Recent Progress of Nanocarrier-Based Therapy for Solid Malignancies
Abstract
:Simple Summary
Abstract
1. Introduction
2. Development of Nano-Sized Delivery Systems for Solid Cancer Therapy
2.1. Liposomal Nanocarriers
2.2. Micelles
2.3. Polymeric Micelles (PMs)
2.4. Polymer-Based Nanocarriers
2.5. Dendrimers
2.6. Niosomes
2.7. Nanoemulsions
2.8. Nanocrystals
2.9. Bio-NPs
2.10. Exosomes
2.11. Inorganic NPs
2.12. Hybrid Nanomedicines
3. Encapsulation of Anti-Cancer Drugs with NPs
4. Application and Clinical Trials of Nanocarrier-Based Therapy in Solid Tumors
4.1. Lung Cancer
4.2. Breast Cancer (BC)
4.3. Pancreatic Cancer (PC)
4.4. Glioblastoma (GBM)
4.5. Hepatocellular Carcinoma (HCC)
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mujokoro, B.; Adabi, M.; Sadroddiny, E.; Adabi, M.; Khosravani, M. Nano-structures mediated co-delivery of therapeutic agents for glioblastoma treatment: A review. Mater. Sci. Eng. C 2016, 69, 1092–1102. [Google Scholar] [CrossRef] [PubMed]
- McGowan, J.V.; Chung, R.; Maulik, A.; Piotrowska, I.; Walker, J.; Yellon, D.M. Anthracycline Chemotherapy and Cardiotoxicity. Cardiovasc. Drugs Ther. 2017, 31, 63–75. [Google Scholar] [CrossRef] [Green Version]
- Probst, C.E.; Zrazhevskiy, P.; Bagalkot, V.; Gao, X. Quantum dots as a platform for nanoparticle drug delivery vehicle design. Adv. Drug Deliv. Rev. 2013, 65, 703–718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peer, D.; Karp, J.M.; Hong, S.; Farokhzad, O.C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2007, 2, 751–760. [Google Scholar] [CrossRef] [PubMed]
- Hyodo, K.; Yamamoto, E.; Suzuki, T.; Kikuchi, H.; Asano, M.; Ishihara, H. Development of liposomal anticancer drugs. Biol. Pharm. Bull. 2013, 36, 703–707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maeda, H.; Nakamura, H.; Fang, J. The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv. Drug Deliv. Rev. 2013, 65, 71–79. [Google Scholar] [CrossRef]
- Fang, J.; Nakamura, H.; Maeda, H. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv. Drug Deliv. Rev. 2011, 63, 136–151. [Google Scholar] [CrossRef]
- Rosenblum, D.; Joshi, N.; Tao, W.; Karp, J.M.; Peer, D. Progress and challenges towards targeted delivery of cancer therapeutics. Nat. Commun. 2018, 9, 1410. [Google Scholar] [CrossRef] [Green Version]
- Bar-Zeev, M.; Livney, Y.D.; Assaraf, Y.G. Targeted nanomedicine for cancer therapeutics: Towards precision medicine overcoming drug resistance. Drug Resist. Updat. 2017, 31, 15–30. [Google Scholar] [CrossRef]
- Danhier, F. To exploit the tumor microenvironment: Since the EPR effect fails in the clinic, what is the future of nanomedicine? J. Control. Release 2016, 244, 108–121. [Google Scholar] [CrossRef]
- Gharpure, K.M.; Wu, S.Y.; Li, C.; Lopez-Berestein, G.; Sood, A.K. Nanotechnology: Future of oncotherapy. Clin. Cancer Res. 2015, 21, 3121–3130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Rijt, S.H.; Böluükbas, D.A.; Argyo, C.; Datz, S.; Lindner, M.; Eickelberg, O.; Königshoff, M.; Bein, T.; Meiners, S. Protease-mediated release of chemotherapeutics from mesoporous silica nanoparticles to ex vivo human and mouse lung tumors. ACS Nano 2015, 9, 2377–2389. [Google Scholar] [CrossRef]
- Taratula, O.; Kuzmov, A.; Shah, M.; Garbuzenko, O.B.; Minko, T. Nanostructured lipid carriers as multifunctional nanomedicine platform for pulmonary co-delivery of anticancer drugs and siRNA. J. Control. Release 2013, 171, 349–357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torchilin, V.P. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat. Rev. Drug Discov. 2014, 13, 813–827. [Google Scholar] [CrossRef] [Green Version]
- Leucuta, S.E. Nanotechnology for delivery of drugs and biomedical applications. Curr. Clin. Pharmacol. 2010, 5, 257–280. [Google Scholar] [CrossRef] [PubMed]
- Buse, J.; El-Aneed, A. Properties, engineering and applications of lipid-based nanoparticle drug-delivery systems: Current research and advances. Nanomedicine 2010, 5, 1237–1260. [Google Scholar] [CrossRef]
- Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S.W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K. Liposome: Classification, preparation, and applications. Nanoscale Res. Lett. 2013, 8, 102. [Google Scholar] [CrossRef] [Green Version]
- Bulbake, U.; Doppalapudi, S.; Kommineni, N.; Khan, W. Liposomal formulations in clinical use: An updated review. Pharmaceutics 2017, 9, 12. [Google Scholar] [CrossRef]
- Stone, N.R.H.; Bicanic, T.; Salim, R.; Hope, W. Liposomal amphotericin B (AmBisome®): A review of the pharmacokinetics, pharmacodynamics, clinical experience and future directions. Drugs 2016, 76, 485–500. [Google Scholar] [CrossRef] [Green Version]
- Wissing, S.A.; Kayser, O.; Müller, R. Solid lipid nanoparticles for parenteral drug delivery. Adv. Drug Deliv. Rev. 2004, 56, 1257–1272. [Google Scholar] [CrossRef]
- Cai, S.; Yang, Q.; Bagby, T.R.; Forrest, M.L. Lymphatic drug delivery using engineered liposomes and solid lipid nanoparticles. Adv. Drug Deliv. Rev. 2011, 63, 901–908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, C.L.; Al-Suwayeh, S.A.; Fang, J.Y. Nanostructured lipid carriers (NLCs) for drug delivery and targeting. Recent Patents Nanotechnol. 2013, 7, 41–55. [Google Scholar] [CrossRef]
- Yang, Y.; Corona, A.; Schubert, B.; Reeder, R.; Henson, M.A. The effect of oil type on the aggregation stability of nanostructured lipid carriers. J. Colloid Interface Sci. 2014, 418, 261–272. [Google Scholar] [CrossRef] [PubMed]
- Husseini, G.A.; Pitt, W.G. Micelles and nanoparticles for ultrasonic drug and gene delivery. Adv. Drug Deliv. Rev. 2008, 60, 1137–1152. [Google Scholar] [CrossRef] [Green Version]
- Palazzolo, S.; Bayda, S.; Hadla, M.; Caligiuri, I.; Corona, G.; Toffoli, G.; Rizzolio, F.; Palazzolo, S.B.S. The clinical translation of organic nanomaterials for cancer therapy: A focus on polymeric nanoparticles, micelles, liposomes and exosomes. Curr. Med. Chem. 2018, 25, 4224–4268. [Google Scholar] [CrossRef]
- Gothwal, A.; Khan, I.; Gupta, U. Polymeric micelles: Recent advancements in the delivery of anticancer drugs. Pharm. Res. 2016, 33, 18–39. [Google Scholar] [CrossRef]
- Li, W.; Huang, L.; Ying, X.; Jian, Y.; Hong, Y.; Hu, F.; Du, Y.Z. Antitumor drug delivery modulated by a polymeric micelle with an upper critical solution temperature. Angew. Chem. Int. Ed. 2015, 54, 3126–3131. [Google Scholar] [CrossRef] [PubMed]
- Cabral, H.; Matsumoto, Y.; Mizuno, K.; Chen, Q.; Murakami, M.; Kimura, M.; Terada, Y.; Kano, M.R.; Miyazono, K.; Uesaka, M.; et al. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat. Nanotechnol. 2011, 6, 815–823. [Google Scholar] [CrossRef]
- Thakor, A.S.; Gambhir, S. Nanooncology: The future of cancer diagnosis and therapy. CA Cancer J. Clin. 2013, 63, 395–418. [Google Scholar] [CrossRef]
- Duncan, R.; Vicent, M.J. Polymer therapeutics-prospects for 21st century: The end of the beginning. Adv. Drug Deliv. Rev. 2013, 65, 60–70. [Google Scholar] [CrossRef]
- Herrero, E.; Fernandez-Medarde, A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur. J. Pharm. Biopharm. 2015, 93, 52–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Lee, T.; Dziubla, T.; Pi, F.; Guo, S.; Xu, J.; Li, C.; Haque, F.; Liang, X.-J.; Guo, P. RNA as a stable polymer to build controllable and defined nanostructures for material and biomedical applications. Nano Today 2015, 10, 631–655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krishnamurthy, S.; Vaiyapuri, R.; Zhang, L.; Chan, J.M. Lipid-coated polymeric nanoparticles for cancer drug delivery. Biomater. Sci. 2015, 3, 923–936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farokhzad, O.C.; Cheng, J.; Teply, B.A.; Sherifi, I.; Jon, S.; Kantoff, P.W.; Richie, J.P.; Langer, R. Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc. Natl. Acad. Sci. USA 2006, 103, 6315–6320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbasi, E.; Aval, S.F.; Akbarzadeh, A.; Milani, M.; Nasrabadi, H.T.; Joo, S.W.; Hanifehpour, Y.; Nejati-Koshki, K.; Pashaei-Asl, R. Dendrimers: Synthesis, applications, and properties. Nanoscale Res. Lett. 2014, 9, 247. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.K.; Gothwal, A.; Kesharwani, P.; Alsaab, H.O.; Iyer, A.K.; Gupta, U. Dendrimer nanoarchitectures for cancer diagnosis and anticancer drug delivery. Drug Discov. Today 2017, 22, 314–326. [Google Scholar] [CrossRef]
- Wu, L.; Ficker, M.; Christensen, J.B.; Trohopoulos, P.N.; Moghimi, S.M. Dendrimers in medicine: Therapeutic concepts and pharmaceutical challenges. Bioconjugate Chem. 2015, 26, 1198–1211. [Google Scholar] [CrossRef]
- Cai, X.; Hu, J.; Xiao, J.; Cheng, Y. Dendrimer and cancer: A patent review (2006–present). Expert Opin. Ther. Patents 2013, 23, 515–529. [Google Scholar] [CrossRef]
- Thakkar, M.; Brijesh, S. Opportunities and challenges for niosomes as drug delivery systems. Curr. Drug Deliv. 2016, 13, 1275–1289. [Google Scholar] [CrossRef]
- Marianecci, C.; Di Marzio, L.; Rinaldi, F.; Celia, C.; Paolino, D.; Alhaique, F.; Esposito, S.; Carafa, M. Niosomes from 80s to present: The state of the art. Adv. Colloid Interface Sci. 2014, 205, 187–206. [Google Scholar] [CrossRef]
- Pereira, M.C.; Pianella, M.; Wei, D.; Moshnikova, A.; Marianecci, C.; Carafa, M.; Andreev, O.A.; Reshetnyak, Y.K. pH-sensitive pHLIP® coated niosomes. Mol. Membr. Biol. 2016, 33, 51–63. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, M.; Dudhe, R.; Sharma, P.K. Nanoemulsion: An advanced mode of drug delivery system. 3 Biotech 2014, 5, 123–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahu, P.; Das, D.; Mishra, V.K.; Kashaw, V.; Kashaw, S.; Sahu, D.D.P. Nanoemulsion: A novel eon in cancer chemotherapy. Mini Rev. Med. Chem. 2017, 17, 1778–1792. [Google Scholar] [CrossRef] [PubMed]
- Gorain, B.; Choudhury, H.; Nair, A.; Dubey, S.K.; Kesharwani, P. Theranostic application of nanoemulsions in chemotherapy. Drug Discov. Today 2020, 25, 1174–1188. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Chen, Y.; Gemeinhart, R.A.; Wu, W.; Li, T. Developing nanocrystals for cancer treatment. Nanomedicine 2015, 10, 2537–2552. [Google Scholar] [CrossRef] [Green Version]
- Jarvis, M.; Krishnan, V.; Mitragotri, S. Nanocrystals: A perspective on translational research and clinical studies. Bioeng. Transl. Med. 2018, 4, 5–16. [Google Scholar] [CrossRef]
- Miao, X.; Yang, W.; Feng, T.; Lin, J.; Huang, P. Drug nanocrystals for cancer therapy. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2017, 10, e1499. [Google Scholar] [CrossRef]
- Lu, Y.; Li, Y.; Wu, W. Injected nanocrystals for targeted drug delivery. Acta Pharm. Sin. B 2016, 6, 106–113. [Google Scholar] [CrossRef] [Green Version]
- Nishimura, Y.; Ishii, J.; Ogino, C.; Kondo, A. Genetic engineering of bio-nanoparticles for drug delivery: A review. J. Biomed. Nanotechnol. 2014, 10, 2063–2085. [Google Scholar] [CrossRef]
- Li, K.; Nguyen, H.G.; Lu, X.; Wang, Q. Viruses and their potential in bioimaging and biosensing applications. Analyst 2010, 135, 21–27. [Google Scholar] [CrossRef]
- Tarhini, M.; Greige-Gerges, H.; Elaissari, A. Protein-based nanoparticles: From preparation to encapsulation of active molecules. Int. J. Pharm. 2017, 522, 172–197. [Google Scholar] [CrossRef] [PubMed]
- Verma, D.; Gulati, N.; Kaul, S.; Mukherjee, S.; Nagaich, U. Protein based nanostructures for drug delivery. J. Pharm. 2018, 2018, 9285854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dostalova, S.; Vasickova, K.; Hynek, D.; Krizkova, S.; Richtera, L.; Vaculovicova, M.; Eckschlager, T.; Stiborová, M.; Heger, Z.; Adam, V. Apoferritin as an ubiquitous nanocarrier with excellent shelf life. Int. J. Nanomed. 2017, 12, 2265–2278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Syn, N.L.; Ho, D.; Goh, B.C.; Wang, L.; Lim, C.T. Exosomes in cancer nanomedicine and immunotherapy: Prospects and challenges. Trends Biotechnol. 2017, 35, 665–676. [Google Scholar] [CrossRef]
- Srinivasan, S.; Vannberg, F.O.; Dixon, J.B. Lymphatic transport of exosomes as a rapid route of information dissemination to the lymph node. Sci. Rep. 2016, 6, 24436. [Google Scholar] [CrossRef] [Green Version]
- Conlan, R.S.; Pisano, S.; Oliveira, M.I.; Ferrari, M.; Pinto, I.M. Exosomes as reconfigurable therapeutic systems. Trends Mol. Med. 2017, 23, 636–650. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Greening, D.W.; Zhu, H.J.; Takahashi, N.; Simpson, R.J. Extracellular vesicle isolation and characterization: Toward clinical application. J. Clin. Investig. 2016, 126, 1152–1162. [Google Scholar] [CrossRef] [Green Version]
- Johnsen, K.B.; Gudbergsson, J.M.; Skov, M.N.; Pilgaard, L.; Moos, T.; Duroux, M. A comprehensive overview of exosomes as drug delivery vehicles—Endogenous nanocarriers for targeted cancer therapy. Biochim. Biophys. Acta 2014, 1846, 75–87. [Google Scholar] [CrossRef]
- Luan, X.; Sansanaphongpricha, K.; Myers, I.; Chen, H.; Yuan, H.; Sun, D. Engineering exosomes as refined biological nanoplatforms for drug delivery. Acta Pharmacol. Sin. 2017, 38, 754–763. [Google Scholar] [CrossRef] [Green Version]
- Subbaiya, R.; Saravanan, M.; Priya, A.R.; Shankar, K.R.; Selvam, M.M.; Ovais, M.; Balajee, R.; Barabadi, H. Biomimetic synthesis of silver nanoparticles from Streptomyces atrovirens and their potential anticancer activity against human breast cancer cells. IET Nanobiotechnol. 2017, 11, 965–972. [Google Scholar] [CrossRef]
- Mohammadzadeh, R. Hypothesis: Silver nanoparticles as an adjuvant for cancer therapy. Adv. Pharm. Bull. 2012, 2, 133. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; You, P.; Xu, F.; Liu, J.; Xing, F. Novel Functionalized selenium nanoparticles for enhanced anti-hepatocarcinoma activity in vitro. Nanoscale Res. Lett. 2015, 10, 1051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, W.; Yin, T.; Chen, Q.; Qin, X.; Huang, X.; Zhao, S.; Xu, T.; Chen, L.; Liu, J. Co-delivery of Se nanoparticles and pooled SiRNAs for overcoming drug resistance mediated by P-glycoprotein and class III β-tubulin in drug-resistant breast cancers. Acta Biomater. 2016, 31, 197–210. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Lin, Z.; Guo, M.; Zhao, M.; Xia, Y.; Wang, C.; Xu, T.; Zhu, B. Inhibition of H1N1 influenza virus-induced apoptosis by functionalized selenium nanoparticles with amantadine through ROS-mediated AKT signaling pathways. Int. J. Nanomed. 2018, 13, 2005–2016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuzyniak, W.; Adegoke, O.; Sekhosana, K.; D’Souza, S.; Tshangana, S.C.; Hoffmann, B.; Ermilov, E.A.; Nyokong, T.; Höpfner, M. Synthesis and characterization of quantum dots designed for biomedical use. Int. J. Pharm. 2014, 466, 382–389. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Han, S.; Liu, H.; Chen, X.; Huang, L.; Li, X.; Zhang, J. The role of surface chemistry in determining in vivo biodistribution and toxicity of CdSe/ZnS core–shell quantum dots. Biomaterials 2013, 34, 8741–8755. [Google Scholar] [CrossRef]
- Seifalian, A.M.; Madani, S.Y.; Naderi, N.; Dissanayake, O.; Tan, A. A new era of cancer treatment: Carbon nanotubes as drug delivery tools. Int. J. Nanomed. 2011, 6, 2963–2979. [Google Scholar] [CrossRef] [Green Version]
- Ho, D.; Wang, C.H.K.; Ho, D. Nanodiamonds: The intersection of nanotechnology, drug development, and personalized medicine. Sci. Adv. 2015, 1, e1500439. [Google Scholar] [CrossRef] [Green Version]
- Van Der Laan, K.; Hasani, M.; Zheng, T.; Schirhagl, R. Nanodiamonds for in vivo applications. Small 2018, 14, 1703838. [Google Scholar] [CrossRef]
- Vinardell, M.; Mitjans, M. Antitumor activities of metal oxide nanoparticles. Nanomaterials 2015, 5, 1004–1021. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Cai, T.G.; Huang, Y.; Xia, X.; Cole, S.; Cai, Y. A review of the structure, preparation, and application of NLCs, PNPs, and PLNs. Nanomaterials 2017, 7, 122. [Google Scholar] [CrossRef] [PubMed]
- Huynh, N.; Passirani, C.; Saulnier, P.; Benoit, J.P. Lipid nanocapsules: A new platform for nanomedicine. Int. J. Pharm. 2009, 379, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Moura, R.P.; Pacheco, C.; Pêgo, A.P.; Rieux, A.D.; Sarmento, B. Lipid nanocapsules to enhance drug bioavailability to the central nervous system. J. Control. Release 2020, 322, 390–400. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Wei, Z.; Gu, Z.-Y.; Liu, T.-F.; Park, J.; Park, J.; Tian, J.; Zhang, M.; Zhang, Q.; Iii, T.G.; et al. Tuning the structure and function of metal–organic frameworks via linker design. Chem. Soc. Rev. 2014, 43, 5561–5593. [Google Scholar] [CrossRef] [PubMed]
