Current Multimodality Treatments against Brain Metastases from Renal Cell Carcinoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Evidence Acquisition
Method
3. Results
3.1. Trends of Systemic Therapy against Metastatic RCC (mRCC)
3.2. Epidemiology of Brain Metastasis from RCC
3.3. Prognostic Factors in Patients with RCC-BM
4. Treatment Strategy against RCC-BM
4.1. Local Therapy
4.2. Systemic Treatment
4.2.1. Preventive Effects of Targeted Therapy on BM
4.2.2. Efficacy and Safety of Targeted Therapy against BM
4.2.3. Combining TKIs with Local Therapy
4.2.4. Immune Checkpoint Inhibitors (ICI) against BM
4.3. Combining ICI with Radiation Therapy
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Heng:, D.Y.; Choueiri, T.K.; Rini, B.I.; Lee, J.; Yuasa, T.; Pal, S.K.; Srinivas, S.; Bjarnason, G.A.; Knox, J.J.; Mackenzie, M.; et al. Outcomes of patients with metastatic renal cell carcinoma that do not meet eligibility criteria for clinical trials. Ann. Oncol. 2014, 25, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Escudier, B.; Porta, C.; Schmidinger, M.; Rioux-Leclercq, N.; Bex, A.; Khoo, V.; Gruenvald, V.; Horwich, A.; Committee, E.G. Renal cell carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2016, 27, v58–v68. [Google Scholar] [CrossRef]
- Moch, H.; Cubilla, A.L.; Humphrey, P.A.; Reuter, V.E.; Ulbright, T.M. The 2016 WHO Classification of Tumours of the Urinary System and Male Genital Organs-Part A: Renal, Penile, and Testicular Tumours. Eur. Urol. 2016, 70, 93–105. [Google Scholar] [CrossRef]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richie, J.P. Renal neoplasia. In The Kidney, 2nd ed.; Brenner, B.M., Rector, X., Eds.; WB Saunders: Philadelphia, PA, USA, 1981; p. 2109. [Google Scholar]
- Motzer, R.J.; Bander, N.H.; Nanus, D.M. Renal-cell carcinoma. N. Engl. J. Med. 1996, 335, 865–875. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, M.; Sun, M.; Jeldres, C.; Shariat, S.F.; Trinh, Q.D.; Briganti, A.; Tian, Z.; Schmitges, J.; Graefen, M.; Perrotte, P.; et al. Distribution of metastatic sites in renal cell carcinoma: A population-based analysis. Ann. Oncol. 2012, 23, 973–980. [Google Scholar] [CrossRef]
- Mekhail, T.M.; Abou-Jawde, R.M.; Boumerhi, G.; Malhi, S.; Wood, L.; Elson, P.; Bukowski, R. Validation and extension of the Memorial Sloan-Kettering prognostic factors model for survival in patients with previously untreated metastatic renal cell carcinoma. J. Clin. Oncol. 2005, 23, 832–841. [Google Scholar] [CrossRef] [Green Version]
- Heng, D.Y.; Xie, W.; Regan, M.M.; Warren, M.A.; Golshayan, A.R.; Sahi, C.; Eigl, B.J.; Ruether, J.D.; Cheng, T.; North, S.; et al. Prognostic factors for overall survival in patients with metastatic renal cell carcinoma treated with vascular endothelial growth factor-targeted agents: results from a large, multicenter study. J. Clin. Oncol. 2009, 27, 5794–5799. [Google Scholar] [CrossRef]
- Heng, D.Y.; Xie, W.; Regan, M.M.; Harshman, L.C.; Bjarnason, G.A.; Vaishampayan, U.N.; Mackenzie, M.; Wood, L.; Donskov, F.; Tan, M.H.; et al. External validation and comparison with other models of the International Metastatic Renal-Cell Carcinoma Database Consortium prognostic model: A population-based study. Lancet Oncol. 2013, 14, 141–148. [Google Scholar] [CrossRef] [Green Version]
- Motzer, R.J.; Escudier, B.; McDermott, D.F.; George, S.; Hammers, H.J.; Srinivas, S.; Tykodi, S.S.; Sosman, J.A.; Procopio, G.; Plimack, E.R.; et al. Nivolumab versus Everolimus in Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2015, 373, 1803–1813. [Google Scholar] [CrossRef]
- Motzer, R.J.; Tannir, N.M.; McDermott, D.F.; Frontera, O.A.; Melichar, B.; Choueiri, T.K.; Plimack, E.R.; Barthelemy, P.; Porta, C.; George, S.; et al. Nivolumab plus Ipilimumab versus Sunitinib in Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2018, 378, 1277–1290. [Google Scholar] [CrossRef] [PubMed]
- Motzer, R.J.; Penkov, K.; Haanen, J.; Rini, B.; Albiges, L.; Campbell, M.T.; Venugopal, B.; Kollmannsberger, C.; Negrier, S.; Uemura, M.; et al. Avelumab plus Axitinib versus Sunitinib for Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2019, 380, 1103–1115. [Google Scholar] [CrossRef] [PubMed]
- Rini, B.I.; Plimack, E.R.; Stus, V.; Gafanov, R.; Hawkins, R.; Nosov, D.; Pouliot, F.; Alekseev, B.; Soulieres, D.; Melichar, B.; et al. Pembrolizumab plus Axitinib versus Sunitinib for Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2019, 380, 1116–1127. [Google Scholar] [CrossRef] [PubMed]
- Schouten, L.J.; Rutten, J.; Huveneers, H.A.; Twijnstra, A. Incidence of brain metastases in a cohort of patients with carcinoma of the breast, colon, kidney, and lung and melanoma. Cancer 2002, 94, 2698–2705. [Google Scholar] [CrossRef]
- Shuch, B.; La Rochelle, J.C.; Klatte, T.; Riggs, S.B.; Liu, W.; Kabbinavar, F.F.; Pantuck, A.J.; Belldegrun, A.S. Brain metastasis from renal cell carcinoma: Presentation, recurrence, and survival. Cancer 2008, 113, 1641–1648. [Google Scholar] [CrossRef]
- Marshall, M.E.; Pearson, T.; Simpson, W.; Butler, K.; McRoberts, W. Low incidence of asymptomatic brain metastases in patients with renal cell carcinoma. Urology 1990, 36, 300–302. [Google Scholar] [CrossRef]
- Ljungberg, B.; Alamdari, F.I.; Rasmuson, T.; Roos, G. Follow-up guidelines for nonmetastatic renal cell carcinoma based on the occurrence of metastases after radical nephrectomy. BJU Int. 1999, 84, 405–411. [Google Scholar] [CrossRef]
- Seaman, E.K.; Ross, S.; Sawczuk, I.S. High incidence of asymptomatic brain lesions in metastatic renal cell carcinoma. J. Neurooncol. 1995, 23, 253–256. [Google Scholar] [CrossRef]
- Sun, M.; De Velasco, G.; Brastianos, P.K.; Aizer, A.A.; Martin, A.; Moreira, R.; Nguyen, P.L.; Trinh, Q.D.; Choueiri, T.K. The Development of Brain Metastases in Patients with Renal Cell Carcinoma: Epidemiologic Trends, Survival, and Clinical Risk Factors Using a Population-based Cohort. Eur. Urol. Focus 2019, 5, 474–481. [Google Scholar] [CrossRef]
- Barnholtz-Sloan, J.S.; Sloan, A.E.; Davis, F.G.; Vigneau, F.D.; Lai, P.; Sawaya, R.E. Incidence proportions of brain metastases in patients diagnosed (1973 to 2001) in the Metropolitan Detroit Cancer Surveillance System. J. Clin. Oncol. 2004, 22, 2865–2872. [Google Scholar] [CrossRef]
- Gutenberg, A.; Nischwitz, M.D.; Gunawan, B.; Enders, C.; Jung, K.; Bergmann, M.; Feiden, W.; Egensperger, R.; Keyvani, K.; Stolke, D.; et al. Predictive chromosomal clusters of synchronous and metachronous brain metastases in clear cell renal cell carcinoma. Cancer Genet. 2014, 207, 206–213. [Google Scholar] [CrossRef] [PubMed]
- Ke, Z.B.; Chen, S.H.; Chen, Y.H.; Wu, Y.P.; Lin, F.; Xue, X.Y.; Zheng, Q.S.; Xu, N.; Wei, Y. Risk Factors for Brain Metastases in Patients with Renal Cell Carcinoma. BioMed Res. Int. 2020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhuang, W.; Li, Y.; Chen, P.; Wang, J.; Liu, W.; Chen, J. Do renal cell carcinoma patients with brain metastases still need nephrectomy? Int. Urol. Nephrol. 2019, 51, 941–949. [Google Scholar] [CrossRef] [PubMed]
- Tsivian, M.; Moreira, D.M.; Caso, J.R.; Mouraviev, V.; Polascik, T.J. Cigarette smoking is associated with advanced renal cell carcinoma. J. Clin. Oncol. 2011, 29, 2027–2031. [Google Scholar] [CrossRef] [PubMed]
- Ljungberg, B.; Albiges, L.; Abu-Ghanem, Y.; Bensalah, K.; Dabestani, S.; Fernandez-Pello, S.; Giles, R.H.; Hofmann, F.; Hora, M.; Kuczyk, M.A.; et al. European Association of Urology Guidelines on Renal Cell Carcinoma: The 2019 Update. Eur. Urol. 2019, 75, 799–810. [Google Scholar] [CrossRef] [PubMed]
- Ward, R.D.; Tanaka, H.; Campbell, S.C.; Remer, E.M. 2017 AUA Renal Mass and Localized Renal Cancer Guidelines: Imaging Implications. Radiographics 2018, 38, 2021–2033. [Google Scholar] [CrossRef]
- National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology. Available online: https://www.nccn.org/professionals/physician_gls/ (accessed on 1 October 2020).
- Suarez-Sarmiento, A., Jr.; Nguyen, K.A.; Syed, J.S.; Nolte, A.; Ghabili, K.; Cheng, M.; Liu, S.; Chiang, V.; Kluger, H.; Hurwitz, M.; et al. Brain Metastasis From Renal-Cell Carcinoma: An Institutional Study. Clin. Genitourin. Cancer 2019, 17, e1163–e1170. [Google Scholar] [CrossRef]
- Gaspar, L.; Scott, C.; Rotman, M.; Asbell, S.; Phillips, T.; Wasserman, T.; McKenna, W.G.; Byhardt, R. Recursive partitioning analysis (RPA) of prognostic factors in three Radiation Therapy Oncology Group (RTOG) brain metastases trials. Int. J. Radiat. Oncol. Biol. Phys. 1997, 37, 745–751. [Google Scholar] [CrossRef]
- Lorenzoni, J.; Devriendt, D.; Massager, N.; David, P.; Ruiz, S.; Vanderlinden, B.; Van Houtte, P.; Brotchi, J.; Levivier, M. Radiosurgery for treatment of brain metastases: Estimation of patient eligibility using three stratification systems. Int. J. Radiat. Oncol. Biol. Phys. 2004, 60, 218–224. [Google Scholar] [CrossRef]
- Weltman, E.; Salvajoli, J.V.; Brandt, R.A.; de Morais, R.H.; Prisco, F.E.; Cruz, J.C.; de Oliveira Borges, S.R.; Wajsbrot, D.B. Radiosurgery for brain metastases: A score index for predicting prognosis. Int. J. Radiat. Oncol. Biol. Phys. 2000, 46, 1155–1161. [Google Scholar] [CrossRef]
- Ali, M.A.; Hirshman, B.R.; Wilson, B.; Schupper, A.J.; Joshi, R.; Proudfoot, J.A.; Goetsch, S.J.; Alksne, J.F.; Ott, K.; Aiyama, H.; et al. Improving the Prognostic Value of Disease-Specific Graded Prognostic Assessment Model for Renal Cell Carcinoma by Incorporation of Cumulative Intracranial Tumor Volume. World Neurosurg. 2017, 108, 151–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Ali, Z.; Rottey, S.; Barthelemy, P.; Kotecki, N.; Van Paemel, R.; Devrient, D.; Awada, A.; Gil, T.; Pannier, D.; Ryckewaert, T.; et al. Brain Metastasis and Renal Cell Carcinoma: Prognostic Scores Assessment in the Era of Targeted Therapies. Anticancer Res. 2019, 39, 2993–3002. [Google Scholar] [CrossRef] [PubMed]
- Vickers, M.M.; Al-Harbi, H.; Choueiri, T.K.; Kollmannsberger, C.; North, S.; MacKenzie, M.; Knox, J.J.; Rini, B.I.; Heng, D.Y. Prognostic factors of survival for patients with metastatic renal cell carcinoma with brain metastases treated with targeted therapy: Results from the international metastatic renal cell carcinoma database consortium. Clin. Genitourin. Cancer 2013, 11, 311–315. [Google Scholar] [CrossRef] [PubMed]
- Bennani, O.; Derrey, S.; Langlois, O.; Castel, H.; Laquerriere, A.; Freger, P.; Proust, F. Brain metastasis from renal cell carcinoma. Neurochirurgie 2014, 60, 12–16. [Google Scholar] [CrossRef] [PubMed]
- Takeshita, N.; Otsuka, M.; Kamasako, T.; Somoto, T.; Uemura, T.; Shinozaki, T.; Kobayashi, M.; Kawana, H.; Itami, M.; Iuchi, T.; et al. Prognostic factors and survival in Japanese patients with brain metastasis from renal cell cancer. Int. J. Clin. Oncol. 2019, 24, 1231–1237. [Google Scholar] [CrossRef]
- Fife, K.M.; Colman, M.H.; Stevens, G.N.; Firth, I.C.; Moon, D.; Shannon, K.F.; Harman, R.; Petersen-Schaefer, K.; Zacest, A.C.; Besser, M.; et al. Determinants of outcome in melanoma patients with cerebral metastases. J. Clin. Oncol. 2004, 22, 1293–1300. [Google Scholar] [CrossRef] [Green Version]
- Noordijk, E.M.; Vecht, C.J.; Haaxma-Reiche, H.; Padberg, G.W.; Voormolen, J.H.; Hoekstra, F.H.; Tans, J.T.; Lambooij, N.; Metsaars, J.A.; Wattendorff, A.R.; et al. The choice of treatment of single brain metastasis should be based on extracranial tumor activity and age. Int. J. Radiat. Oncol. Biol. Phys. 1994, 29, 711–717. [Google Scholar] [CrossRef]
- Soltys, S.G.; Adler, J.R.; Lipani, J.D.; Jackson, P.S.; Choi, C.Y.; Puataweepong, P.; White, S.; Gibbs, I.C.; Chang, S.D. Stereotactic radiosurgery of the postoperative resection cavity for brain metastases. Int. J. Radiat. Oncol. Biol. Phys. 2008, 70, 187–193. [Google Scholar] [CrossRef]
- Cannady, S.B.; Cavanaugh, K.A.; Lee, S.Y.; Bukowski, R.M.; Olencki, T.E.; Stevens, G.H.; Barnett, G.H.; Suh, J.H. Results of whole brain radiotherapy and recursive partitioning analysis in patients with brain metastases from renal cell carcinoma: A retrospective study. Int. J. Radiat. Oncol. Biol. Phys. 2004, 58, 253–258. [Google Scholar] [CrossRef]
- Chang, E.L.; Selek, U.; Hassenbusch, S.J., 3rd; Maor, M.H.; Allen, P.K.; Mahajan, A.; Sawaya, R.; Woo, S.Y. Outcome variation among "radioresistant" brain metastases treated with stereotactic radiosurgery. Neurosurgery 2005, 56, 936–945. [Google Scholar]
- Hara, W.; Tran, P.; Li, G.; Su, Z.; Puataweepong, P.; Adler, J.R., Jr.; Soltys, S.G.; Chang, S.D.; Gibbs, I.C. Cyberknife for brain metastases of malignant melanoma and renal cell carcinoma. Neurosurgery 2009, 64, A26–A32. [Google Scholar] [CrossRef] [PubMed]
- Sheehan, J.P.; Sun, M.H.; Kondziolka, D.; Flickinger, J.; Lunsford, L.D. Radiosurgery in patients with renal cell carcinoma metastasis to the brain: Long-term outcomes and prognostic factors influencing survival and local tumor control. J. Neurosurg. 2003, 98, 342–349. [Google Scholar] [CrossRef] [PubMed]
- Verma, J.; Jonasch, E.; Allen, P.K.; Weinberg, J.S.; Tannir, N.; Chang, E.L.; Mahajan, A. The impact of tyrosine kinase inhibitors on the multimodality treatment of brain metastases from renal cell carcinoma. Am. J. Clin. Oncol. 2013, 36, 620–624. [Google Scholar] [CrossRef] [Green Version]
- Ippen, F.M.; Mahadevan, A.; Wong, E.T.; Uhlmann, E.J.; Sengupta, S.; Kasper, E.M. Stereotactic Radiosurgery for Renal Cancer Brain Metastasis: Prognostic Factors and the Role of Whole-Brain Radiation and Surgical Resection. J. Oncol. 2015. [CrossRef] [PubMed] [Green Version]
- Nabors, L.B.; Portnow, J.; Ammirati, M.; Brem, H.; Brown, P.; Butowski, N.; Chamberlain, M.C.; De Angelis, L.M.; Fenstermaker, R.A.; Friedman, A.; et al. Central nervous system cancers, version 2.2014. Featured updates to the NCCN Guidelines. J. Natl. Compr. Cancer Netw. 2014, 12, 1517–1523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vogelbaum, M.A.; Angelov, L.; Lee, S.Y.; Li, L.; Barnett, G.H.; Suh, J.H. Local control of brain metastases by stereotactic radiosurgery in relation to dose to the tumor margin. J. Neurosurg. 2006, 104, 907–912. [Google Scholar] [CrossRef]
- Molenaar, R.; Wiggenraad, R.; de Kanter, A.V.; Walchenbach, R.; Vecht, C. Relationship between volume, dose and local control in stereotactic radiosurgery of brain metastasis. Br. J. Neurosurg. 2009, 23, 170–178. [Google Scholar] [CrossRef]
- Minniti, G.; Clarke, E.; Lanzetta, G.; Osti, M.F.; Trasimeni, G.; Bozzao, A.; Romano, A.; Enrici, R.M. Stereotactic radiosurgery for brain metastases: Analysis of outcome and risk of brain radionecrosis. Radiat. Oncol. 2011, 6, 48. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, M.; Serizawa, T.; Shuto, T.; Akabane, A.; Higuchi, Y.; Kawagishi, J.; Yamanaka, K.; Sato, Y.; Jokura, H. Stereotactic radiosurgery for patients with brain metastases—Authors’ reply. Lancet Oncol. 2014, 15, e248. [Google Scholar] [CrossRef]
- Rades, D.; Huttenlocher, S.; Rudat, V.; Hornung, D.; Blanck, O.; Phuong, P.C.; Khoa, M.T.; Schild, S.E.; Fischer, D. Radiosurgery with 20 Gy provides better local contol of 1–3 brain metastases from breast cancer than with lower doses. Anticancer Res. 2015, 35, 333–336. [Google Scholar]
- Massard, C.; Zonierek, J.; Gross-Goupil, M.; Fizazi, K.; Szczylik, C.; Escudier, B. Incidence of brain metastases in renal cell carcinoma treated with sorafenib. Ann. Oncol. 2010, 21, 1027–1031. [Google Scholar] [CrossRef] [PubMed]
- Brown, P.D.; Gondi, V.; Pugh, S.; Tome, W.A.; Wefel, J.S.; Armstrong, T.S.; Bovi, J.A.; Robinson, C.; Konski, A.; Khuntia, D.; et al. Hippocampal Avoidance During Whole-Brain Radiotherapy Plus Memantine for Patients With Brain Metastases: Phase III Trial NRG Oncology CC001. J. Clin. Oncol. 2020, 38, 1019–1029. [Google Scholar] [CrossRef] [PubMed]
- Verma, J.; Jonasch, E.; Allen, P.; Tannir, N.; Mahajan, A. Impact of tyrosine kinase inhibitors on the incidence of brain metastasis in metastatic renal cell carcinoma. Cancer 2011, 117, 4958–4965. [Google Scholar] [CrossRef] [PubMed]
- Vanhuyse, M.; Penel, N.; Caty, A.; Fumagalli, I.; Alt, M.; Zini, L.; Adenis, A. Do anti-angiogenic therapies prevent brain metastases in advanced renal cell carcinoma? Bull. Cancer 2012, 99, 100–106. [Google Scholar] [CrossRef]
- Gooch, M.E.; Nader, K.; Kubicek, G.J.; Somer, R.A. Brain Metastasis Responsive to Pazopanib in Renal Cell Carcinoma: A Case Report and Review of the Literature. Clin. Genitourin. Cancer 2016, 14, e401–e404. [Google Scholar] [CrossRef]
- Hu, S.; Chen, Z.; Franke, R.; Orwick, S.; Zhao, M.; Rudek, M.A.; Sparreboom, A.; Baker, S.D. Interaction of the multikinase inhibitors sorafenib and sunitinib with solute carriers and ATP-binding cassette transporters. Clin. Cancer Res. 2009, 15, 6062–6069. [Google Scholar] [CrossRef] [Green Version]
- Lim, Z.D.; Mahajan, A.; Weinberg, J.; Tannir, N.M. Outcome of patients with renal cell carcinoma metastatic to the brain treated with sunitinib without local therapy. Am. J. Clin. Oncol. 2013, 36, 258–260. [Google Scholar] [CrossRef]
- Jacobs, C.; Kim, D.W.; Straka, C.; Timmerman, R.D.; Brugarolas, J. Prolonged survival of a patient with papillary renal cell carcinoma and brain metastases using pazopanib. J. Clin. Oncol. 2013, 31, e114–e117. [Google Scholar] [CrossRef] [Green Version]
- Roberto, M.; Bassanelli, M.; Iannicelli, E.; Giacinti, S.; D’Antonio, C.; Aschelter, A.M.; Marchetti, P. Clinical Outcome of Third-Line Pazopanib in a Patient with Metastatic Renal Cell Carcinoma. Case Rep. Oncol. Med. 2015. [Google Scholar] [CrossRef] [Green Version]
- Santoni, M.; Conti, A.; Porta, C.; Procopio, G.; Sternberg, C.N.; Basso, U.; De Giorgi, U.; Bracarda, S.; Rizzo, M.; Ortega, C.; et al. Sunitinib, pazopanib or sorafenib for the treatment of patients with late relapsing metastatic renal cell carcinoma. J. Urol. 2015, 193, 41–47. [Google Scholar] [CrossRef]
- Bastos, D.A.; Molina, A.M.; Hatzoglou, V.; Jia, X.; Velasco, S.; Patil, S.; Voss, M.H.; Feldman, D.R.; Motzer, R.J. Safety and efficacy of targeted therapy for renal cell carcinoma with brain metastasis. Clin. Genitourin. Cancer 2015, 13, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Jager, D.; Ma, J.H.; Mardiak, J.; Ye, D.W.; Korbenfeld, E.; Zemanova, M.; Ahn, H.; Guo, J.; Leonhartsberger, N.; Stauch, K.; et al. Sorafenib treatment of advanced renal cell carcinoma patients in daily practice: The large international PREDICT study. Clin. Genitourin. Cancer 2015, 13, 156–164.e1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henderson, C.A.; Bukowski, R.M.; Stadler, W.M.; Dutcher, J.P.; Kindwall-Keller, T. The Advanced Renal Cell Carcinoma Sorafenib (ARCCS) expanded access trial: Subset analysis of patients (pts) with brain metastases (BM). J. Clin. Oncol. 2007, 25, 15506. [Google Scholar] [CrossRef]
- Gore, M.E.; Szczylik, C.; Porta, C.; Bracarda, S.; Bjarnason, G.A.; Oudard, S.; Hariharan, S.; Lee, S.H.; Haanen, J.; Castellano, D.; et al. Safety and efficacy of sunitinib for metastatic renal-cell carcinoma: An expanded-access trial. Lancet Oncol. 2009, 10, 757–763. [Google Scholar] [CrossRef]
- Chevreau, C.; Ravaud, A.; Escudier, B.; Amela, E.; Delva, R.; Rolland, F.; Tosi, D.; Oudard, S.; Blanc, E.; Ferlay, C.; et al. A phase II trial of sunitinib in patients with renal cell cancer and untreated brain metastases. Clin. Genitourin. Cancer 2014, 12, 50–54. [Google Scholar] [CrossRef] [Green Version]
- Grunwald, V.; Karakiewicz, P.I.; Bavbek, S.E.; Miller, K.; Machiels, J.P.; Lee, S.H.; Larkin, J.; Bono, P.; Rha, S.Y.; Castellano, D.; et al. An international expanded-access programme of everolimus: Addressing safety and efficacy in patients with metastatic renal cell carcinoma who progress after initial vascular endothelial growth factor receptor-tyrosine kinase inhibitor therapy. Eur. J. Cancer 2012, 48, 324–332. [Google Scholar] [CrossRef]
- Motzer, R.J.; Escudier, B.; Oudard, S.; Hutson, T.E.; Porta, C.; Bracarda, S.; Grunwald, V.; Thompson, J.A.; Figlin, R.A.; Hollaender, N.; et al. Phase 3 trial of everolimus for metastatic renal cell carcinoma: Final results and analysis of prognostic factors. Cancer 2010, 116, 4256–4265. [Google Scholar] [CrossRef]
- Hudes, G.; Carducci, M.; Tomczak, P.; Dutcher, J.; Figlin, R.; Kapoor, A.; Staroslawska, E.; Sosman, J.; McDermott, D.; Bodrogi, I.; et al. Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N. Engl. J. Med. 2007, 356, 2271–2281. [Google Scholar] [CrossRef] [Green Version]
- Choueiri, T.K.; Escudier, B.; Powles, T.; Mainwaring, P.N.; Rini, B.I.; Donskov, F.; Hammers, H.; Hutson, T.E.; Lee, J.L.; Peltola, K.; et al. Cabozantinib versus Everolimus in Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2015, 373, 1814–1823. [Google Scholar] [CrossRef]
- Dent, P.; Reardon, D.B.; Park, J.S.; Bowers, G.; Logsdon, C.; Valerie, K.; Schmidt-Ullrich, R. Radiation-induced release of transforming growth factor alpha activates the epidermal growth factor receptor and mitogen-activated protein kinase pathway in carcinoma cells, leading to increased proliferation and protection from radiation-induced cell death. Mol. Biol. Cell. 1999, 10, 2493–2506. [Google Scholar]
- Deng, Z.; Huang, H.; Wu, X.; Wu, M.; He, G.; Guo, J. Distinct Expression of Various Angiogenesis Factors in Mice Brain After Whole-Brain Irradiation by X-ray. Neurochem. Res. 2017, 42, 625–633. [Google Scholar] [CrossRef] [PubMed]
- Vala, I.S.; Martins, L.R.; Imaizumi, N.; Nunes, R.J.; Rino, J.; Kuonen, F.; Carvalho, L.M.; Ruegg, C.; Grillo, I.M.; Barata, J.T.; et al. Low doses of ionizing radiation promote tumor growth and metastasis by enhancing angiogenesis. PLoS ONE 2010, 5, e11222. [Google Scholar]
- Zingg, D.; Riesterer, O.; Fabbro, D.; Glanzmann, C.; Bodis, S.; Pruschy, M. Differential activation of the phosphatidylinositol 3’-kinase/Akt survival pathway by ionizing radiation in tumor and primary endothelial cells. Cancer Res. 2004, 64, 5398–5406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bates, J.E.; Youn, P.; Peterson, C.R., 3rd; Usuki, K.Y.; Walter, K.A.; Okunieff, P.; Milano, M.T. Radiotherapy for Brain Metastases From Renal Cell Carcinoma in the Targeted Therapy Era: The University of Rochester Experience. Am. J. Clin. Oncol. 2017, 40, 439–443. [Google Scholar] [CrossRef] [PubMed]
- Cochran, D.C.; Chan, M.D.; Aklilu, M.; Lovato, J.F.; Alphonse, N.K.; Bourland, J.D.; Urbanic, J.J.; McMullen, K.P.; Shaw, E.G.; Tatter, S.B.; et al. The effect of targeted agents on outcomes in patients with brain metastases from renal cell carcinoma treated with Gamma Knife surgery. J. Neurosurg. 2012, 116, 978–983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Staehler, M.; Haseke, N.; Nuhn, P.; Tullmann, C.; Karl, A.; Siebels, M.; Stief, C.G.; Wowra, B.; Muacevic, A. Simultaneous anti-angiogenic therapy and single-fraction radiosurgery in clinically relevant metastases from renal cell carcinoma. BJU Int. 2011, 108, 673–678. [Google Scholar] [CrossRef] [PubMed]
- Staehler, M.; Haseke, N.; Stadler, T.; Nuhn, P.; Roosen, A.; Stief, C.G.; Wilkowski, R. Feasibility and effects of high-dose hypofractionated radiation therapy and simultaneous multi-kinase inhibition with sunitinib in progressive metastatic renal cell cancer. Urol Oncol. 2012, 30, 290–293. [Google Scholar] [CrossRef]
- Langrand-Escure, J.; Vallard, A.; Rivoirard, R.; Mery, B.; Guy, J.B.; Espenel, S.; Trone, J.C.; Mrad, M.B.; Diao, P.; Rancoule, C.; et al. Safety assessment of molecular targeted therapies in association with radiotherapy in metastatic renal cell carcinoma: A real-life report. Anticancer Drugs 2016, 27, 427–432. [Google Scholar] [CrossRef]
- Wuthrick, E.J.; Kamrava, M.; Curran, W.J., Jr.; Werner-Wasik, M.; Camphausen, K.A.; Hyslop, T.; Axelrod, R.; Andrews, D.W.; Glass, J.; Machtay, M.; et al. A phase 1b trial of the combination of the antiangiogenic agent sunitinib and radiation therapy for patients with primary and metastatic central nervous system malignancies. Cancer 2011, 117, 5548–5559. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.M.; Miller, J.A.; Kotecha, R.; Xiao, R.; Juloori, A.; Ward, M.C.; Ahluwalia, M.S.; Mohammadi, A.M.; Peereboom, D.M.; Murphy, E.S.; et al. The risk of radiation necrosis following stereotactic radiosurgery with concurrent systemic therapies. J. Neurooncol. 2017, 133, 357–368. [Google Scholar] [CrossRef]
- Parvez, K.; Parvez, A.; Zadeh, G. The diagnosis and treatment of pseudoprogression, radiation necrosis and brain tumor recurrence. Int. J. Mol. Sci. 2014, 15, 11832–11846. [Google Scholar] [CrossRef] [Green Version]
- Rini, B.I.; Powles, T.; Atkins, M.B.; Escudier, B.; McDermott, D.F.; Suarez, C.; Bracarda, S.; Stadler, W.M.; Donskov, F.; Lee, J.L.; et al. Atezolizumab plus bevacizumab versus sunitinib in patients with previously untreated metastatic renal cell carcinoma (IMmotion151): A multicentre, open-label, phase 3, randomised controlled trial. Lancet 2019, 393, 2404–2415. [Google Scholar] [CrossRef]
- Kobari, Y.; Kondo, T.; Takagi, T.; Omae, K.; Nakazawa, H.; Tanabe, K. Rapid Progressive Disease After Nivolumab Therapy in Three Patients with Metastatic Renal Cell Carcinoma. In Vivo 2017, 31, 769–771. [Google Scholar]
- Soria, F.; Beleni, A.I.; D’Andrea, D.; Resch, I.; Gust, K.M.; Gontero, P.; Shariat, S.F. Pseudoprogression and hyperprogression during immune checkpoint inhibitor therapy for urothelial and kidney cancer. World J. Urol. 2018, 36, 1703–1709. [Google Scholar] [CrossRef] [Green Version]
- Flippot, R.; Dalban, C.; Laguerre, B.; Borchiellini, D.; Gravis, G.; Negrier, S.; Chevreau, C.; Joly, F.; Geoffrois, L.; Ladoire, S.; et al. Safety and Efficacy of Nivolumab in Brain Metastases From Renal Cell Carcinoma: Results of the GETUG-AFU 26 NIVOREN Multicenter Phase II Study. J. Clin. Oncol. 2019, 37, 2008–2016. [Google Scholar] [CrossRef]
- Emamekhoo, H.; Olsen, M.; Carthon, B.C. Safety and efficacy of nivolumab plus ipilimumab (NIVO + IPI) in patients with advanced renal cell carcinoma (aRCC) with brain metastases: Interim analysis of CheckMate 920. J. Clin. Oncol. 2019, 37, 4517. [Google Scholar] [CrossRef]
- Jonasch, E.; Hasanov, E.; Motzer, R.J. Evaluation of brain metastasis in JAVELIN Renal 101: Efficacy of avelumab + axitinib (A + Ax) versus sunitinib (S). J. Clin. Oncol. 2020, 38, 687. [Google Scholar] [CrossRef]
- Dewan, M.Z.; Galloway, A.E.; Kawashima, N.; Dewyngaert, J.K.; Babb, J.S.; Formenti, S.C.; Demaria, S. Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody. Clin. Cancer Res. 2009, 15, 5379–5388. [Google Scholar] [CrossRef]
- Formenti, S.C.; Demaria, S. Combining radiotherapy and cancer immunotherapy: A paradigm shift. J. Natl. Cancer Inst. 2013, 105, 256–265. [Google Scholar] [CrossRef] [Green Version]
- Kalbasi, A.; June, C.H.; Haas, N.; Vapiwala, N. Radiation and immunotherapy: A synergistic combination. J. Clin. Invest. 2013, 123, 2756–2763. [Google Scholar] [CrossRef]
- Vatner, R.E.; Cooper, B.T.; Vanpouille-Box, C.; Demaria, S.; Formenti, S.C. Combinations of immunotherapy and radiation in cancer therapy. Front. Oncol. 2014, 4, 325. [Google Scholar] [CrossRef] [Green Version]
- Shabason, J.E.; Minn, A.J. Radiation and Immune Checkpoint Blockade: From Bench to Clinic. Semin. Radiat. Oncol. 2017, 27, 289–298. [Google Scholar] [CrossRef]
- Knisely, J.P.; Yu, J.B.; Flanigan, J.; Sznol, M.; Kluger, H.M.; Chiang, V.L. Radiosurgery for melanoma brain metastases in the ipilimumab era and the possibility of longer survival. J. Neurosurg. 2012, 117, 227–233. [Google Scholar] [CrossRef]
- Mathew, M.; Tam, M.; Ott, P.A.; Pavlick, A.C.; Rush, S.C.; Donahue, B.R.; Golfinos, J.G.; Parker, E.C.; Huang, P.P.; Narayana, A. Ipilimumab in melanoma with limited brain metastases treated with stereotactic radiosurgery. Melanoma Res. 2013, 23, 191–195. [Google Scholar] [CrossRef]
- Patel, K.R.; Shoukat, S.; Oliver, D.E.; Chowdhary, M.; Rizzo, M.; Lawson, D.H.; Khosa, F.; Liu, Y.; Khan, M.K. Ipilimumab and Stereotactic Radiosurgery Versus Stereotactic Radiosurgery Alone for Newly Diagnosed Melanoma Brain Metastases. Am. J. Clin. Oncol. 2017, 40, 444–450. [Google Scholar] [CrossRef]
- Silk, A.W.; Bassetti, M.F.; West, B.T.; Tsien, C.I.; Lao, C.D. Ipilimumab and radiation therapy for melanoma brain metastases. Cancer Med. 2013, 2, 899–906. [Google Scholar] [CrossRef] [Green Version]
- Qian, J.M.; Yu, J.B.; Kluger, H.M.; Chiang, V.L. Timing and type of immune checkpoint therapy affect the early radiographic response of melanoma brain metastases to stereotactic radiosurgery. Cancer 2016, 122, 3051–3058. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Douglass, J.; Kleinberg, L.; Ye, X.; Marciscano, A.E.; Forde, P.M.; Brahmer, J.; Lipson, E.; Sharfman, W.; Hammers, H.; et al. Concurrent Immune Checkpoint Inhibitors and Stereotactic Radiosurgery for Brain Metastases in Non-Small Cell Lung Cancer, Melanoma, and Renal Cell Carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 2018, 100, 916–925. [Google Scholar] [CrossRef]
- Martin, A.M.; Cagney, D.N.; Catalano, P.J.; Alexander, B.M.; Redig, A.J.; Schoenfeld, J.D.; Aizer, A.A. Immunotherapy and Symptomatic Radiation Necrosis in Patients with Brain Metastases Treated With Stereotactic Radiation. JAMA Oncol. 2018, 4, 1123–1124. [Google Scholar] [CrossRef]
≥Second Line Nivolumab | Phase | n | Endpoint | Results | Remarks | |
---|---|---|---|---|---|---|
GETUG-AFU 26 NIVOREN | 2 | 729 | median PFS | 3.2 months (95% CI 2.9–4.6) | ||
1y OS | 69% (95% CI 66–73) | |||||
ORR | 21% | |||||
GETUG-AFU 26 NIVOREN Brain Metastases study | 85 | prior focal therapy | ||||
+ | ‒ | |||||
ORR | NA | 12% | ||||
median PFS | 4.8 mo | 2.7 mo | ||||
1y OS | 59% | 67% | ||||
nivolumab + ipilimumab vs. sunitinib CheckMate 214 | 3 | 1096 | NIVO + IPI | sunitinib | ||
18 mo OS | 75% | 60% | ||||
30 mo PFS | 28% | 12% | ||||
median OS | not reached | 37.9 mo | HR, 0.71; 95% CI, 0.59–0.86; p = 0.0003 | |||
ORR | 41% | 34% | p = 0.015 | |||
CheckMate 920 brain metastases cohort | 3b/4 | 28 | Median OS | not reached (95% CI 13.1–NE) | ||
ORR | 28.6% (95% CI 13.2–48.7) | |||||
immune-mediated adverse events (IMAEs) | 6 (21.4%) (G3-4: 1 pt) | |||||
avelumab + axitinib vs. sunitinib JAVELIN Renal 101 | 3 | 886 | AVE + AXI | sunitinib | ||
442 | 444 | |||||
Median PFS | 13.8 mo | 7.2 mo | HR: 0.61; 95% CI: 0.47, 0.79; p < 0.001 | |||
ORR | 51.4 (46.6–56.1) | 25.7 (21.7–30.0) | ||||
BM develop | 8 | 10 | ||||
JAVELIN Renal 101 subgroup with Brain metstases | - | 46 | 23 | 23 | ||
median PFS | 4.9 mo | 2.8 mo | HR: 0.90; 95% CI: 0.43, 1.88 |
Drugs | Trial | Phase | Systemic Treatment | Local Therapy | Population | Estimated Enrollment | Primary Endpoint | Status |
---|---|---|---|---|---|---|---|---|
TKI | NCT00981890 | 1 | sunitinib | SRS | brain metastasis | 22 | safety and maximum tolerated dose of sunitinib | Active, not recruiting |
NCT02019576 | 2 | sunitinib | SRS | ccRCC | 68 | local control at 1 yr of metastases treated with SRS | Active, not recruiting | |
ICI | NCT02886585 | 2 | pembrolizumab | (SRS) | solid tumor | 102 | ORR, OS, Extracranial ORR | Recruiting |
NCT02978404 | 2 | nivolumab | SRS | NSCLC, RCC | 60 | Intracranial PFS | Active, not recruiting | |
NCT02982954 | 4 | nivolumab/ipilimumab | - | aRCC | 200 | incidence of IMAEs | Active, not recruiting | |
NCT02669914 | 2 | durvalumab | WBRT/SRS | epithelial-derived tumor | 136 | ORR of Intracranial Disease | Terminated (Low accrual) |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matsui, Y. Current Multimodality Treatments against Brain Metastases from Renal Cell Carcinoma. Cancers 2020, 12, 2875. https://doi.org/10.3390/cancers12102875
Matsui Y. Current Multimodality Treatments against Brain Metastases from Renal Cell Carcinoma. Cancers. 2020; 12(10):2875. https://doi.org/10.3390/cancers12102875
Chicago/Turabian StyleMatsui, Yoshiyuki. 2020. "Current Multimodality Treatments against Brain Metastases from Renal Cell Carcinoma" Cancers 12, no. 10: 2875. https://doi.org/10.3390/cancers12102875
APA StyleMatsui, Y. (2020). Current Multimodality Treatments against Brain Metastases from Renal Cell Carcinoma. Cancers, 12(10), 2875. https://doi.org/10.3390/cancers12102875