Current Status and Future Perspectives of Immunotherapy for Locally Advanced or Metastatic Urothelial Carcinoma: A Comprehensive Review
Abstract
:1. Introduction
2. Classification of Urothelial Carcinoma
2.1. Histological Subtypes
2.2. mRNA Subtypes
3. Treatment Strategy of Urothelial Carcinoma of the Urinary Bladder
3.1. Muscle-Invasive Disease
3.2. Metastatic Disease
4. Chemotherapy for the Treatment of Urothelial Carcinoma
4.1. First-Line Chemotherapy for Cisplatin-Eligible Patients with Urothelial Cancer
4.2. First-Line Chemotherapy for Cisplatin-Ineligible Patients with Urothelial Cancer
5. Immunotherapy for the Treatment of Urothelial Carcinoma
5.1. The Rationale for Immunotherapy in Urothelial Carcinoma
5.2. First-Line Immunotherapy for Cisplatin-Ineligible Patients
5.3. Second-Line Immunotherapy for Patients with Locally Advanced or Metastatic Urothelial Cancer
6. Combination Therapy for Locally Advanced and Metastatic Urothelial Carcinoma
7. Novel Therapeutic Agents for the Treatment of Urothelial Carcinoma
7.1. Anti-Angiogenic Therapies
7.2. Gene-Targeted Therapies
7.3. Antibody-Drug Conjugate Therapies
7.4. Vaccines
7.5. Adoptive T Cell Immunotherapy
8. Biomarkers for Predicting Treatment Response
9. Pseudoprogression and Hyperprogression during Immunotherapy for Urothelial Cancer
10. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Siegel, R.; Miller, K.D.; Jemal, A. Cancer statistics, 2018. CA Cancer J. Clin. 2018, 68, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.S.; Bochner, B.H.; Chou, R.; Dreicer, R.; Kamat, A.M.; Lerner, S.P.; Lotan, Y.; Meeks, J.J.; Michalski, J.M.; Morgan, T.M.; et al. Treatment of Non-Metastatic Muscle-Invasive Bladder Cancer: AUA/ASCO/ASTRO/SUO Guideline. J. Urol. 2017, 198, 552–559. [Google Scholar] [CrossRef] [PubMed]
- Spiess, P.E.; Agarwal, N.; Bangs, R.; Boorjian, S.A.; Buyyounouski, M.K.; Clark, P.E.; Downs, T.M.; Efstathiou, J.A.; Flaig, T.W.; Friedlander, T.; et al. Bladder cancer, version 5. 2017, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2017, 15, 1240–1267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenberg, J.E.; Hoffman-Censits, J.; Powles, T.; van der Heijden, M.S.; Balar, A.V.; Necchi, A.; Dawson, N.; O’Donnell, P.H.; Balmanoukian, A.; Loriot, Y.; et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: A single-arm, multicentre, phase 2 trial. Lancet 2016, 387, 1909–1920. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Beltran, A.; Henriques, V.; Montironi, R.; Cimadamore, A.; Raspollini, M.R.; Cheng, L. Variants and new entities of bladder cancer. Histopathology 2019, 74, 77–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moch, H.; Humphrey, P.A.; Ulbright, T.M.; Reuter, V. WHO Classification of Tumours of the Urinary System and Male Genital Organs; International Agency for Research on Cancer: Lyon, France, 2016. [Google Scholar]
- Kim, S.P.; Frank, I.; Cheville, J.C.; Thompson, R.H.; Weight, C.J.; Thapa, P.; Boorjian, S.A. The impact of squamous and glandular differentiation on survival after radical cystectomy for urothelial carcinoma. J. Urol. 2012, 188, 405–409. [Google Scholar] [CrossRef] [PubMed]
- Scosyrev, E.; Ely, B.W.; Messing, E.M.; Speights, V.O.; Grossman, H.B.; Wood, D.P.; de Vere White, R.W.; Vogelzang, N.J.; Trump, D.L.; Natale, R.B.; et al. Do mixed histological features affect survival benefit from neoadjuvant platinum-based combination chemotherapy in patients with locally advanced bladder cancer? A secondary analysis of Southwest Oncology Group- Directed Intergroup Study (S8710). BJU Int. 2011, 108, 693–699. [Google Scholar] [CrossRef] [Green Version]
- Tamas, E.F.; Nielsen, M.E.; Schoenberg, M.P.; Epstein, J.I. Lymphoepithelioma-like carcinoma of the urinary tract: A clinicopathological study of 30 pure and mixed cases. Mod. Pathol. 2007, 20, 828–834. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Beltran, A.; Paner, G.; Blanca, A.; Montironi, R.; Tsuzuki, T.; Nagashima, Y.; Chuang, S.S.; Win, K.T.; Madruga, L.; Raspollini, M.R.; et al. Lymphoepithelioma-like carcinoma of the upper urinary tract. Virchows Arch. 2017, 470, 703–709. [Google Scholar] [CrossRef]
- Robertson, A.G.; Kim, J.; Al-Ahmadie, H.; Bellmunt, J.; Guo, G.; Cherniack, A.D.; Hinoue, T.; Laird, P.W.; Hoadley, K.A.; Akbani, R.; et al. Comprehensive Molecular Characterization of Muscle-Invasive Bladder Cancer. Cell 2017, 171, 540–556. [Google Scholar] [CrossRef]
- Roupret, M.; Babjuk, M.; Comperat, E.; Zigeuner, R.; Sylvester, R.J.; Burger, M.; Cowan, N.C.; Böhle, A.; Van Rhijn, B.W.; Kaasinen, E.; et al. European Association of Urology guidelines on upper urinary tract urothelial cell carcinoma: 2015 update. Eur. Urol. 2015, 68, 868–879. [Google Scholar] [CrossRef] [PubMed]