- Simon-Yarza, T.; Mielcarek, A.; Couvreur, P.; Serre, C. Nanoparticles of metal-organic frameworks: On the road to in vivo efficacy in biomedicine. Adv. Mater. 2018, 30, e1707365. [Google Scholar] [CrossRef]
- Horcajada, P.; Gref, R.; Baati, T.; Allan, P.K.; Maurin, G.; Couvreur, P.; Férey, G.; Morris, R.E.; Serre, C.; Patrick, C. Metal–organic frameworks in biomedicine. Chem. Rev. 2012, 112, 1232–1268. [Google Scholar] [CrossRef]
- Cai, W.; Chu, C.C.; Liu, G.; Wang, Y.X. Metal-Organic framework-based nanomedicine platforms for drug delivery and molecular imaging. Small 2015, 11, 4806–4822. [Google Scholar] [CrossRef]
- Nabholtz, J.M.; Riva, A. Taxane/anthracycline combinations: Setting a new standard in breast cancer? Oncology 2001, 6 (Suppl. 3), 5–12. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.J.; Yazan, L.S.; Abdullah, C.A.C. A review on current nanomaterials and their drug conjugate for targeted breast cancer treatment. Int. J. Nanomed. 2017, 12, 2373–2384. [Google Scholar] [CrossRef] [Green Version]
- Smith, L.A.; Cornelius, V.R.; Plummer, C.J.; Levitt, G.; Verrill, M.; Canney, P.; Jones, A.L. Cardiotoxicity of anthracycline agents for the treatment of cancer: Systematic review and meta-analysis of randomised controlled trials. BMC Cancer 2010, 10, 337. [Google Scholar] [CrossRef] [Green Version]
- Mackler, N.J.; Pienta, K.J. Drug Insight: Use of docetaxel in prostate and urothelial cancers. Nat. Clin. Pract. Urol. 2005, 2, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Van Vuuren, R.J.; Visagie, M.H.; Theron, A.E.; Joubert, A. Antimitotic drugs in the treatment of cancer. Cancer Chemother. Pharmacol. 2015, 76, 1101–1112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, X.; Wang, S.; Wang, B.; Deng, S.; Liu, X.; Zhang, X.; Luo, L.; Fan, R.; Xiang, M.; You, C.; et al. Improving the anti-ovarian cancer activity of docetaxel with biodegradable self-assembly micelles through various evaluations. Biomaterials 2015, 53, 646–658. [Google Scholar] [CrossRef] [PubMed]
- Ruttala, H.B.; Chitrapriya, N.; Kaliraj, K.; Ramasamy, T.; Shin, W.H.; Jeong, J.-H.; Kim, J.R.; Ku, S.K.; Choi, H.G.; Yong, C.S.; et al. Facile construction of bioreducible crosslinked polypeptide micelles for enhanced cancer combination therapy. Acta Biomater. 2017, 63, 135–149. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, N. How nanotechnology can enhance docetaxel therapy. Int. J. Nanomed. 2013, 8, 2927–2941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, K.; Lambiase, L.; Li, J.; Monteiro, C.; Schiff, M. Case report: Fatal cholestatic liver failure associated with gemcitabine therapy. Dig. Dis. Sci. 2003, 48, 1804–1808. [Google Scholar] [CrossRef]
- Chen, Y.W.; Liu, J.Y.; Lin, S.T.; Li, J.M.; Huang, S.H.; Chen, J.Y.; Wu, J.Y.; Kuo, C.C.; Wu, C.L.; Lu, Y.C.; et al. Proteomic analysis of gemcitabine-induced drug resistance in pancreatic cancer cells. Mol. BioSyst. 2011, 7, 3065–3074. [Google Scholar] [CrossRef]
- Brandes, A.A.; Bartolotti, M.; Tosoni, A.; Franceschi, E. Nitrosoureas in the management of malignant gliomas. Curr. Neurol. Neurosci. Rep. 2016, 16, 13. [Google Scholar] [CrossRef]
- Akiyama, Y.; Kimura, Y.; Enatsu, R.; Mikami, T.; Wanibuchi, M.; Mikuni, N. Advantages and disadvantages of combined chemotherapy with carmustine wafer and bevacizumab in patients with newly diagnosed glioblastoma: A single-institutional experience. World Neurosurg. 2018, 113, e508–e514. [Google Scholar] [CrossRef]
- Vilar, G.; Tulla-Puche, J.; Albericio, F. Polymers and drug delivery systems. Curr. Drug Deliv. 2012, 9, 367–394. [Google Scholar] [CrossRef]
- Guo, S.; Vieweger, M.; Zhang, K.; Yin, H.; Wang, H.; Li, X.; Li, S.; Hu, S.; Sparreboom, A.; Evers, B.M.; et al. Ultra-thermostable RNA nanoparticles for solubilizing and high-yield loading of paclitaxel for breast cancer therapy. Nat. Commun. 2020, 11, 972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaminskas, L.M.; Kelly, B.D.; McLeod, V.M.; Sberna, G.; Owen, D.J.; Boyd, B.; Porter, C.J. Characterisation and tumour targeting of PEGylated polylysine dendrimers bearing doxorubicin via a pH labile linker. J. Control. Release 2011, 152, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Q.; Da Rocha, S.R. Poly(amidoamine) dendrimer–doxorubicin conjugates: In vitro characteristics and pseudosolution formulation in pressurized metered-dose inhalers. Mol. Pharm. 2016, 13, 1058–1072. [Google Scholar] [CrossRef] [PubMed]
- Park, K.; Lee, G.Y.; Kim, Y.S.; Yu, M.; Park, R.W.; Kim, I.S.; Kim, S.Y.; Byun, Y. Heparin–deoxycholic acid chemical conjugate as an anticancer drug carrier and its antitumor activity. J. Control. Release 2006, 114, 300–306. [Google Scholar] [CrossRef]
- Choudhary, S.; Gupta, L.; Rani, S.; Dave, K.; Gupta, U. Impact of dendrimers on solubility of hydrophobic drug molecules. Front. Pharmacol. 2017, 8, 261. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.S.; Haney, M.J.; Zhao, Y.; Mahajan, V.; Deygen, I.; Klyachko, N.L.; Inskoe, E.; Piroyan, A.; Sokolsky, M.; Okolie, O.; et al. Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomedicine 2016, 12, 655–664. [Google Scholar] [CrossRef] [Green Version]
- Iannazzo, D.; Pistone, A.; Salamò, M.; Galvagno, S.; Romeo, R.; Giofré, S.V.; Branca, C.; Visalli, G.; Di Pietro, A. Graphene quantum dots for cancer targeted drug delivery. Int. J. Pharm. 2017, 518, 185–192. [Google Scholar] [CrossRef]
- Zhao, D.; Wu, J.; Li, C.; Zhang, H.; Li, Z.; Luan, Y. Precise ratiometric loading of PTX and DOX based on redox-sensitive mixed micelles for cancer therapy. Colloids Surf. B Biointerfaces 2017, 155, 51–60. [Google Scholar] [CrossRef]
- Xie, H.J.; Zhao, J.; Zhuo-Ma, D.; Zhan-Dui, N.; Er-Bu, A.; Tsering, T. Inhibiting tumour metastasis by DQA modified paclitaxel plus ligustrazine micelles in treatment of non-small-cell lung cancer. Artif. Cells Nanomed. Biotechnol. 2019, 47, 3465–3477. [Google Scholar] [CrossRef]
- Zou, J.; Su, S.; Chen, Z.; Liang, F.; Zeng, Y.; Cen, W.; Zhang, X.; Xia, Y.; Huang, D. Hyaluronic acid-modified selenium nanoparticles for enhancing the therapeutic efficacy of paclitaxel in lung cancer therapy. Artif. Cells Nanomed. Biotechnol. 2019, 47, 3456–3464. [Google Scholar] [CrossRef] [Green Version]
- Wu, P.; Yin, D.; Liu, J.; Zhou, H.; Guo, M.; Liu, J.; Liu, Y.; Zheng, H.; Liu, Y.; Chen, C. Cell membrane based biomimetic nanocomposites for targeted therapy of drug resistant EGFR-mutated lung cancer. Nanoscale 2019, 11, 19520–19528. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Wan, J.; Leng, D.; Zhang, Y.; Yang, S. Dual-targeting nanomicelles with CD133 and CD44 aptamers for enhanced delivery of gefitinib to two populations of lung cancer-initiating cells. Exp. Ther. Med. 2019, 19, 192–204. [Google Scholar] [CrossRef]
- Zhang, Z.; Cheng, W.; Pan, Y.; Jia, L. An anticancer agent-loaded PLGA nanomedicine with glutathione-response and targeted delivery for the treatment of lung cancer. J. Mater. Chem. B 2020, 8, 655–665. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Xiao, W.; Zhang, X.; Sun, Y.; Chen, Y.; Chen, Q.; Fang, X.; Du, S.; Sha, X. Pulmonary-affinity paclitaxel polymer micelles in response to biological functions of ambroxol enhance therapeutic effect on lung cancer. Int. J. Nanomed. 2020, 15, 779–793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, Y.; Zhang, J.; Tian, B.; Wu, Z.; Svirskis, D.; Han, J.T. A NAG-guided nano-delivery system for redox- and ph-triggered intracellularly sequential drug release in cancer cells. Int. J. Nanomed. 2020, 15, 841–855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Hu, H.; Zhang, H.; Dai, W.; Wang, X.; Wang, X.; Zhang, Q. Effects of PEGylated paclitaxel nanocrystals on breast cancer and its lung metastasis. Nanoscale 2015, 7, 10790–10800. [Google Scholar] [CrossRef] [PubMed]
- Guvena, A.; Villaresbc, G.J.; Hilsenbeck, S.G.; Lewisb, A.; Landua, J.D.; Dobrolecki, L.E.; Wilson, L.J.; Lewis, M.T. Carbon nanotube capsules enhance the in vivo efficacy of cisplatin. Acta Biomater. 2017, 58, 466–478. [Google Scholar] [CrossRef]
- Li, J.; Xu, W.; Yuan, X.; Chen, H.; Song, H.; Wang, B.; Han, J. Polymer–lipid hybrid anti-HER2 nanoparticles for targeted salinomycin delivery to HER2-positive breast cancer stem cells and cancer cells. Int. J. Nanomed. 2017, 12, 6909–6921. [Google Scholar] [CrossRef] [Green Version]
- Le, D.H.T.; Lee, K.L.; Shukla, S.; Commandeur, U.; Steinmetz, N.F. Potato virus X, a filamentous plant viral nanoparticle for doxorubicin delivery in cancer therapy. Nanoscale 2017, 9, 2348–2357. [Google Scholar] [CrossRef] [Green Version]
- Jiang, S.; Hua, L.; Guo, Z.; Sun, L. One-pot green synthesis of doxorubicin loaded-silica nanoparticles for in vivo cancer therapy. Mater. Sci. Eng. C 2018, 90, 257–263. [Google Scholar] [CrossRef]
- Zheng, G.; Zheng, M.; Yang, B.; Fu, H.; Li, Y. Improving breast cancer therapy using doxorubicin loaded solid lipid nanoparticles: Synthesis of a novel arginine-glycine-aspartic tripeptide conjugated, pH sensitive lipid and evaluation of the nanomedicine in vitro and in vivo. Biomed. Pharmacother. 2019, 116, 109006. [Google Scholar] [CrossRef] [PubMed]
- Fang, H.; Zhao, X.; Gu, X.; Sun, H.; Cheng, R.; Zhong, Z.; Deng, C. CD44-targeted multifunctional nanomedicines based on a single-component hyaluronic acid conjugate with all-natural precursors: Construction and treatment of metastatic breast tumors in vivo. Biomacromolecules 2020, 21, 104–113. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, X.; Lu, Y.; Chaurasiya, B.; Mi, G.; Shi, D.; Chen, D.; Webster, T.J.; Tu, J.; Shen, Y. Co-delivery of Poria cocos extract and doxorubicin as an ’all-in-one’ nanocarrier to combat breast cancer multidrug resistance during chemotherapy. Nanomedicine 2019, 23, 102095. [Google Scholar] [CrossRef]
- Lei, J.; Wang, H.; Zhu, D.; Wan, Y.; Yin, L. Combined effects of avasimibe immunotherapy, doxorubicin chemotherapy, and metal–organic frameworks nanoparticles on breast cancer. J. Cell. Physiol. 2019, 235, 4814–4823. [Google Scholar] [CrossRef] [PubMed]
- Dancy, J.G.; Wadajkar, A.S.; Connolly, N.P.; Galisteo, R.; Ames, H.M.; Peng, S.; Tran, N.L.; Goloubeva, O.G.; Woodworth, G.F.; Winkles, J.A.; et al. Decreased nonspecific adhesivity, receptor-targeted therapeutic nanoparticles for primary and metastatic breast cancer. Sci. Adv. 2020, 6, eaax3931. [Google Scholar] [CrossRef] [Green Version]
- Han, B.; Yang, Y.; Chen, J.; Tang, H.; Sun, Y.; Zhang, Z.; Wang, Z.; Li, Y.; Li, Y.; Luan, X.; et al. Preparation, characterization, and pharmacokinetic study of a novel long-acting targeted paclitaxel liposome with antitumor activity. Int. J. Nanomed. 2020, 15, 553–571. [Google Scholar] [CrossRef] [Green Version]
- Zafar, S.; Akhter, S.; Garg, N.; Selvapandiyan, A.; Jain, G.K.; Ahmad, F.J. Co-encapsulation of docetaxel and thymoquinone in mPEG-DSPE-vitamin E TPGS-lipid nanocapsules for breast cancer therapy: Formulation optimization and implications on cellular and in vivo toxicity. Eur. J. Pharm. Biopharm. 2020, 148, 10–26. [Google Scholar] [CrossRef]
- Xu, C.; Xu, J.; Zheng, Y.; Fang, Q.; Lv, X.; Wang, X.; Cheng, X. Active-targeting and acid-sensitive pluronic prodrug micelles for efficiently overcoming MDR in breast cancer. J. Mater. Chem. B 2020, 8, 2726–2737. [Google Scholar] [CrossRef]
- Teijeiro-Valiño, C.; Novoa-Carballal, R.; Borrajo, E.; Vidal, A.; Alonso-Nocelo, M.; Freire, M.D.L.F.; López-Casas, P.P.; Hidalgo, M.; Csaba, N.; Alonso, M.J. A multifunctional drug nanocarrier for efficient anticancer therapy. J. Control. Release 2019, 294, 154–164. [Google Scholar] [CrossRef]
- Lin, C.; Hu, Z.; Yuan, G.; Su, H.; Zeng, Y.; Guo, Z.; Zhong, F.; Jiang, K.; He, S.; Songqing, H. HIF1α-siRNA and gemcitabine combination-based GE-11 peptide antibody-targeted nanomedicine for enhanced therapeutic efficacy in pancreatic cancers. J. Drug Target. 2019, 27, 797–805. [Google Scholar] [CrossRef]
- Madamsetty, V.S.; Sharma, A.; Toma, M.; Samaniego, S.; Gallud, A.; Wang, E.; Pal, K.; Mukhopadhyay, D.; Fadeel, B. Tumor selective uptake of drug-nanodiamond complexes improves therapeutic outcome in pancreatic cancer. Nanomedicine 2019, 18, 112–121. [Google Scholar] [CrossRef] [PubMed]
- Massey, A.E.; Sikander, M.; Chauhan, N.; Kumari, S.; Setua, S.; Shetty, A.B.; Mandil, H.; Kashyap, V.K.; Khan, S.; Jaggi, M.; et al. Next-generation paclitaxel-nanoparticle formulation for pancreatic cancer treatment. Nanomedicine 2019, 20, 102027. [Google Scholar] [CrossRef] [PubMed]
- Madamsetty, V.S.; Pal, K.; Keshavan, S.; Caulfield, T.R.; Dutta, S.K.; Wang, E.; Fadeel, B.; Mukhopadhyay, D. Development of multi-drug loaded PEGylated nanodiamonds to inhibit tumor growth and metastasis in genetically engineered mouse models of pancreatic cancer. Nanoscale 2019, 11, 22006–22018. [Google Scholar] [CrossRef]
- Sun, J.; Wan, Z.; Chen, Y.; Xu, J.; Luo, Z.; Parise, R.A.; Diao, D.; Ren, P.; Beumer, J.H.; Lu, B.; et al. Triple drugs co-delivered by a small gemcitabine-based carrier for pancreatic cancer immunochemotherapy. Acta Biomater. 2020, 106, 289–300. [Google Scholar] [CrossRef]
- Etman, S.M.; Abdallah, O.Y.; Mehanna, R.A.; Elnaggar, Y.S. Lactoferrin/Hyaluronic acid double-coated lignosulfonate nanoparticles of quinacrine as a controlled release biodegradable nanomedicine targeting pancreatic cancer. Int. J. Pharm. 2020, 578, 119097. [Google Scholar] [CrossRef] [PubMed]
- Elechalawar, C.K.; Hossen, N.; Shankarappa, P.; Peer, C.J.; Figg, W.D.; Robertson, J.D.; Bhattacharya, R.; Mukherjee, P. Targeting pancreatic cancer cells and stellate cells using designer nanotherapeutics in vitro. Int. J. Nanomed. 2020, 15, 991–1003. [Google Scholar] [CrossRef] [Green Version]
- Han, H.; Hou, Y.; Chen, X.; Zhang, P.; Kang, M.; Jin, Q.; Ji, J.; Gao, M. Metformin-induced stromal depletion to enhance the penetration of gemcitabine-loaded magnetic nanoparticles for pancreatic cancer targeted therapy. J. Am. Chem. Soc. 2020, 142, 4944–4954. [Google Scholar] [CrossRef]
- Zhai, M.; Wang, Y.; Zhang, L.; Liang, M.; Fu, S.; Cui, L.; Yang, M.; Gong, W.; Li, Z.; Yu, L.; et al. Glioma targeting peptide modified apoferritin nanocage. Drug Deliv. 2018, 25, 1013–1024. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.; Wu, G.; Wang, H.; Chen, L. Pep-1&borneol–bifunctionalized carmustine-loaded micelles enhance anti-glioma efficacy through tumor-targeting and BBB-penetrating. J. Pharm. Sci. 2019, 108, 1726–1735. [Google Scholar] [CrossRef]
- Zou, Y.; Liu, Y.; Yang, Z.; Zhang, D.; Lu, Y.; Zheng, M.; Xue, X.; Geng, J.; Chung, R.S.; Shi, B. Effective and targeted human orthotopic glioblastoma xenograft therapy via a multifunctional biomimetic nanomedicine. Adv. Mater. 2018, 30, e1803717. [Google Scholar] [CrossRef]
- Meng, L.; Chu, X.; Xing, H.; Liu, X.; Xin, X.; Chen, L.; Jin, M.; Guan, Y.; Huang, W.; Gao, Z. Improving glioblastoma therapeutic outcomes via doxorubicin-loaded nanomicelles modified with borneol. Int. J. Pharm. 2019, 567, 118485. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhu, Z.; Zhang, G.; Lin, F.; Liu, Y.; Zhang, Y.; Feng, J.; Chen, W.; Meng, Q.; Chen, L. AS1411 aptamer/hyaluronic acid-bifunctionalized microemulsion co-loading shikonin and docetaxel for enhanced antiglioma therapy. J. Pharm. Sci. 2019, 108, 3684–3694. [Google Scholar] [CrossRef] [PubMed]
- Younis, M.; Faming, W.; HongYan, Z.; Mengmeng, T.; Hang, S.; Yuan, L. Iguratimod encapsulated PLGA-NPs improves therapeutic outcome in glioma, glioma stem-like cells and temozolomide resistant glioma cells. Nanomedicine 2019, 22, 102101. [Google Scholar] [CrossRef]
- Toktas, S.; Sahin, A.; Lule, S.; Esendagli, G.; Vural, I.; Oguz, K.K.; Söylemezoğlu, F.; Mut, M.; Dalkara, T.; Khan, M.A.; et al. Combination of Paclitaxel and R-flurbiprofen loaded PLGA nanoparticles suppresses glioblastoma growth on systemic administration. Int. J. Pharm. 2020, 578, 119076. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Shen, Y.; Liao, M.M.; Mao, X.; Mi, G.J.; You, C.; Guo, Q.; Li, W.J.; Wang, X.Y.; Lin, N.; et al. Galactosylated chitosan triptolide nanoparticles for overcoming hepatocellular carcinoma: Enhanced therapeutic efficacy, low toxicity, and validated network regulatory mechanisms. Nanomedicine 2019, 15, 86–97. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Wang, T.; Liu, Y.; Zhang, N. Co-delivery of sorafenib and VEGF-siRNA via pH-sensitive liposomes for the synergistic treatment of hepatocellular carcinoma. Artif. Cells Nanomed. Biotechnol. 2019, 47, 1374–1383. [Google Scholar] [CrossRef] [Green Version]
- Han, W.; Shi, L.; Xie, B.; Wan, J.; Ren, L.; Wang, Y.; Chen, X.; Wang, H. Supramolecular engineering of molecular inhibitors in an adaptive cytotoxic nanoparticle for synergistic cancer therapy. ACS Appl. Mater. Interfaces 2019, 12, 1707–1720. [Google Scholar] [CrossRef]
- Zhang, F.; Jia, Y.; Zheng, X.; Shao, D.; Zhao, Y.; Wang, Z.; Dawulieti, J.; Liu, W.; Sun, M.; Sun, W.; et al. Janus nanocarrier-based co-delivery of doxorubicin and berberine weakens chemotherapy-exacerbated hepatocellular carcinoma recurrence. Acta Biomater. 2019, 100, 352–364. [Google Scholar] [CrossRef]
- Xu, Y.; Kong, Y.; Xu, J.; Li, X.; Gou, X.J.; Yin, T.; He, B.H.; Zhang, Y.; Tang, X. Doxorubicin intercalated copper diethyldithiocarbamate functionalized layered double hydroxide hybrid nanoparticles for targeted therapy of hepatocellular carcinoma. Biomater. Sci. 2020, 8, 897–911. [Google Scholar] [CrossRef]
- Tang, Z.; Luo, C.; Jun, Y.; Yao, M.; Zhang, M.; He, K.; Jin, L.; Ma, J.; Chen, S.; Sun, S.; et al. Nanovector assembled from natural egg yolk lipids for tumor-targeted delivery of therapeutics. ACS Appl. Mater. Interfaces 2020, 12, 7984–7994. [Google Scholar] [CrossRef]
- Hefnawy, A.; Khalil, I.A.H.; Arafa, K.; Emara, M.; El-Sherbiny, I.M. Dual-ligand functionalized core-shell chitosan-based nanocarrier for hepatocellular carcinoma-targeted drug delivery. Int. J. Nanomed. 2020, 15, 821–837. [Google Scholar] [CrossRef] [Green Version]
- Böluükbas, D.A.; Meiners, S. Lung cancer nanomedicine: Potentials and pitfalls. Nanomedicine 2015, 10, 3203–3212. [Google Scholar] [CrossRef]
- Castellanos, E.H.; Horn, L. Immunotherapy in lung cancer. Cancer Treat. Res. 2016, 170, 203–223. [Google Scholar] [CrossRef]
- Rotow, J.; Bivona, T.G. Understanding and targeting resistance mechanisms in NSCLC. Nat. Rev. Cancer 2017, 17, 637–658. [Google Scholar] [CrossRef] [PubMed]
- Kandoth, C.; McLellan, M.D.; Vandin, F.; Ye, K.; Niu, B.; Lu, C.; Xie, M.; Zhang, Q.; McMichael, J.F.; Wyczalkowski, M.A.; et al. Mutational landscape and significance across 12 major cancer types. Nature 2013, 502, 333–339. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, N.K.; Hamad, M.A.; Hafez, M.Z.E.; Wooley, K.L.; Elsabahy, M. Nanomedicine in management of hepatocellular carcinoma: Challenges and opportunities. Int. J. Cancer 2016, 140, 1475–1484. [Google Scholar] [CrossRef] [Green Version]
- Lin, T.; Yuan, A.; Zhao, X.; Lian, H.; Zhuang, J.; Zhang, Q.; Liu, G.; Zhang, S.; Chen, W.; Cao, W.; et al. Self-assembled tumor-targeting hyaluronic acid nanoparticles for photothermal ablation in orthotopic bladder cancer. Acta Biomater. 2017, 53, 427–438. [Google Scholar] [CrossRef]
- Kumar, P.; Tambe, P.; Paknikar, K.M.; Gajbhiye, V. Folate/ N -acetyl glucosamine conjugated mesoporous silica nanoparticles for targeting breast cancer cells: A comparative study. Colloids Surf. B Biointerfaces 2017, 156, 203–212. [Google Scholar] [CrossRef]
- Leung, E.L.H.; Fiscus, R.R.; Tung, J.W.; Tin, V.P.-C.; Cheng, L.C.; Sihoe, A.D.L.; Fink, L.M.; Ma, Y.; Wong, M.P. Non-small cell lung cancer cells expressing CD44 are enriched for stem cell-like properties. PLoS ONE 2010, 5, e14062. [Google Scholar] [CrossRef] [Green Version]
- Nathan, N.; Taytard, J.; Duquesnoy, P.; Thouvenin, G.; Corvol, H.; Amselem, S.; Clement, A. Surfactant protein A: A key player in lung homeostasis. Int. J. Biochem. Cell Biol. 2016, 81, 151–155. [Google Scholar] [CrossRef]
- Mitsuhashi, A.; Goto, H.; Kuramoto, T.; Tabata, S.; Yukishige, S.; Abe, S.; Hanibuchi, M.; Kakiuchi, S.; Saijo, A.; Aono, Y.; et al. Surfactant protein A suppresses lung cancer progression by regulating the polarization of tumor-associated macrophages. Am. J. Pathol. 2013, 182, 1843–1853. [Google Scholar] [CrossRef] [Green Version]
- Chang, L.C.; Chang, Y.Y.; Gau, C.S. Interfacial properties of Pluronics and the interactions between Pluronics and cholesterol/DPPC mixed monolayers. J. Colloid Interface Sci. 2008, 322, 263–273. [Google Scholar] [CrossRef]
- Chen, W.; Zheng, R.; Baade, P.D.; Zhang, S.; Zeng, H.; Bray, F.; Jemal, A.; Yu, X.Q.; He, J. Cancer statistics in China, 2015. CA Cancer J. Clin. 2016, 66, 115–132. [Google Scholar] [CrossRef] [Green Version]
- Nurgalieva, Z.; Liu, C.C.; Du, X.L. Chemotherapy use and risk of bone marrow suppression in a large population-based cohort of older women with breast and ovarian cancer. Med. Oncol. 2010, 28, 716–725. [Google Scholar] [CrossRef]
- Singh, S.K.; Singh, S.; Jr, J.W.L.; Singh, R. Drug delivery approaches for breast cancer. Int. J. Nanomed. 2017, 12, 6205–6218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weber, P.; Wagner, M.; Schneckenburger, H. Cholesterol dependent uptake and interaction of doxorubicin in MCF-7 breast cancer cells. Int. J. Mol. Sci. 2013, 14, 8358–8366. [Google Scholar] [CrossRef]
- Dou, X.Q.; Wang, H.; Zhang, J.; Wang, F.; Xu, G.L.; Xu, C.C.; Xu, H.H.; Xiang, S.S.; Fu, J.; Song, H.F. Aptamer–drug conjugate: Targeted delivery of doxorubicin in a HER3 aptamer-functionalized liposomal delivery system reduces cardiotoxicity. Int. J. Nanomed. 2018, 13, 763–776. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Gong, J.; Zhang, H.; Kong, D. Induction of apoptosis and reversal of permeability glycoprotein-mediated multidrug resistance of MCF-7/ADM by ginsenoside Rh2. Int. J. Clin. Exp. Pathol. 2015, 8, 4444–4456. [Google Scholar]
- Prieto-Vila, M.; Takahashi, R.U.; Usuba, W.; Kohama, I.; Ochiya, T. Drug resistance driven by cancer stem cells and their niche. Int. J. Mol. Sci. 2017, 18, 2574. [Google Scholar] [CrossRef] [Green Version]
- He, L.; Gu, J.; Lim, L.Y.; Yuan, Z.X.; Mo, J. Nanomedicine-mediated therapies to target breast cancer stem cells. Front. Pharmacol. 2016, 7, 313. [Google Scholar] [CrossRef] [Green Version]
- Pindiprolu, S.K.S.S.; Krishnamurthy, P.T.; Chintamaneni, P.K.; Karri, V.V.S.R. Nanocarrier based approaches for targeting breast cancer stem cells. Artif. Cells Nanomed. Biotechnol. 2017, 46, 885–898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Afzal, M.; Alharbi, K.S.; Alruwaili, N.K.; Al-Abassi, F.A.; Al-Malki, A.A.L.; Kazmi, I.; Kumar, V.; Kamal, M.A.; Nadeem, M.S.; Aslam, M.; et al. Nanomedicine in treatment of breast cancer—A challenge to conventional therapy. Semin. Cancer Biol. 2019. [Google Scholar] [CrossRef] [PubMed]
- Sheikh, U.N.; Cohen, C.; Siddiqui, M.T. Folate receptor alpha immunohistochemistry in cytology specimens of metastatic breast carcinoma. Acta Cytol. 2015, 59, 298–304. [Google Scholar] [CrossRef]
- Allahverdiyev, A.M.; Parlar, E.; Dinparvar, S.; Bagirova, M.; Abamor, E. Şefik Current aspects in treatment of breast cancer based of nanodrug delivery systems and future prospects. Artif. Cells Nanomed. Biotechnol. 2018, 46, S755–S762. [Google Scholar] [CrossRef]
- Wu, D.; Si, M.; Xue, H.Y.; Wong, H.L. Nanomedicine applications in the treatment of breast cancer: Current state of the art. Int. J. Nanomed. 2017, 12, 5879–5892. [Google Scholar] [CrossRef] [Green Version]
- Tran, N.L.; McDonough, W.S.; Savitch, B.A.; Fortin, S.P.; Winkles, J.A.; Symons, M.; Nakada, M.; Cunliffe, H.E.; Hostetter, G.; Hoelzinger, D.B.; et al. Increased fibroblast growth factor-inducible 14 expression levels promote glioma cell invasion via rac1 and nuclear factor- B and correlate with poor patient outcome. Cancer Res. 2006, 66, 9535–9542. [Google Scholar] [CrossRef] [Green Version]
- Krishna, B.M.; Chaudhary, S.; Mishra, D.R.; Naik, S.K.; Suklabaidya, S.; Adhya, A.K.; Mishra, S.K. Estrogen receptor α dependent regulation of estrogen related receptor β and its role in cell cycle in breast cancer. BMC Cancer 2018, 18, 607. [Google Scholar] [CrossRef] [Green Version]
- Mattheolabakis, G.; Milane, L.; Singh, A.; Amiji, M. Hyaluronic acid targeting of CD44 for cancer therapy: From receptor biology to nanomedicine. J. Drug Target. 2015, 23, 605–618. [Google Scholar] [CrossRef]
- Zhao, P.; Lu, Y.; Jiang, X.; Li, X. Clinicopathological significance and prognostic value of CD133 expression in triple-negative breast carcinoma. Cancer Sci. 2011, 102, 1107–1111. [Google Scholar] [CrossRef]
- Tang, X.; Loc, W.S.; Dong, C.; Matters, G.L.; Butler, P.J.; Kester, M.; Meyers, C.; Jiang, Y.; Adair, J.H. The use of nanoparticulates to treat breast cancer. Nanomedicine 2017, 12, 2367–2388. [Google Scholar] [CrossRef]
- Rahib, L.; Smith, B.D.; Aizenberg, R.; Rosenzweig, A.B.; Fleshman, J.M.; Matrisian, L. Projecting cancer incidence and deaths to 2030: The unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014, 74, 2913–2921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.J.; Wu, J.Y.; Wang, J.M.; Xiang, D.X. Emerging nanomedicine-based strategies for preventing metastasis of pancreatic cancer. J. Control. Release 2020, 320, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Aslan, M.; Shahbazi, R.; Ulubayram, K.; Ozpolat, B. Targeted therapies for pancreatic cancer and hurdles ahead. Anticancer Res. 2018, 38, 6591–6606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manzur, A.; Oluwasanmi, A.; Moss, D.M.; Curtis, A.D.; Hoskins, C. Nanotechnologies in pancreatic cancer therapy. Pharmaceutics 2017, 9, 39. [Google Scholar] [CrossRef] [Green Version]
- Jeong, S.M.; Hwang, S.; Seong, R.H. Transferrin receptor regulates pancreatic cancer growth by modulating mitochondrial respiration and ROS generation. Biochem. Biophys. Res. Commun. 2016, 471, 373–379. [Google Scholar] [CrossRef]
- Cai, L.; Michelakos, T.; Ferrone, C.R.; Zhang, L.; Deshpande, V.; Shen, Q.; DeLeo, A.; Yamada, T.; Zhang, G.; Ferrone, S.; et al. Expression status of folate receptor alpha is a predictor of survival in pancreatic ductal adenocarcinoma. Oncotarget 2017, 8, 37646–37656. [Google Scholar] [CrossRef]
- Martin, L.K.; Li, X.; Kleiber, B.; Ellison, E.C.; Bloomston, M.; Zalupski, M.; Bekaii-Saab, T. VEGF remains an interesting target in advanced pancreas cancer (APCA): Results of a multi-institutional phase II study of bevacizumab, gemcitabine, and infusional 5-fluorouracil in patients with APCA. Ann. Oncol. 2012, 23, 2812–2820. [Google Scholar] [CrossRef]
- Khare, V.; Alam, N.; Saneja, A.; Dubey, R.D.; Gupta, P.N. Targeted drug delivery systems for pancreatic cancer. J. Biomed. Nanotechnol. 2014, 10, 3462–3482. [Google Scholar] [CrossRef]
- Kreuter, J. Drug delivery to the central nervous system by polymeric nanoparticles: What do we know? Adv. Drug Deliv. Rev. 2014, 71, 2–14. [Google Scholar] [CrossRef]
- Kmieć, Z. Cooperation of liver cells in health and disease. Adv. Anat. Embryol. Cell Biol. 2001, 161, 1–151. [Google Scholar] [CrossRef]
- Hare, J.I.; Lammers, T.; Ashford, M.B.; Puri, S.; Storm, G.; Barry, S.T. Challenges and strategies in anti-cancer nanomedicine development: An industry perspective. Adv. Drug Deliv. Rev. 2017, 108, 25–38. [Google Scholar] [CrossRef] [Green Version]
- Wang-Gillam, A.; Li, C.P.; Bodoky, G.; Dean, A.; Shan, Y.S.; Jameson, G.; Macarulla, T.; Lee, K.H.; Cunningham, D.; Blanc, J.F.; et al. Nanoliposomal irinotecan with fluorouracil and folinic acid in metastatic pancreatic cancer after previous gemcitabine-based therapy (NAPOLI-1): A global, randomised, open-label, phase 3 trial. Lancet 2016, 387, 545–557. [Google Scholar] [CrossRef]
- O’Sullivan, H.; Collins, D.; O’Reilly, S.; Aktas, B.Y.; Taban, H.; Aksoy, S.; Schmid, P.; Chui, S.Y.; Emens, L.A.; Altundag, K. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N. Engl. J. Med. 2019, 380, 986. [Google Scholar] [CrossRef]
- Fornaguera, C.; Solans, C. Methods for the in vitro characterization of nanomedicines—Biological component interaction. J. Pers. Med. 2017, 7, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rudokas, M.; Najlah, M.; Alhnan, M.A.; Elhissi, A.M.A. Liposome delivery systems for inhalation: A critical review highlighting formulation issues and anticancer applications. Med. Princ. Pract. 2016, 25 (Suppl. 2), 60–72. [Google Scholar] [CrossRef]
- Saptarshi, S.R.; Duschl, A.; Lopata, A.L. Interaction of nanoparticles with proteins: Relation to bio-reactivity of the nanoparticle. J. Nanobiotechnol. 2013, 11, 26. [Google Scholar] [CrossRef] [Green Version]
- Mitragotri, S.; Anderson, D.G.; Chen, X.; Ho, D.; Ho, D.; Kabanov, A.V.; Karp, J.M.; Kataoka, K.; Mirkin, C.A.; Petrosko, S.H.; et al. Accelerating the translation of nanomaterials in biomedicine. ACS Nano 2015, 9, 6644–6654. [Google Scholar] [CrossRef] [Green Version]
- Ragelle, H.; Danhier, F.; Préat, V.; Langer, R.; Anderson, D.G. Nanoparticle-based drug delivery systems: A commercial and regulatory outlook as the field matures. Expert Opin. Drug Deliv. 2017, 14, 851–864. [Google Scholar] [CrossRef]
Nanosystems | Advantages | Limitations |
---|---|---|
Liposomes |
|
|
SLNs |
|
|
NLCs |
|
|
Micelles |
|
|
PMs |
|
|
Polymeric NPs |
|
|
Dendrimers |
|
|
Niosomes |
|
|
Nanoemulsions |
|
|
Nanocrystals |
|
|
Bio-NPs |
|
|
Exosomes |
|
|
Metal NPs |
|
|
Inorganic non-metallic NPs |
|
|
Hybridluhan nanomedicines |
|
|
Studying Group [Ref.] | NPs Description | Targeting Mechanism | Target | Drug(s) | Cancer Model | Results of Findings |
---|---|---|---|---|---|---|
Kim et al. (2016) [96] | Exosome | Specific endocytosis and/or fusion with plasma membranes | No data | PTX | 3LL-M27 cells; MDCKWT and resistant MDCKMDR1 cancer cells; pulmonary metastases in Lewis lung carcinoma (LLC) mouse model | The incorporation of PTX into exosomes significantly increased drug accumulation levels in both sensitive and resistant cancer cells; a significant (p < 0.05) inhibition of metastases growth by exoPTX treatment was demonstrated |
Iannazzo et al. (2017) [97] | QDs | Active targeting | Biotin receptors | DOX | A549 cells | Improved delivery of conventional chemotherapeutics by using QDs as nanocarrier |
Zhao et al. (2017) [98] | Micelles | Passive targeting | EPR | PTX and DOX | A549 cells | A fixed and high drug loading content of 24.2% (PTX~14.8% and DOX~9.4%) with a precise ratio of PTX and DOX to realize the synchronized and controlled release |
Xie et al. (2019) [99] | PMs | Not mentioned | No data | PTX and ligustrazine | A549 cell lines; xenograft tumor mice model | Strong inhibition on tumor metastasis; enhance the accumulation of drugs at tumor sites; tumor volume ratios were 26.47% ± 8.23 for blank control, 21.43% ± 9.45 for free PTX, 14.65% ± 8.13 for dequalinium (DQA) modified PTX plus ligustrazine micelles, respectively |
Zou et al. (2019) [100] | SeNPs | Specific endocytosis | CD44 receptor | PTX | A549 cell lines; A549 tumor-bearing mice | Greater uptake of PTX in A549 cells; negligible toxicity; PTX and HA-Se@PTX at 4 μg/mL PTX dose dramatically inhibited the proliferation of A549 cells and the cell viability rates were 64.8, and 34.5%, respectively |
Wu et al. (2019) [101] | Dendrimers | Coating with targeting cancer cell membrane proteins | No data | DOX and icotinib | H1975, HCC827, and B16 cell lines; H1975 tumor-bearing mice | High stability; superior targeting ability; minimal side effects; at the physiological pH 7.4, only 30.1% of the DOX and 27.3% of icotinib were released from the dendrimers within 48 h; the H1975 cell membrane-coated dendrimers resulted in 87.56% tumor inhibition, with the tumor weight 8.75-fold less compared to that of the PBS control group |
Huang et al. (2019) [102] | PMs | Active targeting | CD133 and CD44 receptor | Gefitinib | H446 and A549 cell lines; xenograft tumor mice model | The drug loading of the nanomicelles in each group was 7–9% and the encapsulation efficiency was ~80%; exhibited greater therapeutic efficacy against lung cancer-initiating cells than single-target |
Zhang et al. (2019) [103] | Polymeric NPs | Specific endocytosis | Epidermal growth factor receptor (EGFR) | Homoharringtonine (HHT) | BEAS-2B, A549, and NCI-H226 cell lines; A549 tumor bearing mice | Better therapeutic efficacy and fewer side effects; targeted recognition and stimuli response; the IC50 of the nanomedicine is 5.1 nM, while the IC50 of free HHT reaches up to 23.2 nM, a 4.5-fold increase |
He et al. (2020) [104] | PMs | Not mentioned | No data | PTX | A549 cells; A549 tumor bearing mice | Enhanced the retention of drugs in the tumor; sustained drug release property; the IC50 values of the PTX micelles at 24 h with no ambroxol (Ax) or combined with 100 μM Ax were 87.09 ± 4.12 ng/mL and 1.14 ± 0.08 ng/mL, respectively |
Liang et al. (2020) [105] | NLCs | Specific endocytosis | Glucose | PTX and GEM | LTEP-a-2, L929, and A549 cell lines; A549 tumor bearing mice | Targeted intracellular sequential drug release; the tumor volume in dual-drugs-loaded NLCs group was 2.6-fold smaller than those treated with the free drug combination |
Zhang et al. (2015) [106] | Nanocrystals | Not mentioned | No data | PTX | MDA-MB-231/Luc cells; MDA-MB-231/Luc tumor bearing mice | PEGylated PTX nanocrystals significantly enhanced the antitumor effect in treating in situ tumor or metastatic tumor bearing mice after intravenous administration |
Guven et al. (2017) [107] | CNTs | Passive targeting | EPR | Cisplatin | MCF-7 and MDA-MB-231 tumor bearing mice | A prolonged circulation time compared to free cisplatin which EPR effects resulting in significantly more cisplatin accumulation in tumors |
Li et al. (2017) [108] | PLNs | Active targeting | Human epidermal growth factor receptor-2 (HER-2) | Salinomycin | BT-474 ALDH+ and ALDH- cell; MDA-MB-361 ALDH+ and ALDH- cells; BT-474 tumor bearing mice | Achieved the best therapeutic efficacy, resulting in a 79% decrease in tumor volume, whereas salinomycin obtained only moderate therapeutic efficacy (43% decrease) |
Le et al. (2017) [109] | Viral NPs | Not mentioned | No data | DOX | MDA-MB-231 cells; MDA-MB-231 tumor bearing mice | DOX-loaded viral NPs demonstrated efficacy in MDA-MB-231 cell although at lower efficacy than free DOX |
Jiang et al. (2018) [110] | SiNPs | Not mentioned | No data | DOX | EMT-6 and MCF -7 cell lines; EMT-6 tumor bearing mice | The tumor size and weight of DOX loaded SiNPs group was 2-fold and 1.7-fold smaller than that of free DOX group, and 4-fold and 2-fold smaller than that of PBS group |
Zheng et al. (2019) [111] | SLNs | pH sensitivity | No data | DOX | MCF cells lines; MCF/ADR DOX-resistant cells; MCF/ADR tumor bearing mice | RGD-DOX-SLNs showed 5.58 fold higher area under the plasma concentration-time curve (AUC) compared with DOX solution; terminal half life (T1/2) and peak concentration (Cmax) of RGD-DOXSLNs was 10.85 h and 39.12 ± 2.71 L/kg/h |
Fang et al. (2019) [112] | Polymeric NPs | Active targeting | CD44 receptor | DTX | 4T1-Luc cells lines; 4T1-Luc tumor bearing mice | Drug loading efficiency (76.3−80.4%); steady in a nonreducing environment while was destabilized under 10 mM glutathione releasing ~90% of the DTX within 24 h; selective cellular uptake |
Li et al. (2019) [113] | Liposome | Passive targeting | EPR | Poria cocos extract and DOX | MCF cells lines; MCF/ADR DOX-resistant cells; MCF/ADR tumor bearing mice | Higher safety; sensitized DOX to kill cells in drug-resistant tumors; the release rates of poria cocos extract from the liposome were > 70% within 6–8 h, while DOX was released completely after 12 h |
Lei et al. (2019) [114] | MOFs | Passive targeting | EPR | DOX | 4T1, MDA-MB-231, MCF-7, and ZR-75-30 cell lines; 4T1 tumor bearing mice | Good safety profile; highly effective antitumor ability |
Dancy et al. (2020) [115] | Polymeric NPs | Active targeting | Fibroblast growth factor–inducible 14 (Fn14) receptor | PTX | 231-Luc cell lines; 231-Luc tumor-bearing mice; 231-Br-Luc tumor-bearing mice | Tumor cell–specific uptake; long blood circulation time; excellent tumor tissue penetration; the average tumor doubling time in the NPs treated mice was 32 days compared to 17 and 20 days for saline- or Abraxane-treated mice, respectively |
Han et al. (2020) [116] | Liposomes | Specific endocytosis | ERs | PTX | MCF-7 cell lines; MCF-7 tumor bearing mice | Encapsulation efficiency of 88.07 ± 1.25%; prolonged half-life of the drug; the elimination half-lives of PTX and PTX liposomes were 1.79 and 20.98 h, respectively |
Zafar et al. (2020) [117] | LNCs | Passive targeting | EPR | DTX and THQ | MCF-7 and MDA-MB-231 cell lines; Ehrlich ascites carcinoma bearing mice | Encapsulation efficiency of DTX and THQ were found to be 86.79 ± 3.79% and 95.17 ± 1.61%, respectively; controlled drug release; re-sensitized cancer cells to DTX; a 2.85-folds decrease in tumor volume was observed with LNCs treated group compared to control group |
Xu et al. (2020) [118] | PMs | Active targeting | Sialic acid residues | DOX | MCF-7/ADR cell lines; MCF-7/ADR tumor bearing mice | MDR reversal; good stability in neutral environment; ~50% MCF-7/ADR cells were killed with DOX micelles treated compared to ~15% cells death induced by free DOX |
Guo et al. (2020) [91] | RNA NPs | Active targeting | EGFR | PTX | MDA-MB-231 cell lines; MDA-MB-231 tumor bearing mice | Undetectable toxicity or immune stimulation; the in vitro cell apoptosis assay revealed that 45.1% of the cells underwent apoptosis after 24 h treatment with RNA NPs, in comparison to free PTX (24.6%) |
Teijeiro-Valiño et al. (2018) [119] | Polymeric NPs | Active targeting | CD44 receptor | DTX | A549 lung cancer cells; orthotopic lung cancer model; PC patient derived xenograft model | Dual targeting properties (to the tumor and to the lymphatics); a dramatic accumulation of DTX in the tumor (37-fold the one achieved with Taxotere®) |
Lin et al. (2019) [120] | Liposome | Specific endocytosis | EGFR | GEM and HIF1α-siRNA | PANC-1 cell lines; PANC-1 tumor bearing mice | Increased targeting specificity of liposome carrier; increased the total amount of apoptosis cells; GE-GML/siRNA showed 4-fold reduction in tumor compared to control group |
Madamsetty et al. (2019) [121] | NDs | Passive targeting | EPR | DOX | BxPC3, 6741 and PANC-1 cell lines; orthotopic PDAC xenograft model | A considerable improvement over free drug; no abnormalities of major organs; NDs alone showed no cytotoxicity at doses up to 25 μg/mL, irrespective of whether the cells were grown in the absence or presence of FBS |
Massey et al. (2019) [122] | Polymeric NPs | Not mentioned | No data | PTX | AsPC1, PANC-1, MIA PaCa-2, and HPAF-II cell lines | NPs administration (10 mg/kg) significantly (P << 0.05) inhibited tumor growth, even in pre-exposed mice as determined by significant (P << 0.05) inhibition of bioluminescence counts ideal properties for nano-scale drug delivery; |
Madamsetty et al. (2019) [123] | NDs | Passive targeting | EPR | Irinotecan and curcumin | AsPC-1 and PANC-1 cells; orthotopic PDAC xenograft model | Exerted immunomodulatory effects; dual payload |
Sun et al. (2020) [124] | PMs | Passive targeting | EPR | NLG919 and PTX | PANC02 and H7 cell lines; PANC02 tumor bearing mice; 4T1 BC model | Improved tumor inhibition effect; more immunoactive tumor microenvironment; micelles showed a more favorable release kinetics of PTX, and only 35% of PTX was slowly released within 72 h |
Etman et al. (2020) [125] | Polymeric NPs | Specific endocytosis | Lactoferrin (Lf) and CD44 receptors | Quinacrine (QC) | PANC-1 cell lines; orthotopic PC model | pH triggered release; the loading efficiency of the dual coated formulation was 19.5 ± 1.9% compared to 23.6 ± 2.4% for uncoated formulation. |
Elechalawar et al. (2020) [126] | Au NPs | Active targeting | EGFR | GEM | PANC-1, AsPC-1, CAF-19, and HPDE cell lines | Enhanced cellular uptake and cytotoxicity to pancreatic cancer cells (PCCs) |
Han et al. (2020) [127] | MNPs | Active targeting | No data | GEM | PANC-1 and HUVEC cell lines; PANC-1 tumor bearing mice | Targeted delivery and effective accumulation; the GEM-loaded MNPs exhibited higher cytotoxicity at pH 6.5 than that at pH 7.4, which might be attributed to pH-dependent enhanced cellular uptake |
Zhai et al. (2018) [128] | APO | Specific endocytosis | Transferrin receptor 1 (TfR1) and heparan sulfate proteoglycan | Vincristine sulfate (VCR) | bEnd.3, HUVEC, and U87MG cell lines; U87MG tumor bearing mice | Higher glioma localization; the VCR encapsulation efficiency was approximately 39.8 ± 0.9%; treatment with this NPs significantly prolonged the median survival time (35 days), which was 1.8 and 1.6-fold higher than that of physiological saline and free VCR, respectively |
Guo et al. (2018) [129] | PMs | Specific endocytosis | IL-13R | CMS | BT325 cell lines; Luc-BT325 tumor bearing mice | BBB penetration; targeting glioma cells; the apoptosis rate of BT325 cells induced by the PMs nearly 80% |
Zou et al. (2018) [130] | Polymeric NPs | Specific endocytosis | Lipoprotein receptor related protein receptor | DOX and lexiscan (Lex) | U87MG tumor bearing mice | Improved blood circulation time; BBB penetration; the biodistribution of nanomedicines demonstrated that orthotopic brain tumor accumulation was 21.9 fold higher than that of free DOX controls |
Meng et al. (2019) [131] | PMs | Not mentioned | No data | DOX | HBMEC and C6 cell lines; GBM-bearing mice model | The drug encapsulation efficiency and loading capacity in DOX BO-PMs were (95.69 ± 0.49)% and (14.62 ± 0.39)%, respectively; enhanced the transport efficiency of DOX across the BBB; exhibited a quick accumulation in the brain tissues |
Wang et al. (2019) [132] | Nanoemulsion | Active targeting | CD44 and nucleolin | Shikonin (SKN) and DTX | U87 cell lines; orthotopic luciferase-transfected-U87 bearing nude mice | BBB penetration; overwhelming inhibition of the orthotopic luciferase-transfected-U87 glioma-bearing nude mice; after incubating cells for 8 h, the nanoemulsion induced apoptosis in 71.3 ± 4.2% of U87 cells |
Younis et al. (2019) [133] | Polymeric NPs | Not mentioned | No data | Iguratimod (IGU) | U87, U118, and U251 cell lines; xenograft tumor mice model | Without any visible organ toxicity; significant inhibition of tumor growth; cross BBB |
Caban-Toktas et al. (2020) [134] | Polymeric NPs | Not mentioned | No data | R-flurbiprofen and PTX | RG2 cell lines; Rat RG2 glioma tumor model | Reduced inflammation in the peri-tumoral area; enhanced anti-tumoral activity against glioma |
Zhang et al. (2018) [135] | Polymeric NPs | Specific endocytosis | Asialoglycoprotein receptors (ASGP-R) | Triptolide (TP) | SMMC7721 and A549 cells; HCC xenograft mouse model; orthotopic HCC mice model | Sustained release; targeted delivery; high liver tumor accumulation in vivo |
Yao et al. (2019) [136] | Liposome | Not mentioned | No data | Sorafenib (Sf) and VEGF-siRNA | HepG2 cells; H22 tumor-bearing mice | Improved anti-tumor efficiency |
Han et al. (2019) [137] | Polymeric NPs | Not mentioned | No data | Polymeric SN38 prodrugs (pSN38) and apatinib (Apa) | Huh-7, LM3, and HepG2 cell lines; HCC xenograft mouse model | Reduced drug resistance; the sequential release of both encapsulated drugs |
Zhang et al. (2019) [138] | MSNs | Specific endocytosis | CD44 receptor | DOX and berberine (BER) | HepG2, H22, HL-7702, HCC cells, and NIH-3T3 cell lines; H22 tumor-bearing mice | Efficient tumor-inhibiting effects; decreased regrowth activity; the apoptotic rates of DOX+BER and DOX+BER loaded MSNs were 34.93 and 48.10%, respectively |
Xu et al. (2019) [139] | Oxide NPs | Specific endocytosis | CD44 receptor | DOX and Cu (DDC)2 | MCF-7 and HepG2 cell lines; mouse models of ectopic hepatocellular carcinoma | Improved stability; specific targeting of HCC; good synergistic effect; the tumor volume and tumor weight of the oxide NPs treated group reduced to 60.32% and 60.39% compared to the control group, respectively |
Tang et al. (2020) [140] | Liposomes | Active targeting | Folate receptor (FR) | DOX | 4T1 cell lines; H22 and Eca9706 tumor-bearing mice | High drug load capacity; effectively taken up by cancer cells; no obvious toxicity |
Hefnawy et al. (2020) [141] | Polymeric NPs | Active targeting | ASGP-R | DOX | Hep-G2 cell lines; HCC-bearing rats | Improved intracellular drug delivery and uptake; enhanced safety profile; the ability of the NPs system to enhance the intracellular uptake of the drug by 4-fold and 8-fold after 4 h and 24 h of incubation, respectively |
Particle Type/Therapeutic Agent | Treatments | Cancer Subtypes | Trial Starting Date | Phase | Aim of the Study | NCT Number |
---|---|---|---|---|---|---|
ABI-009 (nab-Rapamycin) | Combination therapy | GBM | Aug. 2018 | II | ABI-009 will be tested as single agent or in combination with standard therapies | NCT03463265 |
Abraxane® | Combination therapy | pancreatic ductal adenocarcinoma (PDA) | Jul. 2018 | II | To compare the first-line treatment with nab-PTX plus S-1 and nab-PTX plus GEM in advanced PDA with primary tumor nonexcision in Chinese patients | NCT03636308 |
Abraxane® | Combined with CPT | HER-2 Negative BC | Nov. 2018 | IV | To evaluate of the efficacy and safety of nanoparticle albumin-bound PTX combined with CPT as neoadjuvant chemotherapy in luminal B/HER-2 negative BC | NCT03799692 |
Abraxane® | Combined with Epirubicin and Cyclophosphamide | TNBC | Nov. 2018 | IV | To evaluate of the efficacy and safety of weekly Nab-P followed by dose-intensive epirubicin in combination with cyclophosphamide as neoadjuvant chemotherapy in TNBC | NCT03799679 |
Pegylated liposomal DOX (PLD) | Combined with trastuzumab | HER2-positive BC | Mar. 2019 | II | To evaluate the efficacy and safety of PLD in combination with trastuzumab in HER-2 positive metastatic BC | NCT03933319 |
Pegylated Liposomal DOX (Doxil/Caelyx) | Combined with pembrolizumab (Keytruda) | Metastatic Endocrine-resistant BC (ERBC) | Apr. 2019 | I/II | To evaluate the tumor response and appropriate dose of a chemo-immunotherapy regime consisting of treatment with PLD and pembrolizumab-based in ERBC patients | NCT03591276 |
QDs coated with veldoreotide | Monotherapy | BC | Sep. 2019 | I | A novel formulation for treatment and bioimaging of BC which can deliver safely to the patients in a high dose to the affected tumor cells | NCT04138342 |
Pegylated liposomal DOX (PLD) | Combined with albumin-bound PTX and trastuzumab | HER-2 positive BC | Oct. 2019 | I/II | To evaluate the efficacy and safety of PLD plus Albumin-Bound PTX and trastuzumab as neoadjuvant therapy in HER-2 positive BC | NCT03994107 |
Abraxane® | Combined with CPT | TNBC | Dec. 2019 | III | This trial will compare the therapeutic effect of albumin-bound PTX with solvent-based PTX in TNBC patients, and seek for important scientific clues, scientific evidence, and clinical data for nab-P in the treatment of TNBC | NCT04137653 |
PTX liposome | Combined with S-1 | Advanced PC | Jan. 2020 | IV | To investigate the efficacy and safety of the patients with confirmed advanced PC after treating with the combination of PTX liposome plus S-1 | NCT04217096 |
Abraxane® | Combined with Alpelisib | TNBC | Feb. 2020 | II | To determine if alpelisib in combination with nab-PTX will improve treatment effect of patients with chemotherapy insensitive TNBC | NCT04216472 |
Liposomal irinotecan (nal-IRI) | Combined with Oxaliplatin, Leucovorin, and 5-Fu | Locally Advanced Pancreatic Carcinoma (LAPC) | Mar. 2020 | II | To investigate the efficacy and tolerability of a combination of liposomal irinotecan (nal-IRI) with oxaliplatin, leucovorin, and 5-Fu (FOLFOX-nal-IRI) for treatment of patients with LAPC | NCT03861702 |
Liposome-entrapped mitoxantrone hydrochloride injection (PLM60) | Monotherapy | Advanced HCC | Apr. 2020 | I | To evaluate the safety and efficacy of PLM60 in advanced HCC | NCT04331743 |
NanoPac (sterile nanoparticulate PTX) powder for suspension | Monotherapy | SCLC | May 2020 | II | To evaluate the use of NanoPac injected directly into tumors in the lung of people with lung cancer | NCT04314895 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, Q.-Y.; Xu, Y.-M.; Lau, A.T.Y. Recent Progress of Nanocarrier-Based Therapy for Solid Malignancies. Cancers 2020, 12, 2783. https://doi.org/10.3390/cancers12102783
Wei Q-Y, Xu Y-M, Lau ATY. Recent Progress of Nanocarrier-Based Therapy for Solid Malignancies. Cancers. 2020; 12(10):2783. https://doi.org/10.3390/cancers12102783
Chicago/Turabian StyleWei, Qi-Yao, Yan-Ming Xu, and Andy T. Y. Lau. 2020. "Recent Progress of Nanocarrier-Based Therapy for Solid Malignancies" Cancers 12, no. 10: 2783. https://doi.org/10.3390/cancers12102783
APA StyleWei, Q. -Y., Xu, Y. -M., & Lau, A. T. Y. (2020). Recent Progress of Nanocarrier-Based Therapy for Solid Malignancies. Cancers, 12(10), 2783. https://doi.org/10.3390/cancers12102783