The Importance of Gender-Related Anticancer Research on Mitochondrial Regulator Sodium Dichloroacetate in Preclinical Studies In Vivo
Abstract
:1. Introduction
2. Methods
3. Gender-Related DCA Effect on Pyruvate Dehydrogenase Deficiency
4. Oxidative Phosphorylation of Pyruvate and Gender
5. The DCA Effect on the Mitochondrial ROS Generation and Gender
6. The DCA Effect on Na–K–2Cl Cotransporter and Gender
7. Preclinical Research of DCA Pharmacology
7.1. Pharmacokinetics and Bioavailability
7.2. DCA Metabolism
7.3. Side Effects of DCA
7.4. DCA Hepatocancerogenic Effect
8. Experimental Research of DCA Monotherapy Efficacy in Cancer In Vivo
9. DCA as a Gender-Related Modulator in Cancerogenesis
10. Experimental DCA Combination with Authorized Therapy
11. Discussion
12. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Stacpoole, P.W. Therapeutic Targeting of the Pyruvate Dehydrogenase Complex/Pyruvate Dehydrogenase Kinase (PDC/PDK) Axis in Cancer. JNCI J. Natl. Cancer Inst. 2017, 109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michelakis, E.D.; Webster, L.; Mackey, J.R. Dichloroacetate (DCA) as a potential metabolic-targeting therapy for cancer. Br. J. Cancer 2008, 99, 989–994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niewisch, M.R.; Kuçi, Z.; Wolburg, H.; Sautter, M.; Krampen, L.; Deubzer, B.; Handgretinger, R.; Bruchelt, G. Influence of Dichloroacetate (DCA) on Lactate Production and Oxygen Consumption in Neuroblastoma Cells: Is DCA a Suitable Drug for Neuroblastoma Therapy? Cell. Physiol. Biochem. 2012, 29, 373–380. [Google Scholar] [CrossRef] [PubMed]
- Roche, T.E.; Baker, J.C.; Yan, X.; Hiromasa, Y.; Gong, X.; Peng, T.; Dong, J.; Turkan, A.; Kasten, S.A. Distinct regulatory properties of pyruvate dehydrogenase kinase and phosphatase isoforms. Prog. Nucleic Acid Res. Mol. Biol. 2001, 70, 33–75. [Google Scholar] [PubMed]
- Kankotiac, S.; Stacpoole, P.W. Dichloroacetate and cancer: New home for an orphan drug? Biochim. Biophys. Acta-Rev. Cancer 2014, 1846, 617–629. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Dwarakanath, B. Modulation of Immuno-biome during radio-sensitization of tumors by glycolytic inhibitors. Curr. Med. Chem. 2018, 25. [Google Scholar] [CrossRef] [PubMed]
- Ward, N.P.; Poff, A.M.; Koutnik, A.P.; D’Agostino, D.P.; Zhang, J. (Eds.) Complex I inhibition augments dichloroacetate cytotoxicity through enhancing oxidative stress in VM-M3 glioblastoma cells. PLoS ONE 2017, 12, e0180061. [Google Scholar] [CrossRef]
- Stanevičiūtė, J.; Juknevičienė, M.; Palubinskienė, J.; Balnytė, I.; Valančiūtė, A.; Vosyliūtė, R.; Sužiedėlis, K.; Lesauskaitė, V.; Stakišaitis, D. Sodium Dichloroacetate Pharmacological Effect as Related to Na–K–2Cl Cotransporter Inhibition in Rats. Dose-Response 2018, 16. [Google Scholar] [CrossRef] [PubMed]
- Verma, A.; Lam, Y.M.; Leung, Y.C.; Hu, X.; Chen, X.; Cheung, E.; Tam, K.Y. Combined use of arginase and dichloroacetate exhibits anti-proliferative effects in triple negative breast cancer cells. J. Pharm. Pharmacol. 2018, 71, 306–315. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Zhang, S.L.; Hu, X.; Tam, K.Y. Inhibition of pyruvate dehydrogenase kinase 1 enhances the anti-cancer effect of EGFR tyrosine kinase inhibitors in non-small cell lung cancer. Eur. J. Pharmacol. 2018, 838, 41–52. [Google Scholar] [CrossRef]
- Heshe, D.; Hoogestraat, S.; Brauckmann, C.; Karst, U.; Boos, J.; Lanvers-Kaminsky, C. Dichloroacetate metabolically targeted therapy defeats cytotoxicity of standard anticancer drugs. Cancer Chemother. Pharmacol. 2011, 67, 647–655. [Google Scholar] [CrossRef] [PubMed]
- U.S. Food and Drug Administration. Search Orphan Drug Designations and Approvals. Available online: https://www.accessdata.fda.gov/scripts/opdlisting/oopd/listResult.cfm (accessed on 10 June 2019).
- Chu, Q.S.C.; Sangha, R.; Spratlin, J.; Vos, L.J.; Mackey, J.R.; McEwan, A.J.B.; Venner, P.; Michelakis, E.D. A phase I open-labeled, single-arm, dose-escalation, study of dichloroacetate (DCA) in patients with advanced solid tumors. Investig. New Drugs 2015, 33, 603–610. [Google Scholar] [CrossRef]
- Garon, E.B.; Christofk, H.R.; Hosmer, W.; Britten, C.D.; Bahng, A.; Crabtree, M.J.; Hong, C.S.; Kamranpour, N.; Pitts, S.; Kabbinavar, F.; et al. Dichloroacetate should be considered with platinum-based chemotherapy in hypoxic tumors rather than as a single agent in advanced non-small cell lung cancer. J. Cancer Res. Clin. Oncol. 2014, 140, 443–452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunbar, E.M.; Coats, B.S.; Shroads, A.L.; Langaee, T.; Lew, A.; Forder, J.R.; Shuster, J.J.; Wagner, D.A.; Stacpoole, P.W. Phase 1 trial of dichloroacetate (DCA) in adults with recurrent malignant brain tumors. Investig. New Drugs 2014, 32, 452–464. [Google Scholar] [CrossRef] [PubMed]
- ICH Guideline S6 (R1)-Preclinical Safety Evaluation of Biotechnology-Derived Pharmaceuticals Part I (Parent Guideline) Preclinical Safety Evaluation of Biotechnology-Derived Pharmaceuticals. 2011. Available online: http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500002828.pdf (accessed on 10 June 2019).
- U.S. FDA. U.S. FDA Guidelines: Guideline for the Study and Evaluation of Gender Differences in the Cinical Evaluation of the Drugs; U.S. FDA: Rockwell, MD, USA, 1993; Volume 58, p. 139. Available online: https://www.fda.gov/downloads/ScienceResearch/SpecialTopics/WomensHealthResearch/UCM131204.pdf (accessed on 10 June 2019).
- Stacpoole, P.W. The pharmacology of dichloroacetate. Metabolism 1989, 38, 1124–1144. [Google Scholar] [CrossRef]
- Anderson, W.B.; Board, P.G.; Gargano, B.; Anders, M.W. Inactivation of glutathione transferase zeta by dichloroacetic acid and other fluorine-lacking alpha-haloalkanoic acids. Chem. Res. Toxicol. 1999, 12, 1144–1149. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.S.; Roche, T.E. Molecular biology and biochemistry of pyruvate dehydrogenase complexes. FASEB J. 1990, 4, 3224–3233. [Google Scholar] [CrossRef] [PubMed]
- Brown, R.M.; Dahl, H.H.M.; Brown, G.K. X-Chromosome localization of the functional gene for the E1α subunit of the human pyruvate dehydrogenase complex. Genomics 1989, 4, 174–181. [Google Scholar] [CrossRef]
- Dahl, H.H. Pyruvate dehydrogenase E1 alpha deficiency: Males and females differ yet again. Am. J. Hum. Genet. 1995, 56, 553–557. [Google Scholar]
- Linn, T.C.; Pettit, F.H.; Reed, L.J. Alpha-keto acid dehydrogenase complexes. X. Regulation of the activity of the pyruvate dehydrogenase complex from beef kidney mitochondria by phosphorylation and dephosphorylation. Proc. Natl. Acad. Sci. USA 1969, 62, 234–241. [Google Scholar] [CrossRef]
- Robinson, B.H.; Chun, K.; Mackay, N.; Otulakowski, G.; Petrova-Benedict, R.; Willard, H. Isolated and combined deficiencies of the alpha-keto acid dehydrogenase complexes. Ann. N. Y. Acad. Sci. 1989, 573, 337–346. [Google Scholar] [CrossRef] [PubMed]
- Lissens, W.; De Meirleir, L.; Seneca, S.; Liebaers, I.; Brown, G.K.; Brown, R.M.; Ito, M.; Naito, E.; Kuroda, Y.; Kerr, D.S.; et al. Mutations in the X-linked pyruvate dehydrogenase (E1) subunit gene (PDHA1) in patients with a pyruvate dehydrogenase complex deficiency. Hum. Mutat. 2000, 15, 209–219. [Google Scholar] [CrossRef]
- Mangal, N.; James, M.O.; Stacpoole, P.W.; Schmidt, S. Model Informed Dose Optimization of Dichloroacetate for the Treatment of Congenital Lactic Acidosis in Children. J. Clin. Pharmacol. 2018, 58, 212–220. [Google Scholar] [CrossRef] [PubMed]
- Stacpoole, P.W. The dichloroacetate dilemma: Environmental hazard versus therapeutic goldmine both or neither? Environ. Health Perspect. 2011, 119, 155–158. [Google Scholar] [CrossRef] [PubMed]
- Gaignard, P.; Savouroux, S.; Liere, P.; Pianos, A.; Thérond, P.; Schumacher, M.; Slama, A.; Guennoun, R. Effect of Sex Differences on Brain Mitochondrial Function and Its Suppression by Ovariectomy and in Aged Mice. Endocrinology 2015, 156, 2893–2904. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.; Irwin, R.; Chen, S.; Hamilton, R.; Cadenas, E.; Brinton, R.D. Ovarian hormone loss induces bioenergetic deficits and mitochondrial β-amyloid. Neurobiol. Aging 2012, 33, 1507–1521. [Google Scholar] [CrossRef] [PubMed]
- Irwin, R.W.; Yao, J.; Ahmed, S.S.; Hamilton, R.T.; Cadenas, E.; Brinton, R.D. Medroxyprogesterone acetate antagonizes estrogen up-regulation of brain mitochondrial function. Endocrinology 2011, 152, 556–567. [Google Scholar] [CrossRef] [PubMed]
- Irwin, R.W.; Yao, J.; To, J.; Hamilton, R.T.; Cadenas, E.; Brinton, R.D. Selective oestrogen receptor modulators differentially potentiate brain mitochondrial function. J. Neuroendocrinol. 2012, 24, 236–248. [Google Scholar] [CrossRef] [PubMed]
- Nilsen, J.; Irwin, R.W.; Gallaher, T.K.; Brinton, R.D. Estradiol In Vivo Regulation of Brain Mitochondrial Proteome. J. Neurosci. 2007, 27, 14069–14077. [Google Scholar] [CrossRef]
- Vijay, V.; Han, T.; Moland, C.L.; Kwekel, J.C.; Fuscoe, J.C.; Desai, V.G.; Marais, G.A. (Eds.) Sexual Dimorphism in the Expression of Mitochondria-Related Genes in Rat Heart at Different Ages. PLoS ONE 2015, 10, e0117047. [Google Scholar]
