Positron Emission Tomography in Merkel Cell Carcinoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Search Strategy and Study Selection
3. 18F-FDG PET/CT in MCC
3.1. Initial Studies
3.2. Regional Lymph Node Evaluation
3.3. Distant Metastasis Staging/Impact on Management
3.4. Limitations of 18F-FDG PET/CT
4. Non-18F-FDG PET Tracers in MCC
4.1. Somatostatin (SST) Analogues’ Imaging
4.2. 18F-Fluorodihydroxyphenylalanine (18F-DOPA)
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Xue, Y.; Thakuria, M. Merkel Cell Carcinoma Review. Hematol. Clin. N. Am. 2019, 33, 39–52. [Google Scholar] [CrossRef]
- Coggshall, K.; Tello, T.L.; North, J.P.; Yu, S.S. Merkel cell carcinoma: An update and review: Pathogenesis, diagnosis, and staging. J. Am. Acad. Dermatol. 2018, 78, 433–442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garkaby, J.; Israel, O.; Epelbaum, R. Metabolic assessment of Merkel cell cancer-The role of FDG-PET/CT in rare tumors. J. Nucl. Med. 2013, 54, 107. [Google Scholar]
- Harms, K.L.; Healy, M.A.; Nghiem, P.; Sober, A.J.; Johnson, T.M.; Bichakjian, C.K.; Wong, S.L. Analysis of Prognostic Factors from 9387 Merkel Cell Carcinoma Cases Forms the Basis for the New 8th Edition AJCC Staging System. Ann. Surg. Oncol. 2016, 23, 3564–3571. [Google Scholar] [CrossRef] [PubMed]
- NCCN. Clinical Practice Guidelines in Oncology (NCCN Guidelines ®) Merkel Cell Carcinoma Version1. 2 October 2019. 2020. Available online: https://www.nccn.org/professionals/physician_gls/pdf/mcc.pdf (accessed on 25 August 2020).
- Lebbé, C.; Becker, J.C.; Grob, J.-J.; Malvehy, J.; Del Marmol, V.; Pehamberger, H.; Peris, K.; Saiag, P.; Middleton, M.; Bastholt, L.; et al. Diagnosis and treatment of Merkel Cell Carcinoma. European consensus-based interdisciplinary guideline. Eur. J. Cancer 2015, 51, 2396–2403. [Google Scholar] [CrossRef] [PubMed]
- Cornejo, C.; Miller, C.J. Merkel Cell Carcinoma: Updates on Staging and Management. Dermatol. Clin. 2019, 37, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Tello, T.L.; Coggshall, K.; Yom, S.S.; Yu, S.S. Merkel cell carcinoma: An update and review: Current and future therapy. J. Am. Acad. Dermatol. 2018, 78, 445–454. [Google Scholar] [CrossRef]
- Grandhaye, M.; Teixeira, P.G.; Henrot, P.; Morel, O.; Sirveaux, F.; Verhaeghe, J.-L.; Blum, A. Focus on Merkel cell carcinoma: Diagnosis and staging. Skelet. Radiol. 2015, 44, 777–786. [Google Scholar] [CrossRef]
- Singh, N.; Alexander, N.A.; Lachance, K.; Lewis, C.W.; McEvoy, A.; Akaike, G.; Byrd, D.; Behnia, S.; Bhatia, S.; Paulson, K.G.; et al. Clinical Benefit of Baseline Imaging in Merkel Cell Carcinoma: Analysis of 584 Patients. J. Am. Acad. Dermatol. 2020. [Google Scholar] [CrossRef]
- Langer, A. A systematic review of PET and PET/CT in oncology: A way to personalize cancer treatment in a cost-effective manner? BMC Health Serv. Res. 2010, 10, 283. [Google Scholar] [CrossRef] [Green Version]
- Petersen, H.; Holdgaard, P.C.; Madsen, P.H.; Knudsen, L.M.; Gad, D.; Gravergaard, A.E.; Rohde, M.; Godballe, C.; Engelmann, B.E.; Bech, K.; et al. FDG PET/CT in cancer: Comparison of actual use with literature-based recommendations. Eur. J. Nucl. Med. Mol. Imaging 2015, 43, 695–706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Treglia, G.; Kakhki, V.R.D.; Giovanella, L.; Sadeghi, R. Diagnostic Performance of Fluorine-18-Fluorodeoxyglucose Positron Emission Tomography in Patients with Merkel Cell Carcinoma: A Systematic Review and Meta-Analysis. Am. J. Clin. Dermatol. 2013, 14, 437–447. [Google Scholar] [CrossRef] [PubMed]
- Scanga, D.R.; Martin, W.H.; Delbeke, D. Value of FDG PET Imaging in the Management of Patients With Thyroid, Neuroendocrine, and Neural Crest Tumors. Clin. Nucl. Med. 2004, 29, 86–90. [Google Scholar] [CrossRef] [PubMed]
- Yao, M.; Smith, R.B.; Hoffman, H.T.; Funk, G.F.; Graham, M.M.; Buatti, J.M. Merkel Cell Carcinoma: Two case reports focusing on the role of fluorodeoxyglucose positron emission tomography imaging in staging and surveillance. Am. J. Clin. Oncol. 2005, 28, 205–210. [Google Scholar] [CrossRef] [PubMed]
- Talbot, J.-N.; Kerrou, K.; Missoum, F.; Grahek, D.; Aide, N.; Lumbroso, J.; Montravers, F. 6-[F-18]Fluoro-l-DOPA Positron Emission Tomography in the Imaging of Merkel Cell Carcinoma: Preliminary Report of Three Cases with 2-Deoxy-2-[F-18]Fluoro-d-Glucose Positron Emission Tomography or Pentetreotide-(111In) SPECT Data. Mol. Imaging Biol. 2005, 7, 257–261. [Google Scholar] [CrossRef] [PubMed]
- Belhocine, T.-Z.; Pierard, G.; Frühling, J.; Letesson, G.; Bolle, S.; Hustinx, R.; Dargent, J.-L.; Flamen, P.; Rigo, P. Clinical added-value of 18FDG PET in neuroendocrine-merkel cell carcinoma. Oncol. Rep. 2006, 16, 347–352. [Google Scholar] [CrossRef] [PubMed]
- Iagaru, A.; Quon, A.; McDougall, I.R.; Gambhir, S.S. Merkel Cell Carcinoma: Is there a Role for 2-Deoxy-2-[F-18]fluoro-d-glucose-Positron Emission Tomography/Computed Tomography? Mol. Imaging Biol. 2006, 8, 212–217. [Google Scholar] [CrossRef] [PubMed]
- Concannon, R.; Larcos, G.S.; Veness, M. The impact of 18F-FDG PET-CT scanning for staging and management of Merkel cell carcinoma: Results from Westmead Hospital, Sydney, Australia. J. Am. Acad. Dermatol. 2010, 62, 76–84. [Google Scholar] [CrossRef]
- Peloschek, P.; Novotny, C.; Mueller-Mang, C.; Weber, M.; Sailer, J.; Dawid, M.; Czerny, C.; Dudczak, R.; Kletter, K.; Becherer, A. Diagnostic imaging in Merkel cell carcinoma: Lessons to learn from 16 cases with correlation of sonography, CT, MRI and PET. Eur. J. Radiol. 2010, 73, 317–323. [Google Scholar] [CrossRef]
- Maury, G.; Dereure, O.; Du-Thanh, A.; Mariano-Goulart, D.; Guillot, B. Interest of (18)F-FDG PET-CT scanning for staging and management of merkel cell carcinoma: A retrospective study of 15 patients. J. Eur. Acad. Dermatol. Venereol. 2011, 25, 1420–1427. [Google Scholar] [CrossRef]
- Lu, Y.; Fleming, S.E.; Fields, R.C.; Coit, D.G.; Carrasquillo, J.A. Comparison of 18F-FDG PET/CT and 111In Pentetreotide Scan for Detection of Merkel Cell Carcinoma. Clin. Nucl. Med. 2012, 37, 759–762. [Google Scholar] [CrossRef] [PubMed]
- Colgan, M.B.; Tarantola, T.I.; Weaver, A.L.; Wiseman, G.A.; Roenigk, R.K.; Brewer, J.D.; Otley, C.C. The predictive value of imaging studies in evaluating regional lymph node involvement in Merkel cell carcinoma. J. Am. Acad. Dermatol. 2012, 67, 1250–1256. [Google Scholar] [CrossRef] [PubMed]
- Hawryluk, E.B.; O’Regan, K.N.; Sheehy, N.; Guo, Y.; Dorosario, A.; Sakellis, C.G.; Jacene, H.A.; Wang, L.C. Positron emission tomography/computed tomography imaging in Merkel cell carcinoma: A study of 270 scans in 97 patients at the Dana-Farber/Brigham and Women’s Cancer Center. J. Am. Acad. Dermatol. 2013, 68, 592–599. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M.; Uhrhan, K.; Markiefka, B.; Hasselbring, L.; Schlaak, M.; Cremer, B.; Kunze, S.; Baum, R.P.; Dietlein, M. 68Ga-DotaTATE PET-CT followed by Peptide Receptor Radiotherapy in combination with capecitabine in two patients with Merkel Cell Carcinoma. Int. J. Clin. Exp. Med. 2012, 5, 363–366. [Google Scholar] [PubMed]
- Siva, S.; Byrne, K.; Seel, M.; Bressel, M.; Jacobs, D.; Callahan, J.; Laing, J.; MacManus, M.P.; Hicks, R.J. 18F-FDG PET Provides High-Impact and Powerful Prognostic Stratification in the Staging of Merkel Cell Carcinoma: A 15-Year Institutional Experience. J. Nucl. Med. 2013, 54, 1223–1229. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, S.F.; Ahronowitz, I.; McCalmont, T.H.; Pampaloni, M.H.; Ryan, J.L.; Yu, S.S. 18F-Fluorodeoxyglucose Positron Emission Tomography–Computed Tomography Imaging in the Management of Merkel Cell Carcinoma: A Single-Institution Retrospective Study. Dermatol. Surg. 2013, 39, 1323–1333. [Google Scholar] [CrossRef]
- George, A.; Girault, S.; Testard, A.; Delva, R.; Soulié, P.; Couturier, O.-F.; Morel, O. The impact of 18F-FDG-PET/CT on Merkel cell carcinoma management. Nucl. Med. Commun. 2014, 35, 282–290. [Google Scholar] [CrossRef]
- Buder, K.; Lapa, C.; Kreissl, M.C.; Schirbel, A.; Herrmann, K.; Schnack, A.; Bröcker, E.-B.; Goebeler, M.; Buck, A.K.; Becker, J.C. Somatostatin receptor expression in Merkel cell carcinoma as target for molecular imaging. BMC Cancer 2014, 14, 268. [Google Scholar] [CrossRef]
- Byrne, K.; Siva, S.; Chait, L.; Callahan, J.; Bressel, M.; Seel, M.; MacManus, M.P.; Hicks, R.J. 15-year Experience of 18F-FDG PET Imaging in Response Assessment and Re-staging after Definitive Treatment of Merkel Cell Carcinoma. J. Nucl. Med. 2015, 56, 1328–1333. [Google Scholar] [CrossRef] [Green Version]
- Sollini, M.; Taralli, S.; Milella, M.; Erba, P.; Rubagotti, S.; Fraternali, A.; Roncali, M.; Moscarella, E.; Perotti, G.; Rufini, V.; et al. Somatostatin receptor positron emission tomography/computed tomography imaging in Merkel cell carcinoma. J. Eur. Acad. Dermatol. Venereol. 2015, 30, 1507–1511. [Google Scholar] [CrossRef]
- Ben-Haim, S.; Garkaby, J.; Primashvili, N.; Goshen, E.; Shapira, R.; Davidson, T.; Israel, O.; Epelbaum, R. Metabolic assessment of Merkel cell carcinoma. Nucl. Med. Commun. 2016, 37, 865–873. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Larcos, G.; Howle, J.; Veness, M. Lack of clinical impact of 18F-fluorodeoxyglucose positron emission tomography with simultaneous computed tomography for stage I and II Merkel cell carcinoma with concurrent sentinel lymph node biopsy staging: A single institutional experience from Westme. Australas. J. Dermatol. 2015, 58, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Poulsen, M.; Macfarlane, D.; Veness, M.; Estall, V.; Hruby, G.; Kumar, M.; Pullar, A.; Tripcony, L.; Rischin, D. Prospective analysis of the utility of 18-FDG PET in Merkel cell carcinoma of the skin: A Trans Tasman Radiation Oncology Group Study, TROG 09:03. J. Med. Imaging Radiat. Oncol. 2018, 62, 412–419. [Google Scholar] [CrossRef] [PubMed]
- Taralli, S.; Sollini, M.; Milella, M.; Perotti, G.; Filice, A.; Menga, M.; Versari, A.; Rufini, V. 18F-FDG and 68Ga-somatostatin analogs PET/CT in patients with Merkel cell carcinoma: A comparison study. EJNMMI Res. 2018, 8, 64. [Google Scholar] [CrossRef] [Green Version]
- Smith, T.A.D. FDG uptake, tumour characteristics and response to therapy. Nucl. Med. Commun. 1998, 19, 97–106. [Google Scholar] [CrossRef]
- Kapoor, V.; McCook, B.M.; Torok, F.S. An Introduction to PET-CT Imaging1. Radiographics 2004, 24, 523–543. [Google Scholar] [CrossRef]
- Fischer, B.M.; Lassen, U.; Mortensen, J.; Larsen, S.; Loft, A.; Bertelsen, A.; Ravn, J.; Clementsen, P.; Høgholm, A.; Larsen, K.; et al. Preoperative Staging of Lung Cancer with Combined PET–CT. New Engl. J. Med. 2009, 361, 32–39. [Google Scholar] [CrossRef] [Green Version]
- Hutchings, M.; Loft, A.; Hansen, M.; Pedersen, L.M.; Buhl, T.; Jurlander, J.; Buus, S.; Keiding, S.; D’Amore, F.; Boesen, A.-M.; et al. FDG-PET after two cycles of chemotherapy predicts treatment failure and progression-free survival in Hodgkin lymphoma. Blood 2006, 107, 52–59. [Google Scholar] [CrossRef] [Green Version]
- Schröer-Günther, M.A.; Wolff, R.F.; Westwood, M.; Scheibler, F.; Schürmann, C.; Baumert, B.G.; Sauerland, S.; Kleijnen, J. F-18-fluoro-2-deoxyglucose positron emission tomography (PET) and PET/computed tomography imaging in primary staging of patients with malignant melanoma: A systematic review. Syst. Rev. 2012, 1, 62. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.W.; Roh, J.L.; Kim, J.S.; Lee, J.H.; Cho, K.J.; Choi, S.H.; Nam, S.I.; Kim, S.Y. (18)FFDG PET/CT surveillance at 3–6 and 12 months for detection of recurrence and second primary cancer in patients with head and neck squamous cell carcinoma. Br. J. Cancer 2013, 109, 2973–2979. [Google Scholar] [CrossRef] [Green Version]
- Patel, S.; McCall, M.; Ohinmaa, A.; Bigam, D.; Dryden, D.M. Positron Emission Tomography/Computed Tomographic Scans Compared to Computed Tomographic Scans for Detecting Colorectal Liver Metastases. Ann. Surg. 2011, 253, 666–671. [Google Scholar] [CrossRef] [PubMed]
- Ziessman, H.A.; O’Malley, J.P.; Thrall, J.H. Oncology: Positron Emission Tomography. In Nuclear Medicine: The Requisites, 4th ed.; Ziessman, H.A., O’Malley, J.P., Thrall, J.H., Fahey, F.H., Eds.; Elsevier Mosby: Philadelphia, PA, USA, 2014. [Google Scholar]
- Pandit-Taskar, N.; Gonen, M.; Krug, L.; Larson, S.M. Prognostic value of [18F]FDG-PET imaging in small cell lung cancer. Eur. J. Nucl. Med. Mol. Imaging 2003, 30, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Borst, G.R.; Belderbos, J.S.; Boellaard, R.; Comans, E.F.; De Jaeger, K.; Lammertsma, A.A.; Lebesque, J.V. Standardised FDG uptake: A prognostic factor for inoperable non-small cell lung cancer. Eur. J. Cancer 2005, 41, 1533–1541. [Google Scholar] [CrossