Potential Role of HLA Class I Antigens in the Glycolytic Metabolism and Motility of Melanoma Cells
Abstract
:1. Introduction
2. Results
2.1. Glycolysis Inhibition by the HLA-B,C-specific mAb B1.23.2
2.2. Glycolysis Inhibition by the HLA-B,C-specific mAb B1.23.2 in FO-1 Melanoma Cells with Restored HLA Class I Antigen Expression Mediated by Wild Type β2m Transfection
2.3. Inhibition by the HLA-B,C-specific mAb B1.23.2 of Melanoma Cell Motility
3. Discussion
4. Materials and Methods
4.1. Cell Lines and Culture Conditions
4.2. Monoclonal and Polyclonal Antibodies
4.3. Cell Treatments
4.4. Proliferation Assay
4.5. Flow Cytometer
4.6. Western Blotting Analysis
4.7. RNA Isolation and Quantitative PCR (qPCR)
4.8. Lactate Assay
4.9. Seahorse Analysis
4.10. Wound Healing Assay
4.11. Immunofluorescence
4.12. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gatenby, R.A.; Gillies, R.J. Why do cancers have high aerobic glycolysis? Nat. Rev. Cancer 2004, 4, 891–899. [Google Scholar] [CrossRef] [PubMed]
- Vander Heiden, M.G.; Cantley, L.C.; Thompson, C.B. Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science 2009, 324, 1029–1033. [Google Scholar] [CrossRef] [PubMed]
- Denko, N.C. Hypoxia, HIF1 and glucose metabolism in the solid tumor. Nat. Rev. Cancer 2008, 8, 705–713. [Google Scholar] [CrossRef] [PubMed]
- Peppicelli, S.; Bianchini, F.; Calorini, L. Extracellular acidity, a “reappreciated” trait of tumor environment driving malignancy: perspectives in diagnosis and therapy. Cancer Metastasis Rev. 2014, 33, 823–832. [Google Scholar] [CrossRef] [PubMed]
- Peppicelli, S.; Andreucci, E.; Ruzzolini, J.; Margheri, F.; Laurenzana, A.; Bianchini, F.; Calorini, L. Acidity of microenvironment as a further driver of tumor metabolic reprogramming. J. Clin. Cell Immunol. 2017, 8, 485. [Google Scholar] [CrossRef]
- Fruci, D.; Benevolo, M.; Cifaldi, L.; Lorenzi, S.; Lo Monaco, E.; Tremante, E.; Giacomini, P. Major histocompatibility complex class I and tumour immuno-evasion: how to fool T cells and natural killer cells at one time. Curr. Oncol. 2012, 19, 39–41. [Google Scholar] [CrossRef] [PubMed]
- Fishman, D.; Elhyany, S.; Segal, S. Non-immune functions of MHC class I glycoproteins in normal and malignant cells. Folia. Biol. (Praha) 2004, 50, 35–42. [Google Scholar]
- Medawar, P.B. Philosophy of ignorance. Nature 1978, 272, 772–774. [Google Scholar] [CrossRef]
- Wier, M.L.; Edidin, M. Effects of cell density and extracellular matrix on the lateral diffusion of Major Histocompatibility Antigens in cultured fibroblasts. J. Cell Biol. 1986, 103, 215–222. [Google Scholar] [CrossRef]
- Plillips, M.L.; Moule, M.L.; Dlovitch, T.L.; Yip, C.C. Class I histocompatibility antigens and insulin receptors: evidence for interactions. Proc. Natl. Acad. Sci. USA 1986, 83, 3474–3478. [Google Scholar] [CrossRef]
- Schreiber, A.B.; Schlessinger, J.; Edidin, M. Interaction between major histocompatibility complex antigens and epidermal growth factor receptors on human cells. J. Cell. Biol. 1984, 98, 725–731. [Google Scholar] [CrossRef]
- Sharon, M.; Gnarra, J.R.; Baniyash, M.; Leonard, W.J. Possible association between IL-2 receptors and class I HLA molecules on T cells. J. Immunol. 1988, 141, 3512–3515. [Google Scholar]
- Liegler, T.; Szollosi, J.; Hyun, W.; Goodenow, R.S. Proximity measurements between H-2 antigens and the insulin receptor by fluorescence energy transfer: evidence that a close association does not influence insulin binding. Proc. Natl. Acad. Sci. USA 1991, 88, 6755–6759. [Google Scholar] [CrossRef]
- Stagsted, J.; Reaven, G.M.; Hansen, T.; Goldstein, A.; Olsson, L. Regulation of insulin receptor functions by a peptide derived from a major histocompatibility complex class I antigen. Cell 1990, 62, 297–307. [Google Scholar] [CrossRef]
- D’Urso, C.M.; Wang, Z.G.; Cao, Y.; Tatake, R.; Zeff, R.A.; Ferrone, S. Lack of HLA class I antigen expression by cultured melanoma cells FO-1 due to a defect in B2m gene expression. J. Clin. Invest. 1991, 87, 284–292. [Google Scholar] [CrossRef]
- Turner, C.E. Paxillin interactions. J. Cell Sci. 2000, 113, 4139–4140. [Google Scholar]
- Rajendran, J.G.; Mankoff, D.A.; O’Sullivan, F.; Peterson, L.M.; Schwartz, D.L.; Conrad, E.U.; Spence, A.M.; Muzi, M.; Farwell, D.G.; Krohn, K.A. Hypoxia and glucose metabolism in malignant tumors: Evaluation by [18F] fluoromisonidazole and [18F] fluorodeoxyglucose positron emission tomography imaging. Clin. Cancer Res. 2004, 10, 2245–2252. [Google Scholar] [CrossRef]
- Bertolotto, C. Metabolism under the spotlight in senescence. Pigment Cell Melanoma Res. 2014, 27, 3–5. [Google Scholar] [CrossRef]
- Kaplon, J.; Zheng, L.; Meissl, K.; Chaneton, B.; Selivanov, V.A.; Mackay, G.; van der Burg, S.H.; Verdegaal, E.M.; Cascante, M.; Shlomi, T.; et al. A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene-induced senescence. Nature 2013, 498, 109–112. [Google Scholar] [CrossRef]
- Carr, E.L.; Kelman, A.; Wu, G.S.; Gopaul, R.; Senkevitch, E.; Aghvanyan, A.; Turay, A.M.; Frauwirth, K.A. Glutamine uptake and metabolism are coordinately regulated by ERK/MAPK during T lymphocyte activation. J. Immunol. 2010, 185, 1037–1044. [Google Scholar] [CrossRef]
- Nunes-Xavier, C.E.; Karlsen, K.F.; Tekle, C.; Pedersen, C.; Øyjord, T.; Hongisto, V.; Nesland, J.M.; Tan, M.; Sahlberg, K.K.; Fodstad, Ø. Decreased expression of B7-H3 reduces the glycolytic capacity and sensitizes breast cancer cells to AKT/mTOR inhibitors. Oncotarget 2016, 7, 6891–6901. [Google Scholar] [CrossRef] [Green Version]
- Lim, S.; Liu, H.; Madeira da Silva, L.; Arora, R.; Liu, Z.; Phillips, J.B.; Schmitt, D.C.; Vu, T.; McClellan, S.; Lin, Y.; et al. Immunoregulatory Protein B7-H3 Reprograms Glucose Metabolism in Cancer Cells by ROS-Mediated Stabilization of HIF1α. Cancer Res. 2016, 76, 2231–2242. [Google Scholar] [CrossRef]
- Masters, C. Interactions between glycolytic enzymes and components of the cytomatrix. J. Cell Biol. 1984, 99, 222s–225s. [Google Scholar] [CrossRef]
- Glass-Marmor, L.; Beitner, R. Detachment of glycolytic enzymes from cytoskeleton of melanoma cells induced by calmodulin antagonists. Eur. J. Pharmacol. 1997, 328, 241–248. [Google Scholar] [CrossRef]
- Shiraishi, T.; Verdone, J.E.; Huang, J.; Kahlert, U.D.; Hernandez, J.R.; Torga, G.; Zarif, J.C.; Epstein, T.; Gatenby, R.; McCartney, A.; et al. Glycolysis is the primary bioenergetic pathway for cell motility and cytoskeletal remodeling in human prostate and breast cancer cells. Oncotarget 2015, 6, 130–143. [Google Scholar] [CrossRef]
- Heiss, E.H.; Schachner, D.; Donati, M.; Grojer, C.S.; Dirsch, V.M. Increased aerobic glycolysis is important for the motility of activated VSMC and inhibited by indirubin-3′-monoxime. Vascul. Pharmacol. 2016, 83, 47–56. [Google Scholar] [CrossRef]
- Peppicelli, S.; Toti, A.; Giannoni, E.; Bianchini, F.; Margheri, F.; Del Rosso, M.; Calorini, L. Metformin is also effective on lactic acidosis-exposed melanoma cells switched to oxidative phosphorylation. Cell Cycle 2016, 14, 1908–1918. [Google Scholar] [CrossRef]