- Chen, J.Q.; Brown, T.R.; Russo, J. Regulation of energy metabolism pathways by estrogens and estrogenic chemicals and potential implications in obesity associated with increased exposure to endocrine disruptors. Biochim. Biophys. Acta 2009, 1793, 1128–1143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sugden, M.C.; Holness, M.J. Recent advances in mechanisms regulating glucose oxidation at the level of the pyruvate dehydrogenase complex by PDKs. Am. J. Physiol. Metab. 2003, 284, E855–E862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lenaz, G.; Genova, M.L. Structure and Organization of Mitochondrial Respiratory Complexes: A New Understanding of an Old Subject. Antioxid. Redox Signal. 2010, 12, 961–1008. [Google Scholar] [CrossRef] [PubMed]
- Murphy, M.P. How mitochondria produce reactive oxygen species. Biochem. J. 2009, 417, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Letts, J.A.; Fiedorczuk, K.; Sazanov, L.A. The architecture of respiratory supercomplexes. Nature 2016, 537, 644–648. [Google Scholar] [CrossRef] [PubMed]
- Korge, P.; John, S.A.; Calmettes, G.; Weiss, J.N. Reactive oxygen species production induced by pore opening in cardiac mitochondria: The role of complex II. J. Biol. Chem. 2017, 292, 9896–9905. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.Q.; Cammarata, P.R.; Baines, C.P.; Yager, J.D. Regulation of mitochondrial respiratory chain biogenesis by estrogens/estrogen receptors and physiological, pathological and pharmacological implications. Biochim. Biophys. Acta 2009, 1793, 1540–1570. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Cuenca, S.; Monjo, M.; Gianotti, M.; Proenza, A.M.; Roca, P. Expression of mitochondrial biogenesis-signaling factors in brown adipocytes is influenced specifically by 17β-estradiol, testosterone, and progesterone. Am. J. Physiol. Metab. 2007, 292, E340–E346. [Google Scholar] [CrossRef]
- Yao, J.; Brinton, R.D. Estrogen regulation of mitochondrial bioenergetics: Implications for prevention of Alzheimer’s disease. Adv. Pharmacol. 2012, 64, 327–371. [Google Scholar]
- Sandhir, R.; Sethi, N.; Aggarwal, A.; Khera, A. Coenzyme Q10 treatment ameliorates cognitive deficits by modulating mitochondrial functions in surgically induced menopause. Neurochem. Int. 2014, 74, 16–23. [Google Scholar] [CrossRef]
- Yan, L.; Ge, H.; Li, H.; Lieber, S.; Natividad, F.; Resuello, R.; Kim, S.; Akeju, S.; Sun, A.; Loo, K.; et al. Gender-specific proteomic alterations in glycolytic and mitochondrial pathways in aging monkey hearts. J. Mol. Cell. Cardiol. 2004, 37, 921–929. [Google Scholar] [CrossRef] [PubMed]
- Santidrian, A.F.; Matsuno-Yagi, A.; Ritland, M.; Seo, B.B.; LeBoeuf, S.E.; Gay, L.J.; Yagi, T.; Felding-Habermann, B. Mitochondrial complex I activity and NAD+/NADH balance regulate breast cancer progression. J. Clin. Investig. 2013, 123, 1068–1081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christensen, C.E.; Karlsson, M.; Winther, J.R.; Jensen, P.R.; Lerche, M.H. Non-invasive In-cell Determination of Free Cytosolic [NAD+]/[NADH] Ratios Using Hyperpolarized Glucose Show Large Variations in Metabolic Phenotypes. J. Biol. Chem. 2014, 289, 2344–2352. [Google Scholar] [CrossRef] [PubMed]
- Goldstone, A.D.; Koenig, H.; Lu, C.Y. Androgens regulate cell growth, lysosomal hydrolases and mitochondrial cytochrome c oxidase in mouse aorta. Biochim. Biophys. Acta 1981, 673, 170–176. [Google Scholar] [CrossRef]
- Miller, W.L. Steroid hormone synthesis in mitochondria. Mol. Cell. Endocrinol. 2013, 379, 62–73. [Google Scholar] [CrossRef] [PubMed]
- Irwin, R.W.; Yao, J.; Hamilton, R.T.; Cadenas, E.; Brinton, R.D.; Nilsen, J. Progesterone and estrogen regulate oxidative metabolism in brain mitochondria. Endocrinology 2008, 149, 3167–3175. [Google Scholar] [CrossRef] [PubMed]
- Turrens, J.F.; Boveris, A. Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem. J. 1980, 191, 421–427. [Google Scholar] [CrossRef]
- Speijer, D.; Manjeri, G.R.; Szklarczyk, R. How to deal with oxygen radicals stemming from mitochondrial fatty acid oxidation. Philos. Trans. R. Soc. B. Biol. Sci. 2014, 369, 20130446. [Google Scholar] [CrossRef] [Green Version]
- Jackson, V.N.; Halestrap, A.P. The kinetics, substrate, and inhibitor specificity of the monocarboxylate (lactate) transporter of rat liver cells determined using the fluorescent intracellular pH indicator, 2′,7′-bis(carboxyethyl)-5(6)-carboxyfluorescein. J. Biol. Chem. 1996, 271, 861–868. [Google Scholar] [CrossRef]
- Dai, Y.; Xiong, X.; Huang, G.; Liu, J.; Sheng, S.; Wang, H.; Qin, W. Dichloroacetate enhances adriamycin-induced hepatoma cell toxicity in vitro and in vivo by increasing reactive oxygen species levels. PLoS ONE 2014, 9, e92962. [Google Scholar] [CrossRef]
- Hassoun, E.; Kariya, C.; Williams, F.E. Dichloroacetate-induced developmental toxicity and production of reactive oxygen species in zebrafish embryos. J. Biochem. Mol. Toxicol. 2005, 19, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Verbon, E.H.; Post, J.A.; Boonstra, J. The influence of reactive oxygen species on cell cycle progression in mammalian cells. Gene 2012, 511, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Redza-Dutordoir, M.; Averill-Bates, D.A. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim. Biophys. Acta-Mol. Cell Res. 2016, 1863, 2977–2992. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, W.Y.; McGee, S.L.; Connor, T.; Mottram, B.; Wilkinson, A.; Whitehead, J.P.; Vuckovic, S.; Catley, L. Dichloroacetate inhibits aerobic glycolysis in multiple myeloma cells and increases sensitivity to bortezomib. Br. J. Cancer 2013, 108, 1624–1633. [Google Scholar] [CrossRef] [PubMed]
- Florio, R.; De Lellis, L.; Veschi, S.; Verginelli, F.; di Giacomo, V.; Gallorini, M.; Perconti, S.; Sanna, M.; Mariani-Costantini, R.; Natale, A.; et al. Effects of dichloroacetate as single agent or in combination with GW6471 and metformin in paraganglioma cells. Sci. Rep. 2018, 8, 13610. [Google Scholar] [CrossRef] [PubMed]
- Colom, B.; Oliver, J.; Roca, P.; Garciapalmer, F. Caloric restriction and gender modulate cardiac muscle mitochondrial H2O2 production and oxidative damage. Cardiovasc. Res. 2007, 74, 456–465. [Google Scholar] [CrossRef] [PubMed]
- Razmara, A.; Duckles, S.P.; Krause, D.N.; Procaccio, V. Estrogen suppresses brain mitochondrial oxidative stress in female and male rats. Brain Res. 2007, 1176, 71–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bains, J.S.; Shaw, C.A. Neurodegenerative disorders in humans: The role of glutathione in oxidative stress-mediated neuronal death. Brain Res. Rev. 1997, 25, 335–358. [Google Scholar] [CrossRef]
- Braidy, N.; Guillemin, G.J.; Mansour, H.; Chan-Ling, T.; Poljak, A.; Grant, R. Age related changes in NAD+ metabolism oxidative stress and Sirt1 activity in wistar rats. PLoS ONE 2011, 6, e19194. [Google Scholar] [CrossRef] [PubMed]
- Siegel, C.S.; McCullough, L.D. NAD+ and nicotinamide: Sex differences in cerebral ischemia. Neuroscience 2013, 237, 223–231. [Google Scholar] [CrossRef]
- Tretter, L.; Adam-Vizi, V. Generation of Reactive Oxygen Species in the Reaction Catalyzed by—Ketoglutarate Dehydrogenase. J. Neurosci. 2004, 24, 7771–7778. [Google Scholar] [CrossRef] [PubMed]
- Starkov, A.A.; Fiskum, G. Regulation of brain mitochondrial H2O2 production by membrane potential and NAD(P)H redox state. J. Neurochem. 2003, 86, 1101–1107. [Google Scholar] [CrossRef] [PubMed]
- Sipos, I.; Tretter, L.; Adam-Vizi, V. Quantitative relationship between inhibition of respiratory complexes and formation of reactive oxygen species in isolated nerve terminals. J. Neurochem. 2003, 84, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, M.I.; Escames, G.; López, L.C.; López, A.; García, J.A.; Ortiz, F.; Sánchez, V.; Romeu, M.; Acuña-Castroviejo, D. Improved mitochondrial function and increased life span after chronic melatonin treatment in senescent prone mice. Exp. Gerontol. 2008, 43, 749–756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Behl, C.; Moosmann, B. Oxidative Nerve Cell Death in Alzheimers Disease and Stroke: Antioxidants as Neuroprotective Compounds. Biol. Chem. 2002, 383, 521–536. [Google Scholar] [CrossRef] [PubMed]
- Stanevičiūtė, J.; Juknevičienė, M.; Balnytė, I.; Valančiūtė, A.; Lesauskaitė, V.; Fedejeva, J.; Stakauskas, R.; Stakišaitis, D. Gender-related effect of sodium dichloroacetate on rat thymus and on the RNA of NKCC1 expression in thymocytes. Biomed Res. Int. 2019, 2019, 1602895. [Google Scholar] [CrossRef] [PubMed]
- Stanevičiūtė, J.; Urbonienė, D.; Valančiūtė, A.; Balnytė, I.; Vitkauskienė, A.; Grigalevičienė, B.; Stakišaitis, D. The effect of dichloroacetate on male rat thymus and on thymocyte cell cycle. Int. J. Immunopathol. Pharmacol. 2016, 29, 818–822. [Google Scholar] [CrossRef] [PubMed]
- Hiraoka, K.; Miyazaki, H.; Niisato, N.; Iwasaki, Y.; Kawauchi, A.; Miki, T.; Marunaka, Y. Chloride Ion Modulates Cell Proliferation of Human Androgen-independent Prostatic Cancer Cell. Cell. Physiol. Biochem. 2010, 25, 379–388. [Google Scholar] [CrossRef]
- Russell, J.M. Sodium-Potassium-Chloride Cotransport. Physiol. Rev. 2000, 80, 211–276. [Google Scholar] [CrossRef]
- Maeno, E.; Takahashi, N.; Okada, Y. Dysfunction of regulatory volume increase is a key component of apoptosis. FEBS Lett. 2006, 580, 6513–6517. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.C.; Lytle, C.; Zhu, T.T.; Payne, J.A.; Benz, E.; Forbush, B.; Forbush, B. Molecular cloning and functional expression of the bumetanide-sensitive Na-K-Cl cotransporter. Proc. Natl. Acad. Sci. USA 1994, 91, 2201–2205. [Google Scholar] [CrossRef] [PubMed]
- Slc12a2 Solute Carrier Family 12 Member 2 [Rattus Norvegicus (Norway Rat)]. 2018. Available online: https://www.ncbi.nlm.nih.gov/gene/83629 (accessed on 10 June 2019).
- Juška, A.; Stakišaitis, D. Chloride/bicarbonate exchanger in rat thymic lymphocytes: Experimental investigation and mathematical modeling. Trace Elem. Electrolytes 2013, 30, 167–172. [Google Scholar] [CrossRef]
- Stakisaitis, D.; Lapointe, M.S.; Batlle, D. Mechanisms of chloride transport in thymic lymphocytes. Am. J. Physiol. Ren. Physiol. 2001, 280, F314–F324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hannaert, P.; Alvarez-Guerra, M.; Pirot, D.; Nazaret, C.; Garay, R. Rat NKCC2/NKCC1 cotransporter selectivity for loop diuretic drugs. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2002, 365, 193–199. [Google Scholar]
- Perrot-Sinal, T.S.; Sinal, C.J.; Reader, J.C.; Speert, D.B.; McCarthy, M.M. Sex Differences in the Chloride Cotransporters, NKCC1 and KCC2, in the Developing Hypothalamus. J. Neuroendocrinol. 2007, 19, 302–308. [Google Scholar] [CrossRef] [PubMed]
- Jayakumar, A.R.; Liu, M.; Moriyama, M.; Ramakrishnan, R.; Forbush, B.; Reddy, P.V.B.; Norenberg, M.D. Na-K-Cl Cotransporter-1 in the Mechanism of Ammonia-induced Astrocyte Swelling. J. Biol. Chem. 2008, 283, 33874–33882. [Google Scholar] [CrossRef] [Green Version]
- Elliott, S.J.; Schilling, W.P. Oxidant stress alters Na+ pump and Na(+)-K(+)-Cl− cotransporter activities in vascular endothelial cells. Am. J. Physiol. Circ. Physiol. 1992, 263, H96–H102. [Google Scholar] [CrossRef] [PubMed]
- Aulwurm, U.R.; Brand, K.A. Increased formation of reactive oxygen species due to glucose depletion in primary cultures of rat thymocytes inhibits proliferation. Eur. J. Biochem. 2000, 267, 5693–5698. [Google Scholar] [CrossRef]
- Bonnet, S.; Archer, S.L.; Allalunis-Turner, J.; Haromy, A.; Beaulieu, C.; Thompson, R.; Lee, C.T.; Lopaschuk, G.D.; Puttagunta, L.; Bonnet, S.; et al. A Mitochondria-K+ Channel Axis Is Suppressed in Cancer and Its Normalization Promotes Apoptosis and Inhibits Cancer Growth. Cancer Cell 2007, 11, 37–51. [Google Scholar] [CrossRef] [Green Version]
- Makita, N.; Ishiguro, J.; Suzuki, K.; Nara, F. Dichloroacetate induces regulatory T-cell differentiation and suppresses Th17-cell differentiation by pyruvate dehydrogenase kinase-independent mechanism. J. Pharm. Pharmacol. 2017, 69, 43–51. [Google Scholar] [CrossRef]
- White, A.J.; Nakamura, K.; Jenkinson, W.E.; Saini, M.; Sinclair, C.; Seddon, B.; Narendran, P.; Pfeffer, K.; Nitta, T.; Takahama, Y.; et al. Lymphotoxin Signals from Positively Selected Thymocytes Regulate the Terminal Differentiation of Medullary Thymic Epithelial Cells. J. Immunol. 2010, 185, 4769–4776. [Google Scholar] [CrossRef] [PubMed]
- Yano, M.; Kuroda, N.; Han, H.; Meguro-Horike, M.; Nishikawa, Y.; Kiyonari, H.; Maemura, K.; Yanagawa, Y.; Obata, K.; Takahashi, S.; et al. Aire controls the differentiation program of thymic epithelial cells in the medulla for the establishment of self-tolerance. J. Exp. Med. 2008, 205, 2827–2838. [Google Scholar] [CrossRef] [PubMed]
- Blau, J.N.; Veall, N. The uptake and localization of proteins, Evans Blue and carbon black in the normal and pathological thymus of the guinea-pig. Immunology 1967, 12, 363–372. [Google Scholar] [PubMed]
- Senelar, R.; Escola, M.J.; Escola, R.; Serrou, B.; Serre, A. Relationship between Hassall’s corpuscles and thymocytes fate in guinea-pig foetus. Biomedicine 1976, 24, 112–122. [Google Scholar] [PubMed]
- Olsen, N.J.; Olson, G.; Viselli, S.M.; Gu, X.; Kovacs, W.J. Androgen Receptors in Thymic Epithelium Modulate Thymus Size and Thymocyte Development. Endocrinology 2001, 142, 1278–1283. [Google Scholar] [CrossRef] [PubMed]
- Loria, A.; Reverte, V.; Salazar, F.; Saez, F.; Llinas, M.T.; Salazar, F.J. Sex and age differences of renal function in rats with reduced ANG II activity during the nephrogenic period. Am. J. Physiol. Physiol. 2007, 293, F506–F510. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.X.; Crofton, J.T.; Miller, J.; Sigman, C.J.; Liu, H.; Huber, J.M.; Brooks, D.P.; Share, L. Sex difference in urinary concentrating ability of rats with water deprivation. Am. J. Physiol. Integr. Comp. Physiol. 1996, 270, R550–R555. [Google Scholar] [CrossRef]
- Musselman, T.M.; Zhang, Z.; Masilamani, S.M.E. Differential regulation of the bumetanide-sensitive cotransporter (NKCC2) by ovarian hormones. Steroids 2010, 75, 760–765. [Google Scholar] [CrossRef] [Green Version]
- James, M.O.; Yan, Z.; Cornett, R.; Jayanti, V.M.; Henderson, G.N.; Davydova, N.; Katovich, M.J.; Pollock, B.; Stacpoole, P.W.; Jayanti, K.M.K.M.; et al. Pharmacokinetics and Metabolism of Dichloroacetate in Male Sprague-Dawley Rats: Identification of Glycine Conjugates, Including Hippurate, as Urinary Metabolites of Dichloroacetate. Drug Metab. Dispos. 1998, 26, 1134–1143. [Google Scholar]
- Saghir, S.A.; Schultz, I.R. Low-dose pharmacokinetics and oral bioavailability of dichloroacetate in naive and GST-zeta-depleted rats. Environ. Health Perspect. 2002, 110, 757–763. [Google Scholar] [CrossRef]
- Lin, E.L.C.; Mattox, J.K.; Daniel, F.B. Tissue distribution, excretion, and urinary metabolites of dichloroacetic acid in the male fischer 344 rat. J. Toxicol. Environ. Health 1993, 38, 19–32. [Google Scholar] [CrossRef] [PubMed]
- Larson, J.L.; Bull, R.J. Metabolism and lipoperoxidative activity of trichloroacetate and dichloroacetate in rats and mice. Toxicol. Appl. Pharmacol. 1992, 115, 268–277. [Google Scholar] [CrossRef]
- Stacpoole, P.W.; Henderson, G.N.; Yan, Z.; Cornett, R.; James, M.O. Pharmacokinetics, Metabolism, and Toxicology of Dichloroacetate. Drug Metab. Rev. 1998, 30, 499–539. [Google Scholar] [CrossRef] [PubMed]
- Curry, S.H.; Lorenz, A.; Chu, P.I.; Limacher, M.; Stacpoole, P.W. Disposition and pharmacodynamics of dichloroacetate (DCA) and oxalate following oral DCA doses. Biopharm. Drug Dispos. 1991, 12, 375–390. [Google Scholar] [CrossRef] [PubMed]
- McAllister, A.; Allison, S.P.; Randle, P.J. Effects of dichloroacetate on the metabolism of glucose, pyruvate, acetate, 3-hydroxybutyrate and palmitate in rat diaphragm and heart muscle in vitro and on extraction of glucose, lactate, pyruvate and free fatty acids by dog heart in vivo. Biochem. J. 1973, 134, 1067–1081. [Google Scholar] [CrossRef] [PubMed]
- Shroads, A.L.; Guo, X.; Dixit, V.; Liu, H.P.; James, M.O.; Stacpoole, P.W. Age-Dependent Kinetics and Metabolism of Dichloroacetate: Possible Relevance to Toxicity. J. Pharmacol. Exp. Ther. 2009, 324, 1163–1171. [Google Scholar] [CrossRef] [PubMed]
- Lipscomb, J.C.; Mahle, D.A.; Brashear, W.T.; Barton, H.A. Dichloroacetic acid: Metabolism in cytosol. Drug Metab. Dispos. 1995, 23, 1202–1205. [Google Scholar] [PubMed]
- Tong, Z.; Board, P.G.; Anders, M.W. Glutathione transferase zeta catalyses the oxygenation of the carcinogen dichloroacetic acid to glyoxylic acid. Biochem. J. 1998, 331, 371–374. [Google Scholar] [CrossRef]
- Keys, D.A. A Quantitative Description of Suicide Inhibition of Dichloroacetic Acid in Rats and Mice. Toxicol. Sci. 2004, 82, 381–393. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Milavetz, G.; James, M.O.; An, G. A Mechanism-Based Pharmacokinetic Enzyme Turnover Model for Dichloroacetic Acid Autoinhibition in Rats. J. Pharm. Sci. 2017, 106, 1396–1404. [Google Scholar] [CrossRef] [Green Version]
- Maisenbacher, H.W.; Shroads, A.L.; Zhong, G.; Daigle, A.D.; Abdelmalak, M.; Samper, I.S.; Mincey, B.D.; James, M.O.; Stacpoole, P.W. Pharmacokinetics of Oral Dichloroacetate in Dogs Herbert. J. Biochem. Mol. Toxicol. 2013, 27, 522–525. [Google Scholar] [CrossRef] [PubMed]
- Lukas, G.; Vyas, K.H.; Brindle, S.D.; Le Sher, A.R.; Wagner, W.E. Biological disposition of sodium dichloroacetate in animals and humans after intravenous administration. J. Pharm. Sci. 1980, 69, 419–421. [Google Scholar] [CrossRef] [PubMed]
- Schultz, I.R.; Merdink, J.L.; Gonzalez-Leon, A.; Bull, R.J. Dichloroacetate toxicokinetics and disruption of tyrosine catabolism in B6C3F1 mice: Dose-response relationships and age as a modifying factor. Toxicology 2002, 173, 229–247. [Google Scholar] [CrossRef]
- Tong, Z.; Board, P.G.; Anders, M.W. Glutathione Transferase Zeta-Catalyzed Biotransformation of Dichloroacetic Acid and Other α-Haloacids. Chem. Res. Toxicol. 1998, 11, 1332–1338. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Leon, A.; Schultz, I.R.; Xu, G.; Bull, R.J. Pharmacokinetics and metabolism of dichloroacetate in the F344 rat after prior administration in drinking water. Toxicol. Appl. Pharmacol. 1997, 146, 189–195. [Google Scholar] [CrossRef] [PubMed]
- James, M.O.; Cornett, R.; Yan, Z.; Henderson, G.N.; Stacpoole, P.W. Glutathione-dependent conversion to glyoxylate, a major pathway of dichloroacetate biotransformation in hepatic cytosol from humans and rats, is reduced in dichloroacetate-treated rats. Drug Metab. Dispos. 1997, 25, 1223–1227. [Google Scholar] [PubMed]
- Yan, Z.; James, M.O.; Henderson, G.N.; Cornett, R.; Jayanti, V.; Davydova, N.; Stacpoole, P.W. Pharmacokinetics and metabolism of dichloroacetate (DCA) in Sprague-Dawley rats: Effect of age and diet. In Proceedings of the Superfund Basic Research Conference Chapel Hill, New York, NY, USA, 23–26 February 1997. [Google Scholar]
- Barton, H.A.; Bull, R.; Schultz, I.; Andersen, M.E. Dichloroacetate (DCA) dosimetry: Interpreting DCA-induced liver cancer dose response and the potential for DCA to contribute to trichloroethylene-induced liver cancer. Toxicol. Lett. 1999, 106, 9–21. [Google Scholar] [CrossRef]
- Gonzalez-Leon, A.; Merdink, J.L.; Bull, R.J.; Schultz, I.R. Effect of pre-treatment with dichloroacetic or trichloroacetic acid in drinking water on the pharmacokinetics of a subsequent challenge dose in B6C3F1 mice. Chem. Biol. Interact. 1999, 123, 239–253. [Google Scholar] [CrossRef]
- Zolodz, M.D.; Jia, M.; Liu, H.; Henderson, G.N.; Stacpoole, P.W. A GC-MS/MS method for the quantitative analysis of low levels of the tyrosine metabolites maleylacetone, succinylacetone, and the tyrosine metabolism inhibitor dichloroacetate in biological fluids and tissues. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2006, 837, 125–132. [Google Scholar] [CrossRef]
- Ammini, C.V.; Fernandez-Canon, J.; Shroads, A.L.; Cornett, R.; Cheung, J.; James, M.O.; Henderson, G.N.; Grompe, M.; Stacpoole, P.W. Pharmacologic or genetic ablation of maleylacetoacetate isomerase increases levels of toxic tyrosine catabolites in rodents. Biochem. Pharmacol. 2003, 66, 2029–2038. [Google Scholar] [CrossRef]
- Tzeng, H.F.; Blackburn, A.C.; Board, P.G.; Anders, M.W. Polymorphism-and species-dependent inactivation of glutathione transferase zeta by dichloroacetate. Chem. Res. Toxicol. 2000, 13, 231–236. [Google Scholar] [CrossRef] [PubMed]
- Cornett, R.; James, M.O.; Henderson, G.N.; Cheung, J.; Shroads, A.L.; Stacpoole, P.W. Inhibition of glutathione S-transferase zeta and tyrosine metabolism by dichloroacetate: A potential unifying mechanism for its altered biotransformation and toxicity. Biochem. Biophys. Res. Commun. 1999, 262, 752–756. [Google Scholar] [CrossRef] [PubMed]
- Irita, K.; Okabe, H.; Koga, A.; Yamakawa, M.; Yoshitake, J.; Takahashi, S. The effects of dichloroacetate on liver damage and circulating fuels in rats exposed to carbon tetrachloride. J. Gastroenterol. Hepatol. 1994, 9, 26–29. [Google Scholar] [CrossRef] [PubMed]
- Lantum, H.B.M.; Cornejo, J.; Pierce, R.H.; Anders, M.W. Perturbation of maleylacetoacetic acid metabolism in rats with dichloroacetic Acid-induced glutathione transferase zeta deficiency. Toxicol. Sci. 2003, 74, 192–202. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Dixit, V.; Liu, H.; Shroads, A.L.; Henderson, G.N.; James, M.O.; Stacpoole, P.W. Inhibition and Recovery of Rat Hepatic Glutathione S-Transferase Zeta and Alteration of Tyrosine Metabolism Following Dichloroacetate Exposure and Withdrawal. Drug Metab. Dispos. 2005, 34, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Tyner, T.R.; Tong, W.; Donovan, K.; McDonald, T.; Sian, K.; Yamaguchi, K.T. Dichloroacetate Reduces Tissue Necrosis in a Rat Transverse Rectus Abdominis Musculocutaneous Flap Model. Ann. Plast. Surg. 2006, 56, 320–326. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.Z.; Krausz, K.W.; Tanaka, N.; Li, F.; Qu, A.; Idle, J.R.; Gonzalez, F.J. Metabolomics reveals trichloroacetate as a major contributor to trichloroethylene-induced metabolic alterations in mouse urine and serum. Arch. Toxicol. 2013, 87, 1975–1987. [Google Scholar] [CrossRef]
- Li, W.; James, M.O.; McKenzie, S.C.; Calcutt, N.A.; Liu, C.; Stacpoole, P.W. Mitochondrion as a Novel Site of Dichloroacetate Biotransformation by Glutathione Transferase 1. J. Pharmacol. Exp. Ther. 2011, 336, 87–94. [Google Scholar] [CrossRef]
- Yoshihara, H.; Yamaguchi, S.; Yachiku, S. Effect of sex hormones on oxalate-synthesizing enzymes in male and female rat livers. J. Urol. 1999, 161, 668–673. [Google Scholar] [CrossRef]
- Stacpoole, P.W.; Greene, Y.J. Dichloroacetate. Diabetes Care 1992, 15, 785–791. [Google Scholar] [CrossRef]
- Prokhorova, I.V.; Pyaskovskaya, O.N.; Kolesnik, D.L.; Solyanik, G.I. Influence of metformin, sodium dichloroacetate and their combination on the hematological and biochemical blood parameters of rats with gliomas C6. Exp. Oncol. 2018, 40, 205–210. [Google Scholar] [CrossRef]
- Wang, P.; Chen, M.; Yang, Z.; Yu, T.; Zhu, J.; Zhou, L.; Lin, J.; Fang, X.; Huang, Z.; Jiang, L.; et al. Activation of Pyruvate Dehydrogenase Activity by Dichloroacetate Improves Survival and Neurologic Outcomes After Cardiac Arrest in Rats. Shock 2018, 49, 704–711. [Google Scholar] [CrossRef] [PubMed]
- Seth, P.; Grant, A.; Tang, J.; Vinogradov, E.; Wang, X.; Lenkinski, R.; Sukhatme, V.P. On-target inhibition of tumor fermentative glycolysis as visualized by hyperpolarized pyruvate. Neoplasia 2011, 13, 60–71. [Google Scholar] [CrossRef] [PubMed]
- Park, J.M.; Recht, L.D.; Josan, S.; Merchant, M.; Jang, T.; Yen, Y.F.; Hurd, R.E.; Spielman, D.M.; Mayer, D. Metabolic response of glioma to dichloroacetate measured in vivo by hyperpolarized 13C magnetic resonance spectroscopic imaging. Neuro. Oncol. 2013, 15, 433–441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gybina, A.A.; Prohaska, J.R. Augmented cerebellar lactate in copper deficient rat pups originates from both blood and cerebellum. Metab. Brain Dis. 2009, 24, 299–310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toth, G.P.; Kelty, K.C.; George, E.L.; Read, E.J.; Smith, M.K. Adverse male reproductive effects following subchronic exposure of rats to sodium dichloroacetate. Fundam. Appl. Toxicol. 1992, 19, 57–63. [Google Scholar] [CrossRef]
- Bull, R.J. Mode of Action of Liver Tumor Induction by Trichloroethylene and Its Metabolites, Trichloroacetate and Dichloroacetate. Environ. Health Perspect. 2000, 108, 241–259. [Google Scholar] [CrossRef]
- DeAngelo, A.B.; Daniel, F.B.; Most, B.M.; Olson, G.R. The carcinogenicity of dichloroacetic acid in the male Fischer 344 rat. Toxicology 1996, 114, 207–221. [Google Scholar] [CrossRef]
- Richmond, R.E.; Carter, J.H.; Carter, H.W.; Daniel, F.B.; DeAngelo, A.B. Immunohistochemical analysis of dichloroacetic acid (DCA)-induced hepatocarcinogenesis in male Fischer (F344) rats. Cancer Lett. 1995, 92, 67–76. [Google Scholar] [CrossRef]
- Yount, E.A.; Felten, S.Y.; O’Connor, B.L.; Peterson, R.G.; Powell, R.S.; Yum, M.N.; Harris, R.A. Comparison of the metabolic and toxic effects of 2-chloropropionate and dichloroacetate. J. Pharmacol. Exp. Ther. 1982, 222, 501–508. [Google Scholar]
- Stacpoole, P.W.; Gilbert, L.R.; Neiberger, R.E.; Carney, P.R.; Valenstein, E.; Theriaque, D.W.; Shuster, J.J. Evaluation of long-term treatment of children with congenital lactic acidosis with dichloroacetate. Pediatrics 2008, 121, e1223–e1228. [Google Scholar] [CrossRef] [PubMed]
- Stacpoole, P.W.; Harwood, H.J.; Cameron, D.F.; Curry, S.H.; Samuelson, D.A.; Cornwell, P.E.; Sauberlich, H.E. Chronic toxicity of dichloroacetate: Possible relation to thiamine deficiency in rats. Fundam. Appl. Toxicol. 1990, 14, 327–337. [Google Scholar] [CrossRef]
- Dubuis, S.; Ortmayr, K.; Zampieri, M. A framework for large-scale metabolome drug profiling links coenzyme A metabolism to the toxicity of anti-cancer drug dichloroacetate. Commun. Biol. 2018, 1, 101. [Google Scholar] [CrossRef] [PubMed]
- DeMarini, D.M.; Perry, E.; Shelton, M.L. Dichloroacetic acid and related compounds: Induction of prophage in E. coli and mutagenicity and mutation spectra in Salmonella TA100. Mutagenesis 1994, 9, 429–437. [Google Scholar] [CrossRef] [PubMed]
- Fuscoe, J.C.; Afshari, A.J.; George, M.H.; DeAngelo, A.B.; Tice, R.R.; Salman, T.; Allen, J.W. In vivo genotoxicity of dichloroacetic acid: Evaluation with the mouse peripheral blood micronucleus assay and the single cell gel assay. Environ. Mol. Mutagen. 1996, 27, 1–9. [Google Scholar] [CrossRef]
- Harrington-Brock, K.; Doerr, C.L.; Moore, M.M. Mutagenicity of three disinfection by-products: Di-and trichloroacetic acid and chloral hydrate in L5178Y/TK +/− (-)3.7.2C mouse lymphoma cells. Mutat. Res. 1998, 413, 265–276. [Google Scholar] [CrossRef]
- Leavitt, S.A.; DeAngelo, A.B.; George, M.H.; Ross, J.A. Assessment of the mutagenicity of dichloroacetic acid in lacI transgenic B6C3F1 mouse liver. Carcinogenesis 1997, 18, 2101–2106. [Google Scholar] [CrossRef]
- Moore, M.M.; Harrington-Brock, K. Mutagenicity of trichloroethylene and its metabolites: Implications for the risk assessment of trichloroethylene. Environ. Health Perspect. 2000, 108, 215–223. [Google Scholar] [CrossRef]
- Lash, L.H.; Parker, J.C. Hepatic and renal toxicities associated with perchloroethylene. Pharmacol. Rev. 2001, 53, 177–208. [Google Scholar]
- Herren-Freund, S.L.; Pereira, M.A.; Khoury, M.D.; Olson, G. The carcinogenicity of trichloroethylene and its metabolites, trichloroacetic acid and dichloroacetic acid, in mouse liver. Toxicol. Appl. Pharmacol. 1987, 90, 183–189. [Google Scholar] [CrossRef]
- Bull, R.J.; Sanchez, I.M.; Nelson, M.A.; Larson, J.L.; Lansing, A.J. Liver tumor induction in B6C3F1 mice by dichloroacetate and trichloroacetate. Toxicology 1990, 63, 341–359. [Google Scholar] [CrossRef]
- DeAngelo, A.B.; Daniel, F.B.; Stober, J.A.; Olson, G.R. The carcinogenicity of dichloroacetic acid in the male B6C3F1 mouse. Fundam. Appl. Toxicol. 1991, 16, 337–347. [Google Scholar] [CrossRef]
- Daniel, F.B.; Deangelo, A.B.; Stober, J.A.; Olson, G.R.; Page, N.P. Hepatocarcinogenicity of chioral hydrate, 2-chloroacetaldehyde, and dichioroacetic acid in the male B6C3F1 mouse. Toxicol. Sci. 1992, 19, 159–168. [Google Scholar] [CrossRef]
- Anna, C.H.; Maronpot, R.R.; Pereira, M.A.; Foley, J.F.; Malarkey, D.E.; Anderson, M.W. ras proto-oncogene activation in dichloroacetic acid-, trichloroethylene-and tetrachloroethylene-induced liver tumors in B6C3F1 mice. Carcinogenesis 1994, 15, 2255–2261. [Google Scholar] [CrossRef] [PubMed]
- Ferreira-Gonzalez, A.; DeAngelo, A.B.; Nasim, S.; Garrett, C.T. Ras oncogene activation during hepatocarcinogenesis in B6C3F1 male mice by dichloroacetic and trichloroacetic acids. Carcinogenesis 1995, 16, 495–500. [Google Scholar] [CrossRef] [PubMed]
- DeAngelo, A.B.; George, M.H.; House, D.E. Hepatocarcinogenicity in the Male B6C3F1 Mouse Following a Lifetime Exposure to Dichloroacetic Acid in the Drinking Water: Dose-Response Determination and Modes of Action. J. Toxicol. Environ. Health 1999, 58, 485–507. [Google Scholar] [CrossRef]
- Bull, R.J.; Orner, G.A.; Cheng, R.S.; Stillwell, L.; Stauber, A.J.; Sasser, L.B.; Lingohr, M.K.; Thrall, B.D. Contribution of dichloroacetate and trichloroacetate to liver tumor induction in mice by trichloroethylene. Toxicol. Appl. Pharmacol. 2002, 182, 55–65. [Google Scholar] [CrossRef]
- Wehmas, L.C.; Deangelo, A.B.; Hester, S.D.; Chorley, B.N.; Olson, G.R.; George, M.H.; Carter, J.H.; Eldridge, S.R.; Vallanat, B.; Wood, C.E. Metabolic Disruption Early in Life is Associated with Latent Carcinogenic Activity of Dichloroacetic Acid in Mice. Toxicol. Sci. 2017, 159, 354–365. [Google Scholar] [CrossRef]
- Wood, C.E.; Hester, S.D.; Chorley, B.N.; Carswell, G.; George, M.H.; Ward, W.; Vallanat, B.; Ren, H.; Fisher, A.; Lake, A.D.; et al. Latent carcinogenicity of early-life exposure to dichloroacetic acid in mice. Carcinogenesis 2015, 36, 782–791. [Google Scholar] [CrossRef] [Green Version]
- Pereira, M.A. Carcinogenic activity of dichloroacetic acid and trichloroacetic acid in the liver of female B6C3F1 mice. Fundam. Appl. Toxicol. 1996, 31, 192–199. [Google Scholar] [CrossRef]
- Pereira, M.A.; Phelps, J.B. Promotion by dichloroacetic acid and trichloroacetic acid of N-methyl-N-nitrosourea-initiated cancer in the liver of female B6C3F1 mice. Cancer Lett. 1996, 102, 133–141. [Google Scholar] [CrossRef]
- Schroeder, M.; Deangelo, A.B.; Mass, M.J. Dichloroacetic acid reduces Ha- ras codon 61 mutations in liver tumors from female B6C3F1 mice. Carcinogenesis 1997, 18, 1675–1678. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.H.; Minard, K.; Wind, R.A.; Orner, G.A.; Sasser, L.B.; Bull, R.J. In vivo MRI measurements of tumor growth induced by dichloroacetate: Implications for mode of action. Toxicology 2000, 145, 115–125. [Google Scholar] [CrossRef]
- Stauber, A.J.; Bull, R.J.; Thrall, B.D. Dichloroacetate and trichloroacetate promote clonal expansion of anchorage-independent hepatocytes in vivo and in vitro. Toxicol. Appl. Pharmacol. 1998, 150, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Stauber, A.J.; Bull, R.J. Differences in Phenotype and Cell Replicative Behavior of Hepatic Tumors Induced by Dichloroacetate (DCA) and Trichloroacetate (TCA). Toxicol. Appl. Pharmacol. 1997, 144, 235–246. [Google Scholar] [CrossRef] [PubMed]
- Carter, J.H.; Carter, H.W.; DeAngelo, A.B. Biochemical, pathologic and morphometric alterations induced in male B6C3F1 mouse liver by short-term exposure to dichloroacetic acid. Toxicol. Lett. 1995, 81, 55–71. [Google Scholar] [CrossRef]
- Snyder, R.; Pullman, J.; Carter, J.H.; Carter, H.W.; Deangelo, A. In vivo administration of dichloroacetate suppresses spontaneous apoptosis in murine hepatocytes. Cancer Res. 1995, 55, 3702–3705. [Google Scholar]
- Carter, J.H.; Carter, H.W.; Deddens, J.A.; Hurst, B.M.; George, M.H.; DeAngelo, A.B. A 2-year dose-response study of lesion sequences during hepatocellular carcinogenesis in the male B6C3F(1) mouse given the drinking water chemical dichloroacetic acid. Environ. Health Perspect. 2003, 111, 53–64. [Google Scholar] [CrossRef]
- Latendresse, J.R.; Pereira, M.A. Dissimilar characteristics of N-methyl-N-nitrosourea-initiated foci and tumors promoted by dichloroacetic acid or trichloroacetic acid in the liver of female B6C3F1 mice. Toxicol. Pathol. 1997, 25, 433–440. [Google Scholar] [CrossRef]
- Kato-Weinstein, J.; Lingohr, M.K.; Orner, G.A.; Thrall, B.D.; Bull, R.J. Effects of dichloroacetate on glycogen metabolism in B6C3F1 mice. Toxicology 1998, 130, 141–154. [Google Scholar] [CrossRef]
- Sanchez, I.M.; Bull, R.J. Early induction of reparative hyperplasia in the liver of B6C3F1 mice treated with dichloroacetate and trichloroacetate. Toxicology 1990, 64, 33–46. [Google Scholar] [CrossRef]
- Caldwell, J.C.; Keshava, N. Key issues in the modes of action and effects of trichloroethylene metabolites for liver and kidney tumorigenesis. Environ. Health Perspect. 2006, 114, 1457–1463. [Google Scholar] [CrossRef] [PubMed]
- Blackburn, A.C.; Matthaei, K.I.; Lim, C.; Taylor, M.C.; Cappello, J.Y.; Hayes, J.D.; Anders, M.W.; Board, P.G. Deficiency of Glutathione Transferase Zeta Causes Oxidative Stress and Activation of Antioxidant Response Pathways. Mol. Pharmacol. 2005, 69, 650–657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saha, S.K.; Lee, S.B.; Won, J.; Choi, H.Y.; Kim, K.; Yang, G.-M.; Dayem, A.A.; Cho, S. Correlation between Oxidative Stress, Nutrition, and Cancer Initiation. Int. J. Mol. Sci. 2017, 18, 1544. [Google Scholar] [CrossRef] [PubMed]
- Stockwin, L.H.; Yu, S.X.; Borgel, S.; Hancock, C.; Wolfe, T.L.; Phillips, L.R.; Hollingshead, M.G.; Newton, D.L. Sodium dichloroacetate selectively targets cells with defects in the mitochondrial ETC. Int. J. Cancer 2010, 127, 2510–2519. [Google Scholar] [CrossRef]
- Sutendra, G.; Dromparis, P.; Kinnaird, A.; Stenson, T.H.; Haromy, A.; Parker, J.M.R.; McMurtry, M.S.; Michelakis, E.D. Mitochondrial activation by inhibition of PDKII suppresses HIF1a signaling and angiogenesis in cancer. Oncogene 2013, 32, 1638–1650. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, R.; Yu, Z.; Li, R.; Li, J.; Zhao, X.; Song, S.; Liu, J.; Huang, G. Dichloroacetate restores drug sensitivity in paclitaxel-resistant cells by inducing citric acid accumulation. Mol. Cancer 2015, 14, 63. [Google Scholar] [CrossRef]
- Su, L.; Zhang, H.; Yan, C.; Chen, A.; Meng, G.; Wei, J.; Yu, D.; Ding, Y. Superior anti-tumor efficacy of diisopropylamine dichloroacetate compared with dichloroacetate in a subcutaneous transplantation breast tumor model. Oncotarget 2016, 7, 65721. [Google Scholar] [CrossRef]
- Sánchez-Aragó, M.; Chamorro, M.; Cuezva, J.M. Selection of cancer cells with repressed mitochondria triggers colon cancer progression. Carcinogenesis 2010, 31, 567–576. [Google Scholar] [CrossRef] [Green Version]
- Lin, G.; Hill, D.K.; Andrejeva, G.; Boult, J.K.R.; Troy, H.; Fong, A.C.L.F.W.T.; Orton, M.R.; Panek, R.; Parkes, H.G.; Jafar, M.; et al. Dichloroacetate induces autophagy in colorectal cancer cells and tumours. Br. J. Cancer 2014, 111, 375–385. [Google Scholar] [CrossRef] [Green Version]
- Vella, S.; Conti, M.; Tasso, R.; Cancedda, R.; Pagano, A. Dichloroacetate inhibits neuroblastoma growth by specifically acting against malignant undifferentiated cells. Int. J. Cancer 2012, 130, 1484–1493. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.; Hau, E.; Joshi, S.; Dilda, P.J.; McDonald, K.L. Sensitization of Glioblastoma Cells to Irradiation by Modulating the Glucose Metabolism. Mol. Cancer Ther. 2015, 14, 1794–1804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Cairns, R.; Papandreou, I.; Koong, A.; Denko, N.C. Oxygen consumption can regulate the growth of tumors, a new perspective on the Warburg effect. PLoS ONE 2009, 4, e7033. [Google Scholar] [CrossRef] [PubMed]
- Rajeshkumar, N.V.; Yabuuchi, S.; Pai, S.G.; De Oliveira, E.; Kamphorst, J.J.; Rabinowitz, J.D.; Tejero, H.; Al-Shahrour, F.; Hidalgo, M.; Maitra, A.; et al. Treatment of pancreatic cancer patient–derived xenograft panel with metabolic inhibitors reveals efficacy of phenformin. Clin. Cancer Res. 2017, 23, 5639–5647. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.C.; Ou, D.L.; Hsu, C.; Lin, K.L.; Chang, C.Y.; Lin, C.Y.; Liu, S.H.; Cheng, A.L. Activating oxidative phosphorylation by a pyruvate dehydrogenase kinase inhibitor overcomes sorafenib resistance of hepatocellular carcinoma. Br. J. Cancer 2013, 108, 72–81. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Li, X.; Ni, Z.; Zhang, Y.; Zeng, Y.; Yan, X.; Huang, Y.; He, J.; Lyu, X.; Wu, Y.; et al. Dichloroacetate and metformin synergistically suppress the growth of ovarian cancer cells. Oncotarget 2016, 7, 59458–59470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, M.F.; Shen, S.Y.; Huang, W.D. DCA increases the antitumor effects of capecitabine in a mouse B16 melanoma allograft and a human non-small cell lung cancer A549 xenograft. Cancer Chemother. Pharmacol. 2013, 72, 1031–1041. [Google Scholar] [CrossRef]
- Robey, I.F.; Martin, N.K. Bicarbonate and dichloroacetate: Evaluating pH altering therapies in a mouse model for metastatic breast cancer. BMC Cancer 2011, 11, 235. [Google Scholar] [CrossRef]
- Shahrzad, S.; Lacombe, K.; Adamcic, U.; Minhas, K.; Coomber, B.L. Sodium dichloroacetate (DCA) reduces apoptosis in colorectal tumor hypoxia. Cancer Lett. 2010, 297, 75–83. [Google Scholar] [CrossRef]
- Cairns, R.A.; Papandreou, I.; Sutphin, P.D.; Denko, N.C. Metabolic targeting of hypoxia and HIF1 in solid tumors can enhance cytotoxic chemotherapy. Proc. Natl. Acad. Sci. USA 2007, 104, 9445–9450. [Google Scholar] [CrossRef] [Green Version]
- Cairns, R.A.; Bennewith, K.L.; Graves, E.E.; Giaccia, A.J.; Chang, D.T.; Denko, N.C. Pharmacologically Increased Tumor Hypoxia Can Be Measured by 18F-Fluoroazomycin Arabinoside Positron Emission Tomography and Enhances Tumor Response to Hypoxic Cytotoxin PR-104. Clin. Cancer Res. 2009, 15, 7170–7174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zwicker, F.; Kirsner, A.; Peschke, P.; Roeder, F.; Debus, J.; Huber, P.E.; Weber, K.J. Dichloroacetate induces tumor-specific radiosensitivity in vitro but attenuates radiation-induced tumor growth delay in vivo. Strahlenther. Onkol. 2013, 189, 684–692. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.; Wigfield, S.; Gee, H.E.; Devlin, C.M.; Singleton, D.; Li, J.L.; Buffa, F.; Huffman, M.; Sinn, A.L.; Silver, J.; et al. Dichloroacetate reverses the hypoxic adaptation to bevacizumab and enhances its antitumor effects in mouse xenografts. J. Mol. Med. 2013, 91, 749–758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, C.; Meng, G.; Su, L.; Chen, A.; Xia, M.; Xu, C.; Yu, D.; Jiang, A.; Wei, J. Dichloroacetate blocks aerobic glycolytic adaptation to attenuated measles virus and promotes viral replication leading to enhanced oncolysis in glioblastoma. Oncotarget 2015, 6, 1544–1555. [Google Scholar] [CrossRef] [PubMed]
- Sun, R.C.; Fadia, M.; Dahlstrom, J.E.; Parish, C.R.; Board, P.G.; Blackburn, A.C. Reversal of the glycolytic phenotype by dichloroacetate inhibits metastatic breast cancer cell growth in vitro and in vivo. Breast Cancer Res. Treat. 2010, 120, 253–260. [Google Scholar] [CrossRef]
- Feuerecker, B.; Seidl, C.; Pirsig, S.; Bruchelt, G.; Senekowitsch-Schmidtke, R. DCA promotes progression of neuroblastoma tumors in nude mice. Am. J. Cancer Res. 2015, 5, 812–820. [Google Scholar]
- Wu, H.; Ding, Z.; Hu, D.; Sun, F.; Dai, C.; Xie, J.; Hu, X. Central role of lactic acidosis in cancer cell resistance to glucose deprivation-induced cell death. J. Pathol. 2012, 227, 189–199. [Google Scholar] [CrossRef]
- Mori, M.; Yamagata, T.; Goto, T.; Saito, S.; Momoi, M.Y. Dichloroacetate treatment for mitochondrial cytopathy: Long-term effects in MELAS. Brain Dev. 2004, 26, 453–458. [Google Scholar] [CrossRef]
- Nair, A.B.; Jacob, S. A simple practice guide for dose conversion between animals and human. J. Basic Clin. Pharm. 2016, 7, 27–31. [Google Scholar] [CrossRef] [Green Version]
- Di Magno, L.; Manzi, D.; D’Amico, D.; Coni, S.; Macone, A.; Infante, P.; Di Marcotullio, L.; De Smaele, E.; Ferretti, E.; Screpanti, I.; et al. Druggable glycolytic requirement for Hedgehog-dependent neuronal and medulloblastoma growth. Cell Cycle 2014, 13, 3404–3413. [Google Scholar] [CrossRef] [Green Version]
- Andreassen, O.A.; Ferrante, R.J.; Huang, H.M.; Dedeoglu, A.; Park, L.; Ferrante, K.L.; Kwon, J.; Borchelt, D.R.; Ross, C.A.; Gibson, G.E.; et al. Dichloroacetate exerts therapeutic effects in transgenic mouse models of Huntington’s disease. Ann. Neurol. 2001, 50, 112–117. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Schultz, I.; Keys, D.A.; Campbell, J.L.; Fisher, J.W. Quantitative evaluation of dichloroacetic acid kinetics in human—A physiologically based pharmacokinetic modeling investigation. Toxicology 2008, 245, 35–48. [Google Scholar] [CrossRef] [PubMed]
- Velpula, K.K.; Guda, M.R.; Sahu, K.; Tuszynski, J.; Asuthkar, S.; Bach, S.E.; Lathia, J.D.; Tsung, A.J. Metabolic targeting of EGFRvIII/PDK1 axis in temozolomide resistant glioblastoma. Oncotarget 2017, 8, 35639–35655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gray, L.R.; Tompkins, S.C.; Taylor, E.B. Regulation of pyruvate metabolism and human disease. Cell. Mol. Life Sci. 2014, 71, 2577–2604. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Hulver, M.W.; McMillan, R.P.; Cline, M.A.; Gilbert, E.R. The pivotal role of pyruvate dehydrogenase kinases in metabolic flexibility. Nutr. Metab. 2014, 11, 10. [Google Scholar] [CrossRef]
- Kim, J.; Tchernyshyov, I.; Semenza, G.L.; Dang, C.V. HIF-1-mediated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 2006, 3, 177–185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, C.S.; Liu, T.C.; Lee, M.T.; Yang, S.F.; Tsao, T.C.Y. Independent Prognostic Value of Hypoxia-inducible Factor 1-alpha Expression in Small Cell Lung Cancer. Int. J. Med. Sci. 2017, 14, 785–790. [Google Scholar] [CrossRef] [Green Version]
- Bohuslavová, R.; Kolář, F.; Kuthanová, L.; Neckář, J.; Tichopád, A.; Pavlinkova, G. Gene expression profiling of sex differences in HIF1-dependent adaptive cardiac responses to chronic hypoxia. J. Appl. Physiol. 2010, 109, 1195–1202. [Google Scholar] [CrossRef]
- Currier, J.S. Sex Differences in Antiretroviral Therapy Toxicity: Lactic Acidosis, Stavudine, and Women. Clin. Infect. Dis. 2007, 45, 261–262. [Google Scholar] [CrossRef]
- Shen, Y.; Liu, F.; Li, Q.; Tang, J.; Zheng, T.; Lu, F.; Lu, H.; Jia, W. The gonadal hormone regulates the plasma lactate levels in type 2 diabetes treated with and without metformin. Diabetes Technol. Ther. 2012, 14, 469–474. [Google Scholar] [CrossRef]
- Feron, O. Pyruvate into lactate and back: From the Warburg effect to symbiotic energy fuel exchange in cancer cells. Radiother. Oncol. 2009, 92, 329–333. [Google Scholar] [CrossRef] [PubMed]
- Fiaschi, T.; Marini, A.; Giannoni, E.; Taddei, M.L.; Gandellini, P.; De Donatis, A.; Lanciotti, M.; Serni, S.; Cirri, P.; Chiarugi, P. Reciprocal Metabolic Reprogramming through Lactate Shuttle Coordinately Influences Tumor-Stroma Interplay. Cancer Res. 2012, 72, 5130–5140. [Google Scholar] [CrossRef] [PubMed]
- Kolesnik, D.L.; Pyaskovskaya, O.N.; Boychuk, I.V.; Dasyukevich, O.I.; Melnikov, O.R.; Tarasov, A.S.; Solyanik, G.I. Effect of Dichloroacetate on Lewis Lung Carcinoma Growth and Metastasis. Exp. Oncol. 2015, 37, 126–129. [Google Scholar] [CrossRef]
- Anemone, A.; Consolino, L.; Conti, L.; Reineri, F.; Cavallo, F.; Aime, S.; Longo, D.L. In vivo evaluation of tumour acidosis for assessing the early metabolic response and onset of resistance to dichloroacetate by using magnetic resonance pH imaging. Int. J. Oncol. 2017, 51, 498–506. [Google Scholar] [CrossRef] [PubMed]
- Vaupel, P. Tumor microenvironmental physiology and its implications for radiation oncology. Semin. Radiat. Oncol. 2004, 14, 198–206. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.; Giaccia, A. The unique physiology of solid tumors: Opportunities (and problems) for cancer therapy. Cancer Res. 1998, 58, 1408–1416. [Google Scholar] [PubMed]
- Semenza, G.L. Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer 2003, 3, 721–732. [Google Scholar] [CrossRef]
- Lim, C.E.L.; Matthaei, K.I.; Blackburn, A.C.; Davis, R.P.; Dahlstrom, J.E.; Koina, M.E.; Anders, M.W.; Board, P.G. Mice Deficient in Glutathione Transferase Zeta/Maleylacetoacetate Isomerase Exhibit a Range of Pathological Changes and Elevated Expression of Alpha, Mu, and Pi Class Glutathione Transferases. Am. J. Pathol. 2004, 165, 679–693. [Google Scholar] [CrossRef] [Green Version]
- Theodoratos, A.; Tu, W.J.; Cappello, J.; Blackburn, A.C.; Matthaei, K.; Board, P.G. Phenylalanine-induced leucopenia in genetic and dichloroacetic acid generated deficiency of glutathione transferase Zeta. Biochem. Pharmacol. 2009, 77, 1358–1363. [Google Scholar] [CrossRef]
- Roh, J.L.; Park, J.Y.; Kim, E.H.; Jang, H.J.; Kwon, M. Activation of mitochondrial oxidation by PDK2 inhibition reverses cisplatin resistance in head and neck cancer. Cancer Lett. 2016, 371, 20–29. [Google Scholar] [CrossRef]
- Bhat, T.A.; Kumar, S.; Chaudhary, A.K.; Yadav, N.; Chandra, D. Restoration of mitochondria function as a target for cancer therapy. Drug Discov. Today 2015, 20, 635–643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pustylnikov, S.; Costabile, F.; Beghi, S.; Facciabene, A. Targeting mitochondria in cancer: Current concepts and immunotherapy approaches. Transl. Res. 2018, 202, 35–51. [Google Scholar] [CrossRef] [PubMed]
- Clayton, J.A.; Collins, F.S. Policy: NIH to balance sex in cell and animal studies. Nature 2014, 509, 282–283. [Google Scholar] [CrossRef] [PubMed]
- Bowker-Kinley, M.M.; Davis, W.I.; Wu, P.; Harris, R.A.; Popov, K.M. Evidence for existence of tissue-specific regulation of the mammalian pyruvate dehydrogenase complex. Biochem. J. 1998, 329, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.W.; Lin, S.C.; Chen, K.F.; Lai, Y.Y.; Tsai, S.J. Induction of Pyruvate Dehydrogenase Kinase-3 by Hypoxia-inducible Factor-1 Promotes Metabolic Switch and Drug Resistance. J. Biol. Chem. 2008, 283, 28106–28114. [Google Scholar] [CrossRef] [Green Version]
- Xuan, Y.; Hur, H.; Ham, I.H.; Yun, J.; Lee, J.Y.; Shim, W.; Kim, Y.B.; Lee, G.; Han, S.U.; Cho, Y.K. Dichloroacetate attenuates hypoxia-induced resistance to 5-fluorouracil in gastric cancer through the regulation of glucose metabolism. Exp. Cell Res. 2014, 321, 219–230. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Kant, S.; Singh, S.M. Antitumor and chemosensitizing action of dichloroacetate implicates modulation of tumor microenvironment: A role of reorganized glucose metabolism, cell survival regulation and macrophage differentiation. Toxicol. Appl. Pharmacol. 2013, 273, 196–208. [Google Scholar] [CrossRef]
- Wong, J.Y.Y.; Huggins, G.S.; Debidda, M.; Munshi, N.C.; De Vivo, I. Dichloroacetate induces apoptosis in endometrial cancer cells. Gynecol. Oncol. 2008, 109, 394–402. [Google Scholar] [CrossRef] [Green Version]
- Sun, R.C.; Board, P.G.; Blackburn, A.C. Targeting metabolism with arsenic trioxide and dichloroacetate in breast cancer cells. Mol. Cancer 2011, 10, 142. [Google Scholar] [CrossRef]
- Tanaka, S.; Miyazaki, H.; Shiozaki, A.; Ichikawa, D.; Otsuji, E.; Marunaka, Y. Cytosolic Cl- Affects the Anticancer Activity of Paclitaxel in the Gastric Cancer Cell Line, MKN28 Cell. Cell. Physiol. Biochem. 2017, 42, 68–80. [Google Scholar] [CrossRef]
- Cong, D.; Zhu, W.; Kuo, J.S.; Hu, S.; Sun, D. Ion transporters in brain tumors. Curr. Med. Chem. 2015, 22, 1171–1181. [Google Scholar] [CrossRef] [PubMed]
- Amara, S.; Tiriveedhi, V. Inflammatory role of high salt level in tumor microenvironment (Review). Int. J. Oncol. 2017, 50, 1477–1481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papandreou, I.; Goliasova, T.; Denko, N.C. Anticancer drugs that target metabolism: Is dichloroacetate the new paradigm? Int. J. Cancer 2011, 128, 1001–1008. [Google Scholar] [CrossRef] [PubMed]
- Madhok, B.M.; Yeluri, S.; Perry, S.L.; Hughes, T.A.; Jayne, D.G. Dichloroacetate induces apoptosis and cell-cycle arrest in colorectal cancer cells. Br. J. Cancer 2010, 102, 1746–1752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skeberdytė, A.; Sarapinienė, I.; Aleksander-Krasko, J.; Stankevičius, V.; Sužiedėlis, K.; Jarmalaitė, S. Dichloroacetate and Salinomycin Exert a Synergistic Cytotoxic Effect in Colorectal Cancer Cell Lines. Sci. Rep. 2018, 8, 17744. [Google Scholar] [CrossRef] [PubMed]
- Kolesnik, D.L.; Pyaskovskaya, O.N.; Boichuk, I.V.; Solyanik, G.I. Hypoxia enhances antitumor activity of dichloroacetate. Exp. Oncol. 2014, 36, 231–235. [Google Scholar] [PubMed]
