | Serous adenocarcinoma (n = 21): 8 FIGO I, 2 FIGO II, 3 FIGO III, 8 FIGO IV 5 LVSI+, 16 LVSI− | The subexpressions of miR-152, -29b and -455-5p are associated with poorer OS and RFS (p < 0.05). Subexpressions of miR-101, -10b *, and -139-5p are associated with poorer OS (p < 0.05) |
Huang et al., 2009 [27] | - | Endometrial cancers (n = 117) | Methylation of the miR-129-2 gene is associated with poorer OS (p = 0.039) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delangle, R.; De Foucher, T.; Larsen, A.K.; Sabbah, M.; Azaïs, H.; Bendifallah, S.; Daraï, E.; Ballester, M.; Mehats, C.; Uzan, C.; et al. The Use of microRNAs in the Management of Endometrial Cancer: A Meta-Analysis. Cancers 2019, 11, 832. https://doi.org/10.3390/cancers11060832
Delangle R, De Foucher T, Larsen AK, Sabbah M, Azaïs H, Bendifallah S, Daraï E, Ballester M, Mehats C, Uzan C, et al. The Use of microRNAs in the Management of Endometrial Cancer: A Meta-Analysis. Cancers. 2019; 11(6):832. https://doi.org/10.3390/cancers11060832
Chicago/Turabian StyleDelangle, Romain, Tiphaine De Foucher, Annette K. Larsen, Michèle Sabbah, Henri Azaïs, Sofiane Bendifallah, Emile Daraï, Marcos Ballester, Céline Mehats, Catherine Uzan, and et al. 2019. "The Use of microRNAs in the Management of Endometrial Cancer: A Meta-Analysis" Cancers 11, no. 6: 832. https://doi.org/10.3390/cancers11060832
APA StyleDelangle, R., De Foucher, T., Larsen, A. K., Sabbah, M., Azaïs, H., Bendifallah, S., Daraï, E., Ballester, M., Mehats, C., Uzan, C., & Canlorbe, G. (2019). The Use of microRNAs in the Management of Endometrial Cancer: A Meta-Analysis. Cancers, 11(6), 832. https://doi.org/10.3390/cancers11060832