- Chen, T.R. In situ detection of mycoplasma contamination in cell cultures by fluorescent Hoechst 33258 stain. Exp. Cell Res. 1977, 104, 255–262. [Google Scholar] [CrossRef]
- Wang, X.; Liang, B.; Rebmann, V.; Lu, J.; Celis, E.; Kageshita, T.; Grosse-Wilde, H.; Ferrone, S. Specificity and functional characteristics of anti-HLA-A mAbs LGIII-147.4.1 and LGIII-220.6.2. Tissue Antigens 2003, 62, 139–148. [Google Scholar] [CrossRef]
- Rebaï, N.; Malissen, B. Structural and genetic analyses of HLA class I molecules using monoclonal xenoantibodies. Tissue Antigens 1983, 22, 107–117. [Google Scholar] [CrossRef]
- Temponi, M.; Kekish, U.; Hamby, C.V.; Nielsen, H.; Marboe, C.C.; Ferrone, S. Characterization of anti-HLA class II monoclonal antibody LGII-612.14 reacting with formalin fixed tissues. J. Immunol. Methods 1993, 161, 239–256. [Google Scholar] [CrossRef]
- Ruzzolini, J.; Peppicelli, S.; Andreucci, E.; Bianchini, F.; Margheri, F.; Laurenzana, A.; Fibbi, G.; Pimpinelli, N.; Calorini, L. Everolimus selectively targets vemurafenib resistant BRAF(V600E) melanoma cells adapted to low pH. Cancer Lett. 2017, 408, 43–54. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 [-Delta Delta C(T)] Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Peppicelli, S.; Ruzzolini, J.; Bianchini, F.; Andreucci, E.; Nediani, C.; Laurenzana, A.; Margheri, F.; Fibbi, G.; Calorini, L. Anoikis Resistance as a Further Trait of Acidic-Adapted Melanoma Cells. J. Oncol. 2019, 2019. [Google Scholar] [CrossRef]
Gene | FW | RV |
---|---|---|
GLUT1 | 5′-CGGGCCAAGAGTGTGCTAAA-3′ | 5′-TGACGATACCGGAGCCAATG-3′ |
GLUT3 | 5′-CGAACTTCCTAGTCGGATTG-3′ | 5′-AGGAGGCACGACTTAGACAT-3′ |
LDHA | 5′-AGCCCGATTCCGTTACCT-3′ | 5′-CACCAGCAACATTCATTCCA-3′ |
PKM2 | 5′-CAGAGGCTGCCATCTACCAC-3′ | 5′-CCAGACTTGGTGAGGACGAT-3′ |
PDK1 | 5′-CCAAGACCTCGTGTTGAGACC-3′ | 5′-AATACAGCTTCAGGTCTCCTTGG-3′ |
HK2 | 5′-CAAAGTGACAGTGGGTGTGG-3′ | 5′-GCCAGGTCCTTCACTGTCTC-3′ |
18s | 5′-CGCCGCTAGAGGTGAAATTCT-3′ | 5′-CGAACCTCCGACTTTCGTTCT-3′ |
PGC1a | 5′-GGGAAAGTGAGCGATTAGTTGAG-3′ | 5′-CATGTAGAATTGGCAGGTGGAA-3′ |
PDP2 | 5′-ACCACCTCCGTGTCTATTGG-3′ | 5′-CCAGCGAGATGTCAGAATCC-3′ |
CytC | 5′-TTGCACTTACACCGGTACTTAAGC-3′ | 5′-ACGTCCCCACTCTCTAAGTCCAA-3′ |
GLS1 | 5′-TGCTACCTGTCTCCATGGCTT-3′ | 5′-CTTAGATGGCACCTCCTTTGG-3′ |
GLS2 | 5′-TGCCTATAGTGGCGATGTCTCA-3′ | 5′-GTTCCATATCCATGGCTGACAA-3′ |
ASCT2 | 5′-GGTGGCTGGCAAGATCGT-3′ | 5′-CCAAGGCGGGCAAAGAG-3′ |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peppicelli, S.; Ruzzolini, J.; Andreucci, E.; Bianchini, F.; Kontos, F.; Yamada, T.; Ferrone, S.; Calorini, L. Potential Role of HLA Class I Antigens in the Glycolytic Metabolism and Motility of Melanoma Cells. Cancers 2019, 11, 1249. https://doi.org/10.3390/cancers11091249
Peppicelli S, Ruzzolini J, Andreucci E, Bianchini F, Kontos F, Yamada T, Ferrone S, Calorini L. Potential Role of HLA Class I Antigens in the Glycolytic Metabolism and Motility of Melanoma Cells. Cancers. 2019; 11(9):1249. https://doi.org/10.3390/cancers11091249
Chicago/Turabian StylePeppicelli, Silvia, Jessica Ruzzolini, Elena Andreucci, Francesca Bianchini, Filippos Kontos, Teppei Yamada, Soldano Ferrone, and Lido Calorini. 2019. "Potential Role of HLA Class I Antigens in the Glycolytic Metabolism and Motility of Melanoma Cells" Cancers 11, no. 9: 1249. https://doi.org/10.3390/cancers11091249
APA StylePeppicelli, S., Ruzzolini, J., Andreucci, E., Bianchini, F., Kontos, F., Yamada, T., Ferrone, S., & Calorini, L. (2019). Potential Role of HLA Class I Antigens in the Glycolytic Metabolism and Motility of Melanoma Cells. Cancers, 11(9), 1249. https://doi.org/10.3390/cancers11091249