- Joergensen, D.; Tazmini, K.; Jacobsen, D. Acute Dysnatremias-a dangerous and overlooked clinical problem. Scand. J. Trauma Resusc. Emerg. Med. 2019, 27, 58. [Google Scholar] [CrossRef] [PubMed]
# | Animal | DCA Treatment | N | Tumor Frequency in Treated Animals (%) | Reference | |||
---|---|---|---|---|---|---|---|---|
Species, Age | Gender | Dosage (g/L) | Duration (weeks) | Adenoma | Carcinoma | |||
1. | B6C3F1 mice, 4 weeks | Male | 5 | 61 | 26 | 96 * | 81 | [145] |
2. | B6C3F1 mice, 4.3 weeks | Male | 2.0 | 37 | 11 | 18.2 | 0 | [146] |
2.0 | 52 | 24 | 8.3 | 25 | ||||
Female | 2.0 | 52 | 10 | 0 | 0 | |||
3. | B6C3Fl mice, 4 weeks | Male | 3.5 | 60 | 30 | 100 | 67 | [147] |
5.0 | 60 | 30 | 80 | 83 | ||||
4. | B6C3Fl mice, 4 weeks | male | 0.5 | 104 | 24 | 42 | 63 | [148] |
5. | B6C3F1 mice, 8 weeks | male | 5.0 | 76 | 110 | 93 | 74 | [149] |
6. | B6C3F1 mice; 4 weeks | male | 1.0 | 104 | 13 | no data | 70.6 | [150] |
3.5 | 104 | 33 | no data | 100 | ||||
7. | B6C3Fl mice, 7–8 weeks | female | 1.0 | 51 | 50 | 15 | 0 | [155] |
1.0 | 82 | 50 | 25 | 3.6 | ||||
3.0 | 52 | 40 | 35 | 5 | ||||
3.0 | 82 | 40 | 84.2 | 26.3 | ||||
8. | B6C3Fl mice, 7 weeks | female | 3.0 | 31 | 10 | 0 | no data | [156] |
1.0 | 31 | 10 | 0 | no data | ||||
3.0 | 52 | 20 | 35 | 5 | ||||
1.0 | 52 | 19 | 15 | 0 | ||||
9. | B6C3F1 mice, 4 weeks | female | 0.5 | 104 | 25 | no data | 4.0 | [157] |
3.5 | 104 | 25 | no data | 92.0 | ||||
10. | B6C3F1 mice, 4–4.3 weeks | male | 0.5 | 52 | 10 | 10 | 0 | [151] |
1.0 | 52 | 10 | 10 | 0 | ||||
2.0 | 52 | 10 | 0 | 20 | ||||
3.5 | 52 | 10 | 50 | 50 | ||||
0.5 | 78 | 10 | 10 | 0 | ||||
1.0 | 78 | 10 | 20 | 20 | ||||
2.0 | 78 | 10 | 50 | 50 | ||||
3.5 | 78 | 10 | 50 | 70 | ||||
0.5 | 100 | 10 | 20 | 48 | ||||
1.0 | 100 | 10 | 51.4 | 71 | ||||
2.0 | 100 | 10 | 42.9 | 95 | ||||
3.5 | 100 | 10 | 45 | 100 | ||||
11. | B6C3F1 mice, 6 weeks | male | 0.5 | 52 | 20 | 20 | 5 | [152] |
2.0 | 52 | 19 | 52.6 | 5.3 | ||||
12. | B6C3F1 mice, 4 weeks | male | 1.0 | 84 | 27 | 48 | 30 | [154] |
2.0 | 84 | 27 | 41 | 32 | ||||
3.5 | 84 | 26 | 58 | 73 | ||||
female | 1.0 | 84 | 26 | 35 | 8 | |||
2.0 | 84 | 28 | 21 | 11 | ||||
13. | B6C3F1 mice, 4 weeks | male | 3.5 | 93 | 44 | 59 | 93 | [153] |
Treated and followed for up to 93 weeks: | ||||||||
3.5 | 4 | 28 | 25 | 82 | ||||
3.5 | 10 | 55 | 33 | 49 | ||||
3.5 | 26 | 54 | 41 | 59 | ||||
3.5 | 52 | 54 | 56 | 65 | ||||
14. | F344 rats, 4–4.3weeks | male | 0.5 | 104 | 23 | 17.2 | 10.3 | [133] |
1.6 (average) | 60 | 27 | 10.7 | 21.4 | ||||
15. | F344 rats, 4–4.3 weeks | male | 2.4 | 45 | 7 | 14 | 0 | [134] |
2.4 | 60 | 27 | 26 | 4 |
# | Animal | Xenografted Human Tumor Cells | Cell Line | DCA treatment | Reference | |||
---|---|---|---|---|---|---|---|---|
Species, Age (weeks) | Gender | Dosage, or Daily Dose, Administration Route | Duration (days) | Efficacy on Tumor Growth | ||||
Lung cancer | ||||||||
1. | Rats nude | unknown | non-small cell lung cancer | A549 | 75 mg/L per os (in drinking water) | 35 | ↓ tumor volume | [83] |
Rats nude | unknown | non-small cell lung cancer | A549 | 75 mg/L per os | 84 | ↓ tumor volume | ||
2. | Rats nude | unknown | non-small cell lung cancer | A549-ASC1 | 250 mg/kg twice daily I/P | 21 | no effect | [170] |
Rats nude | unknown | non-small cell lung cancer | A549-ASC1 | 75 mg/L per os | 21 | ↓ tumor volume | ||
3. | BALB/c-nu mice, 5–6 weeks | male | non-small cell lung cancer | A549 | 1.4 g/L per os | 30–35 | no effect | [182] |
4. | Rats nude | unknown | non-small cell lung cancer | A549 | 70 mg/L per os (50 mg/kg/day) | 28 | ↓ tumor volume | [171] |
5. | Mice BALB/c (nut/nut), 4–6 | male | lung adeno-carcinoma | A549/Taxol | 0.75 g/L per os | 7 | ↓ tumor volume | [172] |
Breast cancer | ||||||||
6. | Rats nude | unknown | breast carcinoma | CRL-2335 | 70 mg/L per os (50 mg/kg/day) | 10 | ↓ tumor volume | [171] |
7. | Mice BALB/c, 6–8 | female | breast adenocarcinoma | MDA-MB-231 | 100 mg/kg/day per os | 24 | ↓ tumor growth | [173] |
8. | Mice SCID, 6–8 | female | breast adenocarcinoma | MDA-MB-231/eGFP | 112 mg/kg/day per os | 114 | no effect | [183] |
9. | Mice BALB/c nude, 6–8 | female | breast adenocarcinoma | MDA-MB 231 | 156 mg/kg/day per os (gavage) | 21 | no effect | [9] |
Colon cancer | ||||||||
10. | Mice immune deficient RAG1 | unknown | colorectal cancer | SW480 | 150 mg/kg/day per os | 14 | ↑ tumor growth | [184] |
Mice immune deficient RAG1 | unknown | colorectal cancer | LS174T | 150 mg/kg/day per os | 9 | no effect | ||
11. | Mice nude, 6 | male | colorectal carcinoma | HCT116 | 100 μL of 1 mM, 1 mg/kg/day intraperitoneally (I/P) | 50 | ↓ tumor volume | [174] |
12. | Mice NCr nude | female | colorectal carcinoma | HT29 | 200 mg/kg/day per os | 4 | ↓ tumor growth | [175] |
13. | Mice nude, 6–8 | female | colon cancer | RKO | 50 mg/kg/day I/P | 40 | no effect | [185] |
14. | Mice nude, 6–8 | unknown | colorectal cancer | RKO | 50 mg/kg/day I/P | 15 | no effect | [186] |
Mice nude, 6–8 | unknown | colorectal cancer | RKOshHIF | 50 mg/kg/day I/P | 15 | no effect | ||
15. | Mice BALB/c-nu-nu, 6–8 | unknown | colon adenocarcinoma | WiDr | 150 mg/kg twice daily I/P | 5 | no effect | [187] |
16. | Mice NOD-SCID, 5–8 | unknown | N-myc amplified neuroblastoma | SKNBE2 xenograft | 2.5 mg/kg/day per os (gavage) | 28 (5 days a week/for 4 weeks) | no effect | [176] |
Mice NOD-SCID, 5–8 | unknown | N-myc amplified neuroblastoma | SKNBE2 xenograft | 25 mg/kg/day per os (gavage) | 28 (5 days a week/for 4 weeks) | ↓ tumor volume | ||
17. | Mice BALB/c- SCID, 6–8 | female | Glioblastoma | U87-MG | 50 mg/kg twice daily per os (gavage) | 14 | no effect | [188] |
Mice athymic nude, 4–8 | female | Glioblastoma | U118-MG | 50 mg/kg twice daily per os (gavage) | 100 | no effect | ||
18. | Mice BALB/c-nude, 6–8 | male | Glioblastoma | U87 | 70 mg/L per os | 39 | no effect | [189] |
19. | Mice BALB/c nude, 8 | female | glioblastoma | U87 | 150 mg/kg/day per os | 28 | ↓ tumor cell proli-feration. | [177] |
Other tumors | ||||||||
20. | Mice nude | unknown | pancreatic cancer | Su86.86 | 50 mg/kg/day I/P | 15 | ↓ tumor volume | [178] |
21. | Mice Harlan nude; 6 | female | pancreatic cancer | fresh pancreatic tumor specimen cells | 50 mg/kg/day I/P | 28 | ↓ tumor volume | [179] |
22. | Mice BALB/c nude, 6–8 | male | hepatocellular carcinoma | Hep3B | 0.5 g/L, 100 mg/kg/day per os | 21 | ↓ tumor volume | [180] |
23. | Mice BALB/c nude, 5–6 | male | Hepatoma | HCC-LM3 | 0,75 g/L per os | 35 | ↓ tumor volume | [53] |
24. | Mice nude, 6 | female | ovarian adenocarcinoma | SKOV3 | 50 mg/kg/day I/P | 8 | ↓ tumor volume | [181] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stakišaitis, D.; Juknevičienė, M.; Damanskienė, E.; Valančiūtė, A.; Balnytė, I.; Alonso, M.M. The Importance of Gender-Related Anticancer Research on Mitochondrial Regulator Sodium Dichloroacetate in Preclinical Studies In Vivo. Cancers 2019, 11, 1210. https://doi.org/10.3390/cancers11081210
Stakišaitis D, Juknevičienė M, Damanskienė E, Valančiūtė A, Balnytė I, Alonso MM. The Importance of Gender-Related Anticancer Research on Mitochondrial Regulator Sodium Dichloroacetate in Preclinical Studies In Vivo. Cancers. 2019; 11(8):1210. https://doi.org/10.3390/cancers11081210
Chicago/Turabian StyleStakišaitis, Donatas, Milda Juknevičienė, Eligija Damanskienė, Angelija Valančiūtė, Ingrida Balnytė, and Marta Maria Alonso. 2019. "The Importance of Gender-Related Anticancer Research on Mitochondrial Regulator Sodium Dichloroacetate in Preclinical Studies In Vivo" Cancers 11, no. 8: 1210. https://doi.org/10.3390/cancers11081210
APA StyleStakišaitis, D., Juknevičienė, M., Damanskienė, E., Valančiūtė, A., Balnytė, I., & Alonso, M. M. (2019). The Importance of Gender-Related Anticancer Research on Mitochondrial Regulator Sodium Dichloroacetate in Preclinical Studies In Vivo. Cancers, 11(8), 1210. https://doi.org/10.3390/cancers11081210