BRAF Inhibitors in Thyroid Cancer: Clinical Impact, Mechanisms of Resistance and Future Perspectives
Abstract
:1. Introduction: Epidemiology, Classification and Molecular Features of Thyroid Cancer
2. BRAF Signaling in Cancer
3. Role of BRAFV600E Mutation in Thyroid Cancer
4. BRAF Inhibitors in Thyroid Cancer Treatment and Mechanisms of Resistance
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bikas, A.; Burman, K.D. Epidemiology of thyroid cancer. In The Thyroid and Its Diseases; Luster, M., Duntas, L., Wartofsky, L., Eds.; Springer: Cham, Switzerland, 2019; pp. 541–547. [Google Scholar]
- Kondo, T.; Ezzat, S.; Asa, S.L. Pathogenetic mechanisms in thyroid follicular-cell neoplasia. Nat. Rev. Cancer 2006, 6, 292–306. [Google Scholar] [CrossRef] [PubMed]
- Asa, S.L. The current histologic classification of thyroid cancer. Endocrinol. Metab. Clin. N. Am. 2019, 48, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Leboulleux, S.; Baudin, E.; Travagli, J.-P.; Schlumberger, M. Medullary thyroid carcinoma. Clin. Endocrinol. 2004, 61, 299–310. [Google Scholar] [CrossRef] [PubMed]
- Yeung, M.J.; Pasieka, J.L. Well-differentiated thyroid carcinomas: Management of the central lymph node compartment and emerging biochemical markers. J. Oncol. 2011, 2011, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Saini, S.; Tulla, K.; Maker, A.V.; Burman, K.D.; Prabhakar, B.S. Therapeutic advances in anaplastic thyroid cancer: A current perspective. Mol. Cancer 2018, 17, 1–14. [Google Scholar] [CrossRef] [PubMed]
- DeLellis, R.A. World Health Organization; International Agency for Research on Cancer Poorly differentiated carcinoma. In Pathology and Genetics of Tumours of Endocrine Organs; IARC Press: Lyon, France, 2004; pp. 73–76. [Google Scholar]
- Volante, M.; Landolfi, S.; Chiusa, L.; Palestini, N.; Motta, M.; Codegone, A.; Torchio, B.; Papotti, M.G. Poorly differentiated carcinomas of the thyroid with trabecular, insular, and solid patterns: A clinicopathologic study of 183 patients. Cancer 2004, 100, 950–957. [Google Scholar] [CrossRef] [PubMed]
- Espinosa, A.V.; Porchia, L. Targeting BRAF in thyroid cancer. Br. J. Cancer 2007, 96, 16–20. [Google Scholar] [CrossRef]
- Xing, M. Molecular pathogenesis and mechanisms of thyroid cancer. Nat. Rev. Cancer 2013, 13, 184–199. [Google Scholar] [CrossRef]
- Pozdeyev, N.; Lund, G.; McDermott, M.T. Molecular pathogenesis of thyroid cancer and oncogenes in thyroid cancer. In Thyroid Cancer; Wartofsky, L., Van Nostrand, D., Eds.; Springer: New York, NY, USA, 2016; pp. 17–30. [Google Scholar]
- Tavares, C.; Melo, M.; Cameselle-Teijeiro, J.M.; Soares, P.; Sobrinho-Simões, M. Genetic predictors of thyroid cancer outcome. Eur. J. Endocrinol. 2016, 174, R117–R126. [Google Scholar] [CrossRef]
- Motoi, N.; Sakamoto, A.; Yamochi, T.; Horiuchi, H.; Motoi, T.; Machinami, R. Role of ras mutation in the progression of thyroid carcinoma of follicular epithelial origin. Pathol. Res. Pract. 2000, 196, 1–7. [Google Scholar] [CrossRef]
- Santoro, M.; Melillo, R.M.; Fusco, A. RET/PTC activation in papillary thyroid carcinoma: European Journal of Endocrinology prize lecture. Eur. J. Endocrinol. 2006, 155, 645–653. [Google Scholar] [CrossRef] [PubMed]
- Xing, M. BRAF mutation in thyroid cancer. Endocr. Relat. Cancer 2005, 12, 245–262. [Google Scholar] [Green Version]
- Rusinek, D.; Chmielik, E.; Krajewska, J.; Jarzab, M.; Oczko-Wojciechowska, M.; Czarniecka, A.; Jarzab, B. Current advances in thyroid cancer management. Are we ready for the epidemic rise of diagnoses? Int. J. Mol. Sci. 2017, 18, 1817. [Google Scholar] [CrossRef] [PubMed]
- Hertzman Johansson, C.; Egyhazi Brage, S. BRAF inhibitors in cancer therapy. Pharmacol. Ther. 2014, 142, 176–182. [Google Scholar] [CrossRef]
- Hussain, M.R.M.; Baig, M.; Mohamoud, H.S.A.; Ulhaq, Z.; Hoessli, D.C.; Khogeer, G.S.; Al-Sayed, R.R.; Al-Aama, J.Y. BRAF gene: From human cancers to developmental syndromes. Saudi J. Biol. Sci. 2015, 22, 359–373. [Google Scholar] [CrossRef]
- Chong, H.; Lee, J.; Guan, K.L. Positive and negative regulation of Raf kinase activity and function by phosphorylation. EMBO J. 2001, 20, 3716–3727. [Google Scholar] [CrossRef] [Green Version]
- Chang, F.; Steelman, L.S.; Lee, J.T.; Shelton, J.G.; Navolanic, P.M.; Blalock, W.L.; Franklin, R.A.; McCubrey, J.A. Signal transduction mediated by the Ras/Raf/MEK/ERK pathway from cytokine receptors to transcription factors: Potential targeting for therapeutic intervention. Leukemia 2003, 17, 1263–1293. [Google Scholar] [CrossRef]
- Stefan, E.; Bister, K. MYC and RAF: Key effectors in cellular signaling and major drivers in human cancer. Curr. Top. Microbiol. Immunol. 2017, 407, 117–151. [Google Scholar]
- Dhillon, A.S.; Hagan, S.; Rath, O.; Kolch, W. MAP kinase signalling pathways in cancer. Oncogene 2007, 26, 3279–3290. [Google Scholar] [CrossRef] [Green Version]
- Delrieu, V.; Springael, C.; Wu, K.L.; Verhoef, G.; Janssens, A. BHS guidelines for the diagnosis and the treatment of hairy cell leukaemia. Belg. J. Hematol. 2017, 8, 222–228. [Google Scholar]
- Flaherty, K.T.; McArthur, G. BRAF, a target in melanoma: Implications for solid tumor drug development. Cancer 2010, 116, 4902–4913. [Google Scholar] [CrossRef] [PubMed]
- Sadłecki, P.; Walentowicz-Sadłecka, M.; Grabiec, M. Molecular diagnosis in type I epithelial ovarian cancer. Ginekol. Pol. 2018, 88, 692–697. [Google Scholar] [CrossRef] [PubMed]
- Clarke, C.N.; Kopetz, E.S. BRAF mutant colorectal cancer as a distinct subset of colorectal cancer: Clinical characteristics, clinical behavior, and response to targeted therapies. J. Gastrointest. Oncol. 2015, 6, 660–667. [Google Scholar] [PubMed]
- Pao, W.; Girard, N. New driver mutations in non-small-cell lung cancer. Lancet Oncol. 2011, 12, 175–180. [Google Scholar] [CrossRef]
- Davies, H.; Bignell, G.R.; Cox, C.; Stephens, P.; Edkins, S.; Clegg, S.; Teague, J.; Woffendin, H.; Garnett, M.J.; Bottomley, W.; et al. Mutations of the BRAF gene in human cancer. Nature 2002, 417, 949–954. [Google Scholar] [CrossRef]
- Ross, J.S.; Wang, K.; Chmielecki, J.; Gay, L.; Johnson, A.; Chudnovsky, J.; Yelensky, R.; Lipson, D.; Ali, S.M.; Elvin, J.A.; et al. The distribution of BRAF gene fusions in solid tumors and response to targeted therapy. Int. J. Cancer 2016, 138, 881–890. [Google Scholar] [CrossRef] [PubMed]
- Johnson, D.B.; Childress, M.A.; Chalmers, Z.R.; Frampton, G.M.; Ali, S.M.; Rubinstein, S.M.; Fabrizio, D.; Ross, J.S.; Balasubramanian, S.; Miller, V.A.; et al. BRAF internal deletions and resistance to BRAF/MEK inhibitor therapy. Pigment Cell Melanoma Res. 2018, 31, 432–436. [Google Scholar] [CrossRef]
- Chen, S.H.; Zhang, Y.; van Horn, R.D.; Yin, T.; Buchanan, S.; Yadav, V.; Mochalkin, I.; Wong, S.S.; Yue, Y.G.; Huber, L.; et al. Oncogenic BRAF deletions that function as homodimers and are sensitive to inhibition by RAF dimer inhibitor LY3009120. Cancer Discov. 2016, 6, 300–315. [Google Scholar] [CrossRef]
- Kulkarni, A.; Al-Hraishawi, H.; Simhadri, S.; Hirshfield, K.M.; Chen, S.; Pine, S.; Jeyamohan, C.; Sokol, L.; Ali, S.; Teo, M.L.; et al. BRAF fusion as a novel mechanism of acquired resistance to vemurafenib in BRAFV600E mutant melanoma. Clin. Cancer Res. 2017, 23, 5631–5638. [Google Scholar] [CrossRef]
- Leicht, D.T.; Balan, V.; Kaplun, A.; Singh-Gupta, V.; Kaplun, L.; Dobson, M.; Tzivion, G. Raf kinases: Function, regulation and role in human cancer. Biochim. Biophys. Acta Mol. Cell Res. 2007, 1773, 1196–1212. [Google Scholar] [CrossRef] [Green Version]
- Trovisco, V.; Soares, P.; Sobrinho-Simões, M. B-RAF mutations in the etiopathogenesis, diagnosis, and prognosis of thyroid carcinomas. Hum. Pathol. 2006, 37, 781–786. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; Lee, J.; Soh, E.Y. The Clinical Significance of the BRAF Mutation in Patients with Papillary Thyroid Cancer. J. Endocr. Surg. 2017, 17, 175–183. [Google Scholar] [CrossRef] [Green Version]
- Czarniecka, A.; Oczko-Wojciechowska, M.; Barczyński, M. BRAF V600E mutation in prognostication of papillary thyroid cancer (PTC) recurrence. Gland Surg. 2016, 5, 495–505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elisei, R.; Ugolini, C.; Viola, D.; Lupi, C.; Biagini, A.; Giannini, R.; Romei, C.; Miccoli, P.; Pinchera, A.; Basolo, F. BRAF(V600E) mutation and outcome of patients with papillary thyroid carcinoma: A 15-year median follow-up study. J. Clin. Endocrinol. Metab. 2008, 93, 3943–3949. [Google Scholar] [CrossRef] [PubMed]
- Niederer-Wüst, S.M.; Jochum, W.; Förbs, D.; Brändle, M.; Bilz, S.; Clerici, T.; Oettli, R.; Müller, J.; Haile, S.R.; Ess, S.; et al. Impact of clinical risk scores and BRAF V600E mutation status on outcome in papillary thyroid cancer. Surgery 2016, 157, 119–125. [Google Scholar] [CrossRef]
- Damiani, L.; Lupo, S.; Rossi, R.; Bruni, S.; Bartolomei, M.; Panareo, S.; Franceschetti, P.; Carcoforo, P.; Lanza, G.; Pelucchi, S.; et al. Evaluation of the Role of BRAFV600E Somatic Mutation on Papillary Thyroid Cancer Disease Persistence: A Prospective Study. Eur. Thyroid. J. 2018, 7, 251–257. [Google Scholar] [CrossRef]
- Subbiah, V.; Cabanillas, M.E.; Kreitman, R.J.; Wainberg, Z.A.; Cho, J.Y.; Keam, B.; Schellens, J.H.M.; Soria, J.C.; Wen, P.Y.; Zielinski, C.; et al. Dabrafenib and trametinib treatment in patients with locally advanced or metastatic BRAF V600–mutant anaplastic thyroid cancer. J. Clin. Oncol. 2018, 36, 7–13. [Google Scholar] [CrossRef]
- Guerra, A.; Di Crescenzo, V.; Garzi, A.; Cinelli, M.; Carlomagno, C.; Tonacchera, M.; Zeppa, P.; Vitale, M. Genetic mutations in the treatment of anaplastic thyroid cancer: A systematic review. BMC Surg. 2013, 13, S44. [Google Scholar] [CrossRef]
- Hu, S.; Liu, D.; Tufano, R.P.; Carson, K.A.; Rosenbaum, E.; Cohen, Y.; Holt, E.H.; Kiseljak-Vassiliades, K.; Rhoden, K.J.; Tolaney, S.; et al. Association of aberrant methylation of tumor suppressor genes with tumor aggressiveness and BRAF mutation in papillary thyroid cancer. Int. J. Cancer 2006, 119, 2322–2329. [Google Scholar] [CrossRef]
- Tang, K.T.; Lee, C.H. BRAF mutation in papillary thyroid carcinoma: Pathogenic role and clinical implications. J. Chin. Med. Assoc. 2010, 73, 113–128. [Google Scholar] [CrossRef]
- Durante, C.; Puxeddu, E.; Ferretti, E.; Morisi, R.; Moretti, S.; Bruno, R.; Barbi, F.; Avenia, N.; Scipioni, A.; Verrienti, A.; et al. BRAF mutations in papillary thyroid carcinomas inhibit genes involved in iodine metabolism. J. Clin. Endocrinol. Metab. 2007, 92, 2840–2843. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Hu, S.; Hou, P.; Jiang, D.; Condouris, S.; Xing, M. Suppression of BRAF/MEK/MAP kinase pathway restores expression of iodide-metabolizing genes in thyroid cells expressing the V600E BRAF mutant. Clin. Cancer Res. 2007, 13, 1341–1349. [Google Scholar] [CrossRef]
- Mian, C.; Barollo, S.; Pennelli, G.; Pavan, N.; Rugge, M.; Pelizzo, M.R.; Mazzarotto, R.; Casara, D.; Nacamulli, D.; Mantero, F.; et al. Molecular characteristics in papillary thyroid cancers (PTCs) with no 131I uptake. Clin. Endocrinol. 2008, 68, 108–116. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.; Liu, R.; Zhu, G.; Wang, H.; Xing, M. Robust thyroid gene expression and radioiodine uptake induced by simultaneous suppression of BRAF V600E and histone deacetylase in thyroid cancer cells. J. Clin. Endocrinol. Metab. 2016, 101, 962–971. [Google Scholar] [CrossRef] [PubMed]
- Lupi, C.; Giannini, R.; Ugolini, C.; Proietti, A.; Berti, P.; Minuto, M.; Materazzi, G.; Elisei, R.; Santoro, M.; Miccoli, P.; et al. Extensive clinical experience: Association of BRAF V600E mutation with poor clinicopathological outcomes in 500 consecutive cases of papillary thyroid carcinoma. J. Clin. Endocrinol. Metab. 2007, 92, 4085–4090. [Google Scholar] [CrossRef]
- Li, C.; Aragon Han, P.; Lee, K.C.; Lee, L.C.; Fox, A.C.; Beninato, T.; Thiess, M.; Dy, B.M.; Sebo, T.J.; Thompson, G.B.; et al. Does BRAF V600e mutation predict aggressive features in papillary thyroid cancer? Results from four endocrine surgery centers. J. Clin. Endocrinol. Metab. 2013, 98, 3702–3712. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Chen, T.; Liu, Z. Associations between BRAF and prognostic factors and poor outcomes in papillary thyroid carcinoma: A meta-analysis. World J. Surg. Oncol. 2016, 14, 1–12. [Google Scholar] [CrossRef]
- Cabanillas, M.E.; Patel, A.; Danysh, B.P.; Dadu, R.; Kopetz, S.; Falchook, G. BRAF inhibitors: Experience in thyroid cancer and general review of toxicity. Horm. Cancer 2015, 6, 21–36. [Google Scholar] [CrossRef] [PubMed]
- Brose, M.S.; Nutting, C.M.; Jarzab, B.; Elisei, R.; Siena, S.; Bastholt, L.; De La Fouchardiere, C.; Pacini, F.; Paschke, R.; Shong, Y.K.; et al. Sorafenib in radioactive iodine-refractory, locally advanced or metastatic diff erentiated thyroid cancer: A randomised, double-blind, phase 3 trial. Lancet 2014, 384, 319–328. [Google Scholar] [CrossRef]
- Brose, M.S.; Troxel, A.B.; Redlinger, M.; Harlacker, K.; Redlinger, C.; Chalian, A.A.; Flaherty, T.; Loevner, L.A.; Mandel, S.J.; O’Dwyer, P.J. Effect of BRAFV600E on response to sorafenib in advanced thyroid cancer patients. J. Clin. Oncol. 2009, 27, 6002. [Google Scholar]
- Schlumberger, M.; Tahara, M.; Wirth, L.J.; Robinson, B.; Brose, M.S.; Ph, D.; Elisei, R.; Hoff, A.O.; Gianoukakis, A.G.; Kiyota, N.; et al. Lenvatinib versus placebo in radioiodine- refractory thyroid cancer. N. Engl. J. Med. 2015, 327, 621–630. [Google Scholar] [CrossRef] [PubMed]
- Valerio, L.; Pieruzzi, L.; Giani, C.; Agate, L.; Bottici, V.; Lorusso, L.; Cappagli, V.; Puleo, L.; Matrone, A.; Viola, D.; et al. Targeted therapy in thyroid cancer: State of the art. Clin. Oncol. 2017, 29, 316–324. [Google Scholar] [CrossRef] [PubMed]
- Garbe, C.; Eigentler, T.K. Small Molecules in Oncology. In Small Molecules in Oncology. Recent Results in Cancer Research; Martens, U.M., Ed.; Springer: Cham, Switzerland, 2018; Volume 201, pp. 77–89. [Google Scholar]
- Fiskus, W.; Mitsiades, N. B-Raf inhibition in the clinic: Present and future. Annu. Rev. Med. 2016, 67, 29–43. [Google Scholar] [CrossRef] [PubMed]
- Falchook, G.S.; Long, G.V.; Kurzrock, R.; Kim, K.B.; Arkenau, T.H.; Brown, M.P.; Hamid, O.; Infante, J.R.; Millward, M.; Pavlick, A.C.; et al. RAF Inhibitor Dabrafenib (GSK2118436) is active in melanoma brain metastases, multiple BRAF genotypes and diverse cancers. Lancet 2012, 379, 1893–1901. [Google Scholar] [CrossRef]
- Dunn, L.A.; Sherman, E.J.; Baxi, S.S.; Tchekmedyian, V.; Grewal, R.K.; Larson, S.M.; Pentlow, K.S.; Haque, S.; Tuttle, R.M.; Sabra, M.M.; et al. Vemurafenib redifferentiation of BRAF mutant, RAI-refractory thyroid cancers. J. Clin. Endocrinol. Metab. 2019, 104, 1417–1428. [Google Scholar] [CrossRef]
- Brose, M.S.; Cabanillas, M.E.; Cohen, E.E.W.; Wirth, L.J.; Riehl, T.; Yue, H.; Sherman, S.I.; Sherman, E.J. Vemurafenib in patients with BRAFV600E-positive metastatic or unresectable papillary thyroid cancer refractory to radioactive iodine: A non-randomised, multicentre, open-label, phase 2 trial. Lancet Oncol. 2016, 17, 1272–1282. [Google Scholar] [CrossRef]
- Falchook, G.S.; Millward, M.; Hong, D.; Naing, A.; Piha-Paul, S.; Waguespack, S.G.; Cabanillas, M.E.; Sherman, S.I.; Ma, B.; Curtis, M.; et al. BRAF Inhibitor Dabrafenib in patients with metastatic BRAF-mutant thyroid cancer. Thyroid 2014, 25, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Lirov, R.; Worden, F.P.; Cohen, M.S. The treatment of advanced thyroid cancer in the age of novel targeted therapies. Drugs 2017, 77, 733–745. [Google Scholar] [CrossRef]
- Rothenberg, S.M.; McFadden, D.G.; Palmer, E.L.; Daniels, G.H.; Wirth, L.J. Redifferentiation of iodine-refractory BRAF V600E-mutant metastatic papillary thyroid cancer with dabrafenib. Clin. Cancer Res. 2015, 21, 1028–1035. [Google Scholar] [CrossRef]
- Duquette, M.; Sadow, P.M.; Husain, A.; Sims, J.N.; Antonello, Z.A.; Fischer, A.H.; Song, C.; Castellanos-Rizaldos, E.; Makrigiorgos, G.M.; Kurebayashi, J.; et al. Metastasis-associated MCL1 and P16 copy number alterations dictate resistance to vemurafenib in a BRAFV600E patient-derived papillary thyroid carcinoma preclinical model. Oncotarget 2015, 6, 42445–42467. [Google Scholar] [CrossRef]
- Roelli, M.A.; Ruffieux-Daidié, D.; Stooss, A.; ElMokh, O.; Phillips, W.A.; Dettmer, M.S.; Charles, R.-P. PIK3CAH1047R-induced paradoxical ERK activation results in resistance to BRAFV600E specific inhibitors in BRAFV600E PIK3CAH1047R double mutant thyroid tumors. Oncotarget 2017, 8, 103207–103222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danysh, B.P.; Rieger, E.Y.; Sinha, D.K.; Evers, C.V.; Cote, G.J.; Cabanillas, M.E.; Hofmann, M.-C. Long-term vemurafenib treatment drives inhibitor resistance through a spontaneous KRAS G12D mutation in a BRAF V600E papillary thyroid carcinoma model. Oncotarget 2016, 7, 30907–30923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ofir Dovrat, T.; Sokol, E.; Frampton, G.; Shachar, E.; Pelles, S.; Geva, R.; Wolf, I. Unusually long-term responses to vemurafenib in BRAF V600E mutated colon and thyroid cancers followed by the development of rare RAS activating mutations. Cancer Biol. Ther. 2018, 19, 871–874. [Google Scholar] [CrossRef] [PubMed]
- Antonello, Z.A.; Hsu, N.; Bhasin, M.; Roti, G.; Joshi, M.; Van Hummelen, P.; Ye, E.; Lo, A.S.; Karumanchi, S.A.; Bryke, C.R.; et al. Vemurafenib-resistance via de novo RBM genes mutations and chromosome 5 aberrations is overcome by combined therapy with palbociclib in thyroid carcinoma with BRAFV600E. Oncotarget 2017, 8, 84743–84760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montero-Conde, C.; Ruiz-Llorente, S.; Dominguez, J.M.; Knauf, J.A.; Viale, A.; Sherman, E.J.; Ryder, M.; Ghossein, R.A.; Rosen, N.; Fagin, J.A. Relief of feedback inhibition of HER3 transcription by RAF and MEK inhibitors attenuates their antitumor effects in BRAF -mutant thyroid carcinomas. Cancer Discov. 2013, 3, 520–533. [Google Scholar] [CrossRef] [PubMed]
- Byeon, H.K.; Na, H.J.; Yang, Y.J.; Kwon, H.J.; Chang, J.W.; Ban, M.J.; Kim, W.S.; Shin, D.Y.; Lee, E.J.; Koh, Y.W.; et al. c-Met-mediated reactivation of PI3K/AKT signaling contributes to insensitivity of BRAF(V600E) mutant thyroid cancer to BRAF inhibition. Mol. Carcinog. 2016, 55, 1678–1687. [Google Scholar] [CrossRef] [PubMed]
- Notarangelo, T.; Sisinni, L.; Trino, S.; Calice, G.; Landriscina, M. IL6/STAT3 axis mediates resistance to BRAF inhibitors in thyroid carcinoma cells. Cancer Lett. 2018, 433, 147–155. [Google Scholar] [CrossRef]
- Notarangelo, T.; Sisinni, L.; Condelli, V.; Landriscina, M. Dual EGFR and BRAF blockade overcomes resistance to vemurafenib in BRAF mutated thyroid carcinoma cells. Cancer Cell Int. 2017, 17, 86. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Zhang, C.; Hu, C.; Yu, Y.; Zheng, X.; Li, Y.; Gao, M. EGFR inhibition enhances the antitumor efficacy of a selective BRAF V600E inhibitor in thyroid cancer cell lines. Oncol. Lett. 2018, 15, 6763–6769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanly, E.K.; Bednarczyk, R.B.; Tuli, N.Y.; Moscatello, A.L.; Halicka, H.D.; Li, J.; Geliebter, J.; Darzynkiewicz, Z.; Tiwari, R.K. mTOR inhibitors sensitize thyroid cancer cells to cytotoxic effect of vemurafenib. Oncotarget 2015, 6, 39702–39713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Chen, D. Synergistic inhibition of MEK/ERK and BRAFV600E with PD98059 and PLX4032 induces sodium /iodide symporter (NIS) expression and radioiodine uptake in BRAF mutated papillary thyroid cancer cells. Thyroid Res. 2018, 11, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Zhang, J.; Ning, L.; Zhang, H.; Chen, D.; Jiao, X.; Zhang, K. The MEK1/2 inhibitor AZD6244 sensitizes BRAF-mutant thyroid cancer to vemurafenib. Med. Sci. Monit. 2018, 24, 3002–3010. [Google Scholar] [CrossRef] [PubMed]
- Tsumagari, K.; Elmageed, Z.Y.A.; Sholl, A.B.; Green, E.A.; Sobti, S.; Khan, A.R.; Kandil, A.; Murad, F.; Friedlander, P.; Boulares, A.H.; et al. Bortezomib sensitizes thyroid cancer to BRAF inhibitor in vitro and in vivo. Endocr. Relat. Cancer 2018, 25, 99–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeong, J.H.; Oh, J.M.; Jeong, S.Y.; Lee, S.; Lee, J.; Ahn, C.; Jeong, J.H. Combination treatment with BRAF BH3 mimetic, navitoclax, for BRAF mutant thyroid carcinoma. Thyroid 2019, 29, 540–548. [Google Scholar] [CrossRef]
- Gibson, W.J.; Ruan, D.T.; Paulson, V.A.; Barletta, J.A.; Hanna, G.J.; Kraft, S.; Calles, A.; Nehs, M.A.; Jr, F.D.M.; Taylor-weiner, A.; et al. Genomic heterogeneity and exceptional response to dual pathway inhibition in anaplastic thyroid cancer. Clin. Cancer Res. 2017, 23, 2367–2374. [Google Scholar] [CrossRef]
- Sos, M.L.; Levin, R.S.; Gordan, J.D.; Oses-Prieto, J.A.; Webber, J.T.; Salt, M.; Hann, B.; Burlingame, A.L.; McCormick, F.; Bandyopadhyay, S.; et al. Oncogene mimicry as a mechanism of primary resistance to BRAF inhibitors. Cell Rep. 2014, 8, 1037–1048. [Google Scholar] [CrossRef]
- Landriscina, M.; Pannone, G.; Piscazzi, A.; Toti, P.; Fabiano, A.; Tortorella, S.; Occhini, R.; Ambrosi, A.; Bufo, P.; Cignarelli, M. Epidermal growth factor receptor 1 expression is upregulated in undifferentiated thyroid carcinomas in humans. Thyroid 2011, 21, 1227–1234. [Google Scholar] [CrossRef]
- Prahallad, A.; Sun, C.; Huang, S.; Di Nicolantonio, F.; Salazar, R.; Zecchin, D.; Beijersbergen, R.L.; Bardelli, A.; Bernards, R. Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature 2012, 483, 100–104. [Google Scholar] [CrossRef]
- Owen, D.H.; Konda, B.; Sipos, J.; Liu, T.; Webb, A.; Ringel, M.D.; Timmers, C.D.; Shah, M.H. KRAS G12V mutation in acquired resistance to combined BRAF and MEK inhibition in papillary thyroid cancer. J. Natl. Compr. Cancer Netw. 2019, 17, 409–413. [Google Scholar] [CrossRef]
Pre-Clinical Stage | |||||
---|---|---|---|---|---|
Combined Therapy | Thyroid Cancer Subtype | Patient Number | Experimental Phase | Drug Targets | Reference |
Vemurafenib + Vorinostat | BRAFV600E-mutated and wild-type TC cell lines | n.a. | in vitro | dual inhibition of BRAFV600E + histone deacetylases | [47] |
Vemurafenib + Obatoclax | BRAFV600E-positive PTC cell lines, animal models | n.a. | in vitro and in vivo | dual inhibition of BRAFV600E + BCL2 | [64] |
Vemurafenib + Pictilisib | BRAFV600E-positive BRAFV600E/PIK3CAH1047R-mutated ATC cell lines, animal models | n.a. | in vitro and in vivo | dual inhibition of BRAFV600E + PI3K | [65] |
Vemurafenib + Palbociclib | BRAFV600E-positive TC cell lines | n.a. | in vitro | dual inhibition of BRAFV600E + CDK4/6 | [68] |
Vemurafenib + Lapatinib | BRAFV600E-positive TC cell lines, animal models | n.a. | in vitro and in vivo | dual inhibition of BRAFV600E + HER family receptors | [69] |
Vemurafenib + PHA665752 | BRAFV600E-positive ATC and PTC cell lines, animal models | n.a. | in vitro and in vivo | dual inhibition of BRAFV600E + c-Met | [70] |
Vemurafenib + Tocilizumab + HO-3867 | BRAFV600E-positive TC cell lines and TC tissues | n.a. | in vitro | dual inhibition of BRAFV600E + IL-6 (tocilizumab) or STAT3 (HO-3867) | [71] |
Vemurafenib + Gefitinib | BRAFV600E-positive PTC and ATC cell lines | n.a. | in vitro | dual inhibition of BRAFV600E + EGFR | [72,73] |
Vemurafenib + Rapamycin | BRAFV600E-positive PTC and ATC cell lines | n.a. | in vitro | dual inhibition of BRAFV600E + mTOR | [74] |
Vemurafenib + PD98059 | BRAFV600E-positive PTC cell lines | n.a. | in vitro | dual inhibition of BRAFV600E + MEK1/2 | [75] |
Vemurafenib + Selumetinib | BRAFV600E- positive PTC cell lines, animal models | n.a. | in vitro and in vivo | dual inhibition of BRAFV600E + MEK1/2 | [76] |
Vemurafenib + Bortezomib | BRAFV600E-positive PTC and BRAFwt ATC cell lines | n.a. | in vitro | dual inhibition of BRAFV600E + proteasome | [77] |
Vemurafenib + Navitoclax | BRAFV600E-positive PTC cell lines | n.a. | in vitro | dual inhibition of BRAFV600E + BCL-2/BCL-XL interaction with BIM protein | [78] |
Clinical Trials | |||||
Dabrafenib + Trametinib + Everolimus | BRAFV600E- and PIK3CAH1047R-positive ATC patient | 1 | pre-clinical/clinical | combined inhibition of BRAFV600E + MAPK (trametinib) + mTOR (everolimus) | [79] |
Dabrafenib + Trametinib + RAI | RAS/BRAFV600E-mutated metastatic RAI-refractory DTC patients | 87 | Phase II | potentiation of RAI activity by BRAFV600E and MEK inhibition | NCT03244956 |
Dabrafenib + Trametinib + IMRT | BRAFV600E-mutated ATC patients | 20 | Phase I | potentiation of IMRT activity by BRAFV600E/MEK inhibition | NCT03975231 |
Vemurafenib + RAI | TC patients | 12 | Pilot study | potentiation of RAI activity by BRAFV600E inhibition | NCT02145143 |
Dabrafenib + Lapatinib | BRAFV600E-mutated patients with unresectable/metastatic TC | 21 | Phase I | dual inhibition of BRAFV600E + HER family receptors | NCT01947023 |
Vemurafenib + KTN3379 | BRAF-mutant RAI-refractory TC patients | 7 | Phase I | dual inhibition of BRAFV600E + HER3 | NCT02456701 |
Vemurafenib + Atezolizumab + Cobimetinib | BRAFV600E-mutated ATC patients | 50 | Phase II | combined inhibition of BRAFV600E + PD-L1 (atezolizumab) + MEK (cobimetinib) | NCT03181100 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crispo, F.; Notarangelo, T.; Pietrafesa, M.; Lettini, G.; Storto, G.; Sgambato, A.; Maddalena, F.; Landriscina, M. BRAF Inhibitors in Thyroid Cancer: Clinical Impact, Mechanisms of Resistance and Future Perspectives. Cancers 2019, 11, 1388. https://doi.org/10.3390/cancers11091388
Crispo F, Notarangelo T, Pietrafesa M, Lettini G, Storto G, Sgambato A, Maddalena F, Landriscina M. BRAF Inhibitors in Thyroid Cancer: Clinical Impact, Mechanisms of Resistance and Future Perspectives. Cancers. 2019; 11(9):1388. https://doi.org/10.3390/cancers11091388
Chicago/Turabian StyleCrispo, Fabiana, Tiziana Notarangelo, Michele Pietrafesa, Giacomo Lettini, Giovanni Storto, Alessandro Sgambato, Francesca Maddalena, and Matteo Landriscina. 2019. "BRAF Inhibitors in Thyroid Cancer: Clinical Impact, Mechanisms of Resistance and Future Perspectives" Cancers 11, no. 9: 1388. https://doi.org/10.3390/cancers11091388
APA StyleCrispo, F., Notarangelo, T., Pietrafesa, M., Lettini, G., Storto, G., Sgambato, A., Maddalena, F., & Landriscina, M. (2019). BRAF Inhibitors in Thyroid Cancer: Clinical Impact, Mechanisms of Resistance and Future Perspectives. Cancers, 11(9), 1388. https://doi.org/10.3390/cancers11091388