- Galsky, M.D.; Hahn, N.M.; Rosenberg, J.; Sonpavde, G.; Hutson, T.; Oh, W.K.; Dreicer, R.; Vogelzang, N.; Sternberg, C.N.; Bajorin, D.F.; et al. Treatment of patients with metastatic urothelial cancer “unfit” for cisplatin-based chemotherapy. J. Clin. Oncol. 2011, 29, 2432–2438. [Google Scholar] [CrossRef] [Green Version]
- Kaufman, D.; Raghavan, D.; Carducci, M.; Levine, E.G.; Murphy, B.; Aisner, J.; Kuzel, T.; Nicol, S.; Oh, W.; Stadler, W. Phase II trial of gemcitabine plus cisplatin in patients with metastatic urothelial cancer. J. Clin. Oncol. 2000, 18, 1921–1927. [Google Scholar] [CrossRef] [PubMed]
- von der Maase, H.; Hansen, S.W.; Roberts, J.T.; Dogliotti, L.; Oliver, T.; Moore, M.J.; Bodrogi, I.; Albers, P.; Knuth, A.; Lippert, C.M.; et al. Gemcitabine and cisplatin versus methotrexate, vinblastine, doxorubicin, and cisplatin in advanced or metastatic bladder cancer: Results of a large, randomized, multinational, multicenter, phase III study. J. Clin. Oncol. 2000, 18, 3068–3077. [Google Scholar] [CrossRef] [PubMed]
- McCaffrey, J.A.; Hilton, S.; Mazumdar, M.; Sadan, S.; Kelly, W.K.; Scher, H.I.; Bajorin, D.F. Phase II trial of docetaxel in patients with advanced or metastatic transitional-cell carcinoma. J. Clin. Oncol. 1997, 15, 1853–1857. [Google Scholar] [CrossRef] [PubMed]
- Sweeney, C.J.; Roth, B.J.; Kabbinavar, F.F.; Vaughn, D.J.; Arning, M.; Curiel, R.E.; Obasaju, C.K.; Wang, Y.; Nicol, S.J.; Kaufman, D.S. Phase II study of pemetrexed for second-line treatment of transitional cell cancer of the urothelium. J. Clin. Oncol. 2006, 24, 3451–3457. [Google Scholar] [CrossRef]
- Sternberg, C.N.; Yagoda, A.; Scher, H.I.; Watson, R.C.; Geller, N.; Herr, H.W.; Morse, M.J.; Sogani, P.C.; Vaughan, E.D.; Bander, N.; et al. Methotrexate, vinblastine, doxorubicin, and cisplatin for advanced transitional cell carcinoma of the urothelium. Efficacy and patterns of response and relapse. Cancer 1989, 64, 2448–2458. [Google Scholar] [CrossRef]
- Loehrer, P.J., Sr.; Einhorn, L.H.; Elson, P.J.; Crawford, E.D.; Kuebler, P.; Tannock, I.; Raghavan, D.; Stuart-Harris, R.; Sarosdy, M.F.; Lowe, B.A.; et al. A randomized comparison of cisplatin alone or in combination with methotrexate, vinblastine, and doxorubicin in patients with metastatic urothelial carcinoma: A cooperative group study. J. Clin. Oncol. 1992, 10, 1066–1073. [Google Scholar] [CrossRef]
- von der Maase, H.; Sengelov, L.; Roberts, J.T.; Ricci, S.; Dogliotti, L.; Oliver, T.; Moore, M.J.; Zimmermann, A.; Arning, M. Long-term survival results of a randomized trial comparing gemcitabine plus cisplatin with methotrexate, vinblastine, doxorubicin, plus cisplatin in patients with bladder cancer. J. Clin. Oncol. 2005, 23, 4602–4608. [Google Scholar] [CrossRef]
- Bellmunt, J.; von der Maase, H.; Mead, G.M.; Skoneczna, I.; De Santis, M.; Daugaard, G.; Boehle, A.; Chevreau, C.; Paz-Ares, L.; Laufman, L.R.; et al. Randomized phase III study comparing paclitaxel/cisplatin/gemcitabine and gemcitabine/cisplatin in patients with locally advanced or metastatic urothelial cancer without prior systemic therapy: EORTC Intergroup Study 30987. J. Clin. Oncol. 2012, 30, 1107–1113. [Google Scholar] [CrossRef]
- Dash, A.; Galsky, M.D.; Vickers, A.J.; Serio, A.M.; Koppie, T.M.; Dalbagni, G.; Bochner, B.H. Impact of renal impairment on eligibility for adjuvant cisplatin-based chemotherapy in patients with urothelial carcinoma of the bladder. Cancer 2006, 107, 506–513. [Google Scholar] [CrossRef] [PubMed]
- De Santis, M.; Bellmunt, J.; Mead, G.; Kerst, J.M.; Leahy, M.; Maroto, P.; Gil, T.; Marreaud, S.; Daugaard, G.; Skoneczna, I.; et al. Randomized phase II/III trial assessing gemcitabine/carboplatin and methotrexate/ carboplatin/vinblastine in patients with advanced urothelial cancer who are unfit for cisplatin-based chemotherapy: EORTC study 30986. J. Clin. Oncol. 2012, 30, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Hainsworth, J.D.; Meluch, A.A.; Litchy, S.; Schnell, F.M.; Bearden, J.D.; Yost, K.; Greco, F.A. Paclitaxel, carboplatin, and gemcitabine in the treatment of patients with advanced transitional cell carcinoma of the urothelium. Cancer 2005, 103, 2298–2303. [Google Scholar] [CrossRef] [PubMed]
- Hurwitz, M.E.; Sokhn, J.; Petrylak, D.P. Cancer immunotherapy: New applications in urologic oncology. Curr. Opin. Urol. 2016, 26, 535–542. [Google Scholar] [CrossRef] [PubMed]
- Donin, N.M.; Lenis, A.T.; Holden, S.; Drakaki, A.; Pantuck, A.; Belldegrun, A.; Chamie, K. Immunotherapy for the treatment of urothelial carcinoma. J. Urol. 2017, 197, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Anderson, A.C.; Anderson, D.E.; Bregoli, L.; Hastings, W.D.; Kassam, N.; Lei, C.; Chandwaskar, R.; Karman, J.; Su, E.W.; Hirashima, M.; et al. Promotion of tissue inflammation by the immune receptor Tim-3 expressed on innate immune cells. Science 2007, 318, 1141–1143. [Google Scholar] [CrossRef]
- Schepisi, G.; Brighi, N.; Cursano, M.C.; Gurioli, G.; Ravaglia, G.; Altavilla, A.; Burgio, S.L.; Testoni, S.; Menna, C.; Farolfi, A.; et al. Inflammatory biomarkers as predictors of response to immunotherapy in urological tumors. J. Oncol. 2019, 11, e12. [Google Scholar] [CrossRef] [Green Version]
- Sica, G.L.; Choi, I.H.; Zhu, G.; Tamada, K.; Wang, S.D.; Tamura, H.; Chapoval, A.I.; Flies, D.B.; Bajorath, J.; Chen, L. B7-H4, a molecule of the B7 family, negatively regulates T cell immunity. Immunity 2003, 18, 849–861. [Google Scholar] [CrossRef] [Green Version]
- Loos, M.; Hedderich, D.M.; Friess, H.; Kleeff, J. B7-H3 and its role in antitumor immunity. Clin. Dev. Immunol. 2010, 2010. [Google Scholar] [CrossRef]
- Le, D.T.; Uram, J.N.; Wang, H.; Bartlett, B.R.; Kemberling, H.; Eyring, A.D.; Skora, A.D.; Luber, B.S.; Azad, N.S.; Laheru, D.; et al. PD-1 blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med. 2015, 372, 2509–2520. [Google Scholar] [CrossRef]
- Kelderman, S.; Schumacher, T.N.; Kvistborg, P. Mismatch repair-deficient cancers are targets for anti-PD-1 therapy. Cancer Cell 2015, 28, 11–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, P.; Black, P. Emerging role of checkpoint inhibition in localized bladder cancer. In Urologic Oncology: Seminars and Original Investigations; Elsevier: Amsterdam, The Netherlands, 2016; Volume 34, pp. 548–555. [Google Scholar]
- Lawrence, M.S.; Stojanov, P.; Polak, P.; Kryukov, G.V.; Cibulskis, K.; Sivachenko, A.; Carter, S.L.; Stewart, C.; Mermel, C.H.; Roberts, S.A.; et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 2013, 499, 214–218. [Google Scholar] [CrossRef]
- Alexandrov, L.B.; Nik-Zainal, S.; Wedge, D.C.; Aparicio, S.A.; Behjati, S.; Biankin, A.V.; Bignell, G.R.; Bolli, N.; Borg, A.; Børresen-Dale, A.L.; et al. Signatures of mutational processes in human cancer. Nature 2013, 500, 415–421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balar, A.V.; Galsky, M.D.; Rosenberg, J.E.; Powles, T.; Petrylak, D.P.; Bellmunt, J.; Loriot, Y.; Necchi, A.; Hoffman-Censits, J.; Perez-Gracia, J.L.; et al. Atezolizumab as first-line treatment in cisplatin ineligible patients with locally advanced and metastatic urothelial carcinoma: A single-arm, multicentre, phase 2 trial. Lancet 2017, 389, 67–76. [Google Scholar] [CrossRef] [Green Version]
- O’Donnel, P.; Grivas, P.; Balar, A.V.; Bellmunt, J.; Vuky, J.; Powles, T.; Plimack, E.R.; Hahn, N.M.; De Wit, R.; Pang, L.; et al. Biomarker findings and mature clinical results from KEYNOTE-052: First-line pembrolizumab (pembro) in cisplatin-ineligible advanced urothelial cancer (UC). In Proceedings of the 2017 ASCO Annual Meeting Genitourinary (Nonprostate) Cancer Oral Abstract Session, Chicago, IL, USA, 2–6 June 2017. [Google Scholar]
- Balar, A.V.; Castellano, D.; O’Donnell, P.H.; Grivas, P.; Vuky, J.; Powles, T.; Plimack, E.R.; Hahn, N.M.; de Wit, R.; Pang, L.; et al. First-line pembrolizumab in cisplatin-ineligible patients with locally advanced and unresectable or metastatic urothelial cancer (KEYNOTE-052): A multicentre, single-arm, phase 2 study. Lancet Oncol. 2017, 18, 1483–1492. [Google Scholar] [CrossRef]
- Patel, M.R.; Ellerton, J.; Infante, J.R.; Agrawal, M.; Gordon, M.; Aljumaily, R.; Britten, C.D.; Dirix, L.; Lee, K.W.; Taylor, M.; et al. Avelumab in metastatic urothelial carcinoma after platinum failure (JAVELIN Solid Tumor): Pooled results from two expansion cohorts of an open-label, phase 1 trial. Lancet Oncol. 2018, 19, 51–64. [Google Scholar] [CrossRef]
- Powles, T.; O’Donnell, P.H.; Massard, C.; Arkenau, H.T.; Friedlander, T.W.; Hoimes, C.J.; Lee, J.L.; Ong, M.; Sridhar, S.S.; Vogelzang, N.J.; et al. Efficacy and safety of durvalumab in locally advanced or metastatic urothelial carcinoma: Updated results from a phase 1/2 open-label study. JAMA Oncol. 2017, 3, e172411. [Google Scholar] [CrossRef]
- Sharma, P.; Retz, M.; Siefker-Radtke, A.; Baron, A.; Necchi, A.; Bedke, J.; Plimack, E.R.; Vaena, D.; Grimm, M.O.; Bracarda, S.; et al. Nivolumab in metastatic urothelial carcinoma after platinum therapy (CheckMate 275): A multicentre, single-arm, phase 2 trial. Lancet Oncol. 2017, 18, 312–322. [Google Scholar] [CrossRef]
- Bellmunt, J.; de Wit, R.; Vaughn, D.J.; Fradet, Y.; Lee, J.L.; Fong, L.; Vogelzang, N.J.; Climent, M.A.; Petrylak, D.P.; Choueiri, T.K.; et al. Pembrolizumab as second-line therapy for advanced urothelial carcinoma. N. Engl. J. Med. 2017, 376, 1015–1026. [Google Scholar] [CrossRef] [Green Version]
- Powles, T.; Gschwend, J.E.; Loriot, Y.; Bellmunt, J.; Geczi, L.; Vulsteke, C.; Abdelsalam, M.; Gafanov, R.; Bae, W.K.; Revesz, J.; et al. Phase 3 KEYNOTE-361 trial: Pembrolizumab (pembro) with or without chemotherapy versus chemotherapy alone in advanced urothelial cancer. J. Clin. Oncol. 2017, 35, e15. [Google Scholar] [CrossRef]
- Galsky, M.D.; Grande, E.; Davis, I.D.; Santis, M.D.; Arija, J.A.A.; Kikuchi, E.; Mecke, A.; Thastrom, A.C.; Bamias, A. IMvigor130: A randomized, phase III study evaluating first-line (1L) atezolizumab (atezo) as monotherapy and in combination with platinum-based chemotherapy (chemo) in patients (pts) with locally advanced or metastatic urothelial carcinoma (mUC). J. Clin. Oncol. 2018, 36, e15. [Google Scholar] [CrossRef]
- Galsky, M.D.; Necchi, A.; Sridhar, S.S.; Ogawa, O.; Angra, N.; Hois, S.; He, P.; Ghiorghiu, D.C.; Bellmunt, J. A phase III, randomized, open label, multicenter, global study of first-line (1L) durvalumab in combination with standard of care (SOC) chemotherapy and durvalumab in combination with tremelimumab and SOC chemotherapy versus SOC chemotherapy alone in patients with unresectable locally advanced or metastatic urothelial cancer (UC). J. Clin. Oncol. 2019, 37, e15. [Google Scholar]
- Bellmunt, J.; Theodore, C.; Demkov, T.; Komyakov, B.; Sengelov, L.; Daugaard, G.; Caty, A.; Carles, J.; Jagiello-Gruszfeld, A.; Karyakin, O.; et al. Phase III trial of vinflunine plus best supportive care compared with best supportive care alone after a platinum containing regimen in patients with advanced transitional cell carcinoma of the urothelial tract. J. Clin. Oncol. 2009, 27, 4454–4461. [Google Scholar] [CrossRef] [PubMed]
- Herbst, R.S.; Soria, J.C.; Kowanetz, M.; Fine, G.D.; Hamid, O.; Gordon, M.S.; Sosman, J.A.; McDermott, D.F.; Powderly, J.D.; Gettinger, S.N.; et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 2014, 515, 563–567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Powles, T.; Duran, I.; van der Heijden, M.S.; Loriot, Y.; Vogelzang, N.J.; De Giorgi, U.; Oudard, S.; Retz, M.M.; Castellano, D.; Bamias, A.; et al. Atezolizumab versus chemotherapy in patients with platinum-treated locally advanced or metastatic urothelial carcinoma (IMvigor211): A multicentre, open-label, phase 3 randomised controlled trial. Lancet 2018, 391, 748–757. [Google Scholar] [CrossRef]
- Balar, A.V.; Bellmunt, J.; O’Donnell, P.H.; Castellano, D.; Grivas, P.; Vuky, J.; Powles, T.; Plimack, E.R.; Hahn, N.M.; de Wit, R.; et al. Pembrolizumab (pembro) as first-line therapy for advanced/unresectable or metastatic urothelial cancer: Preliminary results from the phase 2 KEYNOTE-052 study. Ann. Oncol. 2016, 27. [Google Scholar] [CrossRef]
- Bellmunt, J.; De Wit, R.; Vaughn, D.J.; Fradet, Y.; Lee, J.; Fong, L.; Vogelzang, N.J.; Climent, M.A.; Petrylak, D.P.; Choueiri, T.K.; et al. Two-year follow up from the phase 3 KEYNOTE-045 trial of pembrolizumab (pembro) vs investigator’s choice (paclitaxel, docetaxel, or vinflunine) in recurrent, advanced urothelial cancer (UC). J. Clin. Oncol. 2018, 36, e410. [Google Scholar] [CrossRef]
- Sharma, P.; Callahan, M.K.; Bono, P.; Kim, J.; Spiliopoulou, P.; Calvo, E.; Pillai, R.N.; Ott, P.A.; de Braud, F.; Morse, M.; et al. Nivolumab monotherapy in recurrent metastatic urothelial carcinoma (CheckMate 032): A multicentre, open-label, two-stage, multi-arm, phase 1/2 trial. Lancet Oncol. 2016, 17, 1590–1598. [Google Scholar] [CrossRef] [Green Version]
- Massard, C.; Gordon, M.S.; Sharma, S.; Rafii, S.; Wainberg, Z.A.; Luke, J.; Curiel, T.J.; Colon-Otero, G.; Hamid, O.; Sanborn, R.E.; et al. Safety and efficacy of durvalumab (MEDI4736), an anti-programmed cell death ligand-1 immune checkpoint inhibitor, in patients with advanced urothelial bladder cancer. J. Clin. Oncol. 2016, 34, 3119–3125. [Google Scholar] [CrossRef]
- Marlon Rebelatto, A.M.; Sabalos, C.; Walker, J.; Midha, A.; Steele, K.; Robbins, P.B.; Li, X.; Shi, L.; Blake-Haskins, J.A.; Ibrahim, R.A.; et al. Development of a PD-L1 companion diagnostic assay for treatment with MEDI4736 in NSCLC and SCCHN patients. J. Clin. Oncol. 2015, 33, e8033. [Google Scholar] [CrossRef]
- Chang, C.H.; Qiu, J.; O’Sullivan, D.; Buck, M.D.; Noguchi, T.; Curtis, J.D.; Chen, Q.; Gindin, M.; Gubin, M.M.; van der Windt, G.J.; et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 2015, 162, 1229–1241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hato, S.V.; Khong, A.; de Vries, I.J.; Lesterhuis, W.J. Molecular pathways: The immunogenic effects of platinum-based chemotherapeutics. Clin. Cancer Res. 2014, 20, 2831–2837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galsky, M.D.; Wang, H.; Hahn, N.M.; Twardowski, P.; Pal, S.K.; Albany, C.; Fleming, M.T.; Starodub, A.; Hauke, R.J.; Yu, M.; et al. Phase 2 trial of gemcitabine, cisplatin, plus ipilimumab in patients with metastatic urothelial cancer and impact of DNA damage response gene mutations on outcomes. Eur. Urol. 2018, 73, 751–759. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Callahan, M.K.; Calvo, A. Efficacy and safety of nivolumab plus ipilimumab in previously treated metastatic urothelial carcinoma: First results from the phase I/II CheckMate 032 study. In Proceedings of the 2016 SITC Annual Meeting, National Harbor, Hyattsville, MD, USA, 9–13 November 2016. [Google Scholar]
- Rosenberg, J.; Sharma, P.; De Braud, F.; Basso, U.; Calvo, E.; Bono, P.; Morse, M.; Ascierto, P.A.; Lopez-Martin, J.A.; Brossart, P.; et al. Nivolumab(N) alone or in combination with ipilimumab (I) in patients (pts) with platinum-pretreated metastatic urothelial carcinoma (mUC), including the nivolumab 1 mg/kg + ipilimumab 3 mg/kg expansion from CheckMate 032. Ann. Oncol. 2018, 29, e32. [Google Scholar] [CrossRef]
- Galsky, M.D.; Powles, T.; Li, S.; Hennicken, D.; Sonpavde, G. A phase 3, open-label, randomized study of nivolumab plus ipilimumab or standard of care (SoC) vs SoC alone in patients (pts) with previously untreated unresectable or metastatic urothelial carcinoma (mUC.; CheckMate 901). J. Clin. Oncol. 2018, 36, TPS4588. [Google Scholar] [CrossRef]
- Powles, T.; Galsky, M.D.; Castellano, D.; Van Der Heijden, M.S.; Petrylak, D.P.; Armstrong, J.; Belli, R.; Ferro, S.; Ben., Y.; Bellmunt, J. A phase 3 study of first-line durvalumab (MEDI4736) ± tremelimumab versus standard of care (SoC) chemotherapy(CT) in patients (pts) with unresectable stage IV urothelial bladder cancer (UBC): DANUBE. J. Clin. Oncol. 2016, 34, TPS4574. [Google Scholar] [CrossRef]
- Motz, G.T.; Coukos, G. The parallel lives of angiogenesis and immunosuppression: Cancer and other tales. Nat. Rev. Immunol. 2011, 11, 702–711. [Google Scholar] [CrossRef]
- Petrylak, D.P.; Arkenau, H.-T.; Perez-Gracia, J.L.; Krebs, M.; Santana- Davila, R.; Yang, J.; Rege, J.; Mi, G.; Ferry, D.; Herbst, R.S. A multicohort phase I study of ramucirumab (R) plus pembrolizumab (P): Interim safety and clinical activity in patients with urothelial carcinoma. J. Clin. Oncol. 2017, 35, e349. [Google Scholar] [CrossRef]
- Herbst, R.S.; Chau, I.; Petrylak, D.P.; Arkenau, H.-T.; Bendell, J.C.; Santana-Davila, R.; Calvo, E.; Penel, N.; Martin-Liberal, J.; Soriano, A.O.; et al. Activity of ramucirumab (R) with pembrolizumab(P) by PD-L1 expression in advanced solid tumors: Phase 1a/b study in later lines of therapy. J. Clin. Oncol. 2018, 36, e3059. [Google Scholar] [CrossRef]
- Petrylak, D.P.; Tagawa, S.T.; Kohli, M.; Eisen, A.; Canil, C.; Sridhar, S.S.; Spira, A.; Yu, E.Y.; Burke, J.M.; Shaffer, D.; et al. Docetaxel as monotherapy or combined with ramucirumab or icrucumab in second-line treatment for locally advanced or metastatic urothelial carcinoma: An open-label, three arm, randomized controlled phase II trial. J. Clin. Oncol. 2016, 34, 1500–1509. [Google Scholar] [CrossRef]
- Petrylak, D.P.; de Wit, R.; Chi, K.N.; Drakaki, A.; Sternberg, C.N.; Nishiyama, H.; Castellano, D.; Hussain, S.; Fléchon, A.; Bamias, A.; et al. Ramucirumab plus docetaxel versus placebo plus docetaxel in patients with locally advanced or metastatic urothelial carcinoma after platinum-based therapy (RANGE): A randomised, double-blind, phase 3 trial. Lancet 2017, 390, 2266–2277. [Google Scholar] [CrossRef] [Green Version]
- Apolo, A.B.; Mortazavi, A.; Stein, M.N.; Davarpanah, N.N.; Nadal, R.M.; Parnes, H.L.; Ning, Y.M.; Francis, D.C.; Cordes, L.M.; Berniger, M.A.; et al. A phase I study of cabozantinib plus nivolumab (CaboNivo) and cabonivo plus ipilimumab (CaboNivoIpi) in patients (pts) with refractory metastatic (m) urothelial carcinoma (UC) and other genitourinary (GU) tumors. J. Clin. Oncol. 2017, 35, e4562. [Google Scholar] [CrossRef]
- US National Library of Medicine. A Study of Avelumab in Combination with Axitinib in Non-Small Cell Lung Cancer (NSCLC) or Urothelial Cancer (Javelin Medley VEGF). Available online: https://clinicaltrials.gov/ct2/show/NCT03472560 (accessed on 19 October 2019).
- Hahn, N.M.; Stadler, W.M.; Zon, R.T.; Waterhouse, D.; Picus, J.; Nattam, S.; Johnson, C.S.; Perkins, S.M.; Waddell, M.J.; Sweeney, C.J.; et al. Phase II trial of cisplatin, gemcitabine, and bevacizumab as first-line therapy for metastatic urothelial carcinoma: Hoosier Oncology Group GU 04-75. J. Clin. Oncol. 2011, 29, 1525–1530. [Google Scholar] [CrossRef] [PubMed]
- US National Library of Medicine. Gemcitabine Hydrochloride and Cisplatin with or Without Bevacizumab in Treating Patients with Advanced Urinary Tract Cancer. Available online: https://clinicaltrials.gov/ct2/show/NCT00942331 (accessed on 19 October 2019).
- Yakes, F.M.; Chen, J.; Tan, J.; Yamaguchi, K.; Shi, Y.C.; Yu, P.W.; Qian, F.; Chu, F.; Bentzien, F.; Cancilla, B.; et al. Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth. Mol. Cancer Ther. 2011, 10, 2298–2308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maia, M.C.; Agarwal, N.; McGregor, B.A.; Vaishampayan, U.N.; Choueiri, T.K.; Green, M.C. Phase 1b trial of cabozantinib in combination with atezolizumab in patients with locally advanced or metastatic urothelial carcinoma (UC) or renal cell carcinoma (RCC). J. Clin. Oncol. 2018, 36, e5. [Google Scholar] [CrossRef]
- US National Library of Medicine. Apatinib with Pembrolizumab in Previously Treated Advanced Malignancies (APPEASE). Available online: https://clinicaltrials.gov/ct2/show/NCT03407976 (accessed on 10 October 2019).
- Vanneman, M.; Dranoff, G. Combining immunotherapy and targeted therapies in cancer treatment. Nat. Rev. Cancer 2012, 12, 237–251. [Google Scholar] [CrossRef] [Green Version]
- Siefker-Radtke, A.O.; Necchi, A.; Park, S.H.; GarcÃa-Donas, J.; Huddart, R.A.; Burgess, E.F.; Fleming, M.T.; Rezazadeh, A.; Mellado, B.; Varlamov, S.; et al. First results from the primary analysis population of the phase 2 study of erdafitinib (ERDA.; JNJ-42756493) in patients (pts) with metastatic or unresectable urothelial carcinoma (mUC) and FGFR alterations (FGFRalt). J. Clin. Oncol. 2018, 36, e4503. [Google Scholar] [CrossRef]
- Gavine, P.R.; Mooney, L.; Kilgour, E.; Thomas, A.P.; Al-Kadhimi, K.; Beck, S.; Rooney, C.; Coleman, T.; Baker, D.; Mellor, M.J.; et al. AZD4547: An orally bioavailable, potent, and selective inhibitor of the fibroblast growth factor receptor tyrosine kinase family. Cancer Res. 2012, 72, 2045–2056. [Google Scholar] [CrossRef] [Green Version]
- Joerger, M.; Cassier, P.; Penel, N.; Cathomas, R.; Richly, H.; Schostak, M. Rogaratinib treatment of patients with advanced urothelial carcinomas prescreened for tumor FGFR mRNA expression. J. Clin. Oncol. 2018, 36, e6. [Google Scholar] [CrossRef]
- Siefker-Radtke, A.O.; Currie, G.; Abella, E.; Vaena, D.A.; Kalebasty, A.R.; Curigliano, G.; Tupikowski, K.; Andric, Z.G.; Lugowska, I.; Kelly, W.K.; et al. Clinical activity of vofatamab (V) a FGFR3 selective inhibitor in combination with pembrolizumab (P) in WT metastatic urothelial carcinoma, preliminary analysis. J. Clin. Oncol. 2019, 37, 4511. [Google Scholar] [CrossRef]
- Morrison, K.; Challita-Eid, P.M.; Raitano, A.; An, Z.; Yang, P.; Abad, J.D.; Liu, W.; Lortie, D.R.; Snyder, J.T.; Capo, L.; et al. Development of ASG-15ME, a novel antibody-drug conjugate targeting SLITRK6, a new urothelial cancer biomarker. Mol. Cancer Ther. 2016, 15, 1301–1310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petrylak, D.P.; Heath, E.; Sonpavde, G.; George, S.; Morgans, A.; Eigl, B.J.; Picus, J.; Cheng, S.; Hotte, S.J.; Gartner, E.; et al. Interim analysis of a phase 1 dose escalation trial of the antibody drug conjugate (ADC) AGS15E (ASG-15ME) in patients (Pts) with metastatic urothelial cancer (mUC). Ann. Oncol. 2016, 27, e780. [Google Scholar] [CrossRef] [Green Version]
- Petrylak, D.P.; Perez, R.; Zhang, J.; Smith, D.; Ruether, J.; Sridhar, S.S.; Sangha, R.S.; Lang, J.M.; Heath, E.I.; Merchan, J.R.; et al. A phase I study of enfortumab vedotin (ASG-22CE.; ASG-22ME): Updated analysis of patients with metastatic urothelial cancer. J. Clin. Oncol. 2017, 35, e106. [Google Scholar] [CrossRef]
- Rosenberg, J.; Sridhar, S.S.; Zhang, J.; Smith, D.; Ruether, J.; Flaig, T.; Baranda, J.C.; Lang, J.M.; Plimack, E.R.; Sangha, R.S.; et al. Updated results from the enfortumab vedotin phase 1 (EV-101) study in patients with metastatic urothelial cancer (mUC). J. Clin. Oncol. 2018, 36, e4504. [Google Scholar] [CrossRef]
- Hoimes, C.J.; Petrylak, D.P.; Flaig, T.W.; Carret, A.S.; Melhem-Bertrandt, A.; Rosenberg, J.E. EV-103 study: A phase 1b dose-escalation and dose expansion study of enfortumab vedotin in combination with immune checkpoint inhibitor (CPI) therapy for treatment of patients with locally advanced or metastatic urothelial cancer. J. Clin. Oncol. 2018, 36, TPS532. [Google Scholar] [CrossRef]
- Bajorin, D.F.; Sharma, P.; Quinn, D.I.; Plimack, E.R. Phase 2 trial results of DN24-02, a HER2-targeted autologous cellular immunotherapy in HER2+urothelial cancer patients (pts). J. Clin. Oncol. 2016, 34, e4513. [Google Scholar] [CrossRef]
- US National Library of Medicine. Vaccine Therapy with or without Sirolimus in Treating Patients with NY-ESO-1 Expressing Solid tumors. Available online: https://clinicaltrials.gov/ct2/show/NCT01522820 (accessed on 10 October 2019).
- Derré, L.; Cesson, V.; Lucca, I.; Cerantola, Y.; Valerio, M.; Fritschi, U.; Vlamopoulos, Y.; Burruni, R.; Legris, A.S.; Dartiguenave, F.; et al. Intravesical Bacillus Calmette Guerin combined with a cancer-vaccine increases local T-cell responses in non-muscle-invasive bladder cancer patients. Clin. Cancer Res. 2017, 23, 717–725. [Google Scholar] [CrossRef] [Green Version]
- Sanford, T.; Donahue, R.; Jochems, C.; Dolan, R.; Bellfield, S.; Anderson, M.; Singer, E.; Weiss, R.; Elsamra, S.; Jang, T.; et al. Immunologic response to a therapeutic cancer vaccine (PANVAC): Initial results from a randomized phase 2 clinical trial (abstract MP15-10). J. Urol. 2017, 197, e174. [Google Scholar] [CrossRef]
- Morse, M.A.; Chapman, R.; Powderly, J.; Blackwell, K.; Keler, T.; Green, J.; Riggs, R.; He, L.Z.; Ramakrishna, V.; Vitale, L.; et al. Phase I study utilizing a novel antigen-presenting cell-targeted vaccine with toll-like receptor stimulation to induce immunity to self-antigens in cancer patients. Clin. Cancer Res. 2011, 17, 4844–4853. [Google Scholar] [CrossRef] [Green Version]
- Sharma, P.; Bajorin, D.; Jungbluth, A.; Herr, H.; Old, L.; Gnjatic, S. Immune responses detected in urothelial carcinoma patients after vaccination with NY-ESO-1 protein plus BCG and GM-CSF. J. Immunother. 2008, 31, 849–857. [Google Scholar] [CrossRef]
- Ahmad, S.; Lam, T.B.; N’Dow, J. Significance of MUC1 in bladder cancer. BJU Int. 2015, 115, 161–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Costa, J.J.; Goldsmith, J.C.; Wilson, J.S.; Bryan, R.T.; Ward, D.G. A systematic review of the diagnostic and prognostic value of urinary protein biomarkers in urothelial bladder cancer. Bladder Cancer 2016, 2, 301–317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- US National Library of Medicine. A Study of the CDX-1307 Vaccine Regimen in Patients With Newly Diagnosed Muscle-Invasive Bladder Cancer (The "N-ABLE" Study). Available online: https://clinicaltrials.gov/ct2/show/NCT01094496 (accessed on 10 October 2019).
- Dudley, M.E.; Wunderlich, J.R.; Yang, J.C.; Sherry, R.M.; Topalian, S.L.; Restifo, N.P.; Royal, R.E.; Kammula, U.; White, D.E.; Mavroukakis, S.A.; et al. Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J. Clin. Oncol. 2005, 23, 2346–2357. [Google Scholar] [CrossRef] [PubMed]
- Sherif, A.; Hasan, M.N.; Radecka, E.; Rodriguez, A.L.; Shabo, S.; Karlsson, M.; Schumacher, M.C.; Martis, P.; Winqvist, O. Pilot study of adoptive immunotherapy with sentinel node- derived Tcells in muscle-invasive urinary bladder cancer. Scand. J. Urol. 2015, 49, 453–462. [Google Scholar] [CrossRef]
- Maude, S.L.; Frey, N.; Shaw, P.A.; Aplenc, R.; Barrett, D.M.; Bunin, N.J.; Chew, A.; Gonzalez, V.E.; Zheng, Z.; Lacey, S.F.; et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med. 2014, 371, 1507–1517. [Google Scholar] [CrossRef] [Green Version]
- Porter, D.L.; Levine, B.L.; Kalos, M.; Bagg, A.; June, C.H. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N. Engl. J. Med. 2011, 365, 725–733. [Google Scholar] [CrossRef] [Green Version]
- Grupp, S.A.; Kalos, M.; Barrett, D.; Aplenc, R.; Porter, D.L.; Rheingold, S.R.; Teachey, D.T.; Chew, A.; Hauck, B.; Wright, J.F.; et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N. Engl. J. Med. 2013, 368, 1509–1518. [Google Scholar] [CrossRef] [Green Version]
- Lamers, C.H.; Sleijfer, S.; van Steenbergen, S.; van Elzakker, P.; van Krimpen, B.; Groot, C.; Vulto, A.; den Bakker, M.; Oosterwijk, E.; Debets, R.; et al. Treatment of metastatic renal cell carcinoma with CAIX CAR-engineered Tcells: Clinical evaluation and management of on-target toxicity. Mol. Ther. 2013, 21, 904–912. [Google Scholar] [CrossRef]
- Morgan, R.A.; Yang, J.C.; Kitano, M.; Dudley, M.E.; Laurencot, C.M.; Rosenberg, S.A. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol. Ther. 2010, 18, 843–851. [Google Scholar] [CrossRef]
- Kitano, S.; Nakayama, T.; Yamashita, M. Biomarkers for immune checkpoint inhibitors in melanoma. Front. Oncol. 2018, 8, e270. [Google Scholar] [CrossRef]
- Balar, A.V.; Loriot, Y.; Perez-Gracia, J.L.; Hoffman-Censits, J.H.; Petrylak, D.P.; Van Der Heijden, M.S.; Ding, B.; Shen, X.; Rosenberg, J.E. Atezolizumab (atezo) in first-line cisplatin-ineligible or platinum-treated locally advanced or metastatic urothelial cancer (mUC): Long-term efficacy from phase 2 study IMvigor210. J. Clin. Oncol. 2018, 36, e4523. [Google Scholar] [CrossRef]
- Rizvi, N.A.; Hellmann, M.D.; Snyder, A.; Kvistborg, P.; Makarov, V.; Havel, J.J.; Lee, W.; Yuan, J.; Wong, P.; Ho, T.S.; et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 2015, 348, 124–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le, D.T.; Durham, J.N.; Smith, K.N.; Wang, H.; Bartlett, B.R.; Aulakh, L.K.; Lu, S.; Kemberling, H.; Wilt, C.; Luber, B.S.; et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 2017, 357, 409–413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Havel, J.J.; Chowell, D.; Chan, T.A. The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nat. Rev. Cancer 2019, 19, 133–150. [Google Scholar] [CrossRef]
- Chan, T.A.; Yarchoan, M.; Jaffee, E.; Swanton, C.; Quezada, S.A.; Stenzinger, A.; Peters, S. Development of tumor mutation burden as an immunotherapy biomarker: Utility for the oncology clinic. Ann. Oncol. 2019, 30, 44–56. [Google Scholar] [CrossRef]
- Urun, Y.; Leow, J.J.; Fay, A.P.; Albiges, L.; Choueiri, T.K.; Bellmunt, J. ERCC1 as a prognostic factor for survival in patients with advanced urothelial cancer treated with platinum based chemotherapy: A systematic review and meta-analysis. Crit. Rev. Oncol. Hematol. 2017, 120, 120–126. [Google Scholar] [CrossRef]
- Bellmunt, J.; Paz-Ares, L.; Cuello, M.; Cecere, F.L.; Albiol, S.; Guillem, V.; Gallardo, E.; Carles, J.; Mendez, P.; de la Cruz, J.J.; et al. Spanish Oncology Genitourinary Group. Gene expression of ERCC1 as a novel prognostic marker in advanced bladder cancer patients receiving cisplatin-based chemotherapy. Ann. Oncol. 2007, 18, 522–528. [Google Scholar] [CrossRef]
- Teo, M.Y.; Bambury, R.M.; Zabor, E.C.; Jordan, E.; Al-Ahmadie, H.; Boyd, M.E.; Bouvier, N.; Mullane, S.A.; Cha, E.K.; Roper, N.; et al. DNA damage response and repair gene alterations are associated with improved survival in patients with platinum-treated advanced urothelial carcinoma. Clin. Cancer Res. 2017, 23, 3610–3618. [Google Scholar] [CrossRef] [Green Version]
- Champiat, S.; Dercle, L.; Ammari, S.; Massard, C.; Hollebecque, A.; Postel-Vinay, S.; Chaput, N.; Eggermont, A.; Marabelle, A.; Soria, J.C.; et al. Hyperprogressive disease is a new pattern of progression in cancer patients treated by anti-PD-1/PD-L1. Clin. Cancer Res. 2017, 23, 1920–1928. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Gao, J.; Wu, X. Pseudoprogression and hyperprogression after checkpoint blockade. Int. Immunopharmacol. 2018, 58, 125–135. [Google Scholar] [CrossRef]
- Soria, F.; Beleni, A.I.; D’Andrea, D.; Resch, I.; Gust, K.M.; Gontero, P.; Shariat, S.F. Pseudoprogression and hyperprogression during immune checkpoint inhibitor therapy for urothelial and kidney cancer. World J. Urol. 2018, 36, 1703–1709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seymour, L.; Bogaerts, J.; Perrone, A.; Ford, R.; Schwartz, L.H.; Mandrekar, S.; Lin, N.U.; Litière, S.; Dancey, J.; Chen, A.; et al. iRECIST: Guidelines for response criteria for use in trials testing immunotherapeutics. Lancet Oncol. 2017, 18, 143–152. [Google Scholar] [CrossRef] [Green Version]
UC with Divergent Differentiation |
---|
With squamous cell differentiation |
With glandular differentiation |
With trophoblastic differentiation |
With small-cell carcinoma |
UC with deceptively benign histological features |
Nested UC (including large nested) |
Microcystic UC |
Differential diagnosis with metastases or secondary extension to the bladder |
Micropapillary UC |
Plasmacytoid/signet ring cell/diffuse UC |
Sarcomatoid UC (carcinosarcoma) |
Giant cell UC |
Clear cell (glycogen-rich) UC |
UC, lipid-cell variant |
Poorly differentiated tumors (undifferentiated carcinoma NOS, osteoclast-rich undifferentiated carcinoma, undifferentiated carcinoma with rhabdoid features and loss of expression of the SWI/SNF complex |
Marked immune cell response |
Lymphoepithelioma-like urothelial carcinoma |
Agent | FDA Approval | Type | Trial | Indication |
---|---|---|---|---|
Atezolizumab | May 2016 | Anti PD-L1 | IMvigor 210 [36] | First-line: PD-L1 positive (PD-L1 expression ≥5%) cisplatin-ineligible or platinum-ineligible patients with advanced or metastatic UC Second-line: advanced or metastatic UC following platinum-containing chemotherapy failure |
Avelumab | May 2017 | Anti PD-L1 | JAVELIN [39] | Second-line: advanced or metastatic UC following failure of platinum-based chemotherapy |
Durvalumab | May 2017 | Anti PD-L1 | Study 1108 [40] | Second-line: advanced or metastatic UC following failure of platinum-based chemotherapy |
Nivolumab | Feb 2017 | Anti PD-1 | CheckMate-275 [41] | Second-line: advanced or metastatic UC following failure of platinum-based chemotherapy |
Pembrolizumab | May 2017 | Anti PD-1 | KEYNOTE-045 [42] | First-line: PD-L1 positive (CPS ≥10) cisplatin-ineligible patients with advanced or metastatic UC or patients ineligible for any platinum-based chemotherapy Second-line: advanced or metastatic UC following platinum-containing chemotherapy failure |
Combination Agents | Clinical Phase | Identifier | Indication | Primary Endpoints |
---|---|---|---|---|
Pembrolizumab + chemotherapy | III | NCT02853305 (KEYNOTE-361) [43] | First-line: cisplatin-eligible and ineligible patients | PFS and OS |
Atezolizumab + gemcitabine + carboplatin/cisplatin | III | NCT02807636 (IMvigor 130) [44] | First-line: locally advanced or metastatic UC | PFS, OS, safety, and tolerability |
Durvalumab + gemcitabine + carboplatin/cisplatin | III | NCT03682068 (NILE) [45] | First-line: locally advanced or metastatic UC | PFS and OS |
Combination Agents | Clinical Phase | Identifier | Indication | Primary Endpoints |
---|---|---|---|---|
Ipilimumab + nivolumab | I/II | NCT01928394 (CheckMate 032) [57,58] | Second-line: platinum-refractory advanced UC | ORR |
Ipilimumab + nivolumab | III | NCT03036098 (CheckMate 901) [59] | First-line: cisplatin-eligible and ineligible patients | PFS and OS among cisplatin-ineligible patients |
Durvalumab + tremelimumab | III | NCT02516241 (DANUBE) [60] | First-line: cisplatin-eligible and ineligible patients | OS among combination arm and PD-L1-high patients in the monotherapy arm |
Combination Agents | Clinical Phase | Identifier | Indication | Primary Endpoints |
---|---|---|---|---|
Ramicirumab + pembrolizumab | I | NCT02443324 [62] | Second-line: platinum-refractory advanced UC | Safety |
Cabozantinib + nivolumab ± ipilimumab | I | NCT02496208 [66] | Second-line | Safety and toxicity |
Axitinib + avelumab | II | NCT03472560 (JAVELIN Medley VEGF) [67] | First-line: cisplatin-ineligible metastatic UC | ORR |
Combination Agents | Mechanism | Clinical Phase | Identifier | Indication | Primary Endpoints |
---|---|---|---|---|---|
Rogaratinib + atezolizumab | FGFR target therapy | I/II | NCT03473756 (FORT-2) [76] | First-line: cisplatin-ineligible UC | Toxicity and PFS |
Vofatamab + pembrolizumab | FGFR target therapy | I/II | NCT03123055 (FIERCE-22) [77] | Second-line | Safety, toxicity, and ORR |
Agent | Clinical Phase | Identifier | Indication | Primary Endpoints |
---|---|---|---|---|
DN24-02 | II | NCT01353222 [83] | High-risk HER2+ UC with or without prior neoadjuvant chemotherapy | OS |
DC205-NY-ESO-1 | I | NCT01522820 [84] | Patients with cancer-testis antigen (NY-ESO-1) expressing solid tumors | Safety and toxicity |
MAGE-A3 ASCI | I | NCT01498172 [85] | Non-muscle invasive bladder cancer | Adverse events |
PANVAC | II | NCT02015104 [86] | BCG-relapsing, high-grade, non-muscle invasive bladder cancer | DFS |
CDX-1307 | I | NCT00709462 [87] | Incurable bladder cancer | Safety and tolerability |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, T.J.; Cho, K.S.; Koo, K.C. Current Status and Future Perspectives of Immunotherapy for Locally Advanced or Metastatic Urothelial Carcinoma: A Comprehensive Review. Cancers 2020, 12, 192. https://doi.org/10.3390/cancers12010192
Kim TJ, Cho KS, Koo KC. Current Status and Future Perspectives of Immunotherapy for Locally Advanced or Metastatic Urothelial Carcinoma: A Comprehensive Review. Cancers. 2020; 12(1):192. https://doi.org/10.3390/cancers12010192
Chicago/Turabian StyleKim, Tae Jin, Kang Su Cho, and Kyo Chul Koo. 2020. "Current Status and Future Perspectives of Immunotherapy for Locally Advanced or Metastatic Urothelial Carcinoma: A Comprehensive Review" Cancers 12, no. 1: 192. https://doi.org/10.3390/cancers12010192
APA StyleKim, T. J., Cho, K. S., & Koo, K. C. (2020). Current Status and Future Perspectives of Immunotherapy for Locally Advanced or Metastatic Urothelial Carcinoma: A Comprehensive Review. Cancers, 12(1), 192. https://doi.org/10.3390/cancers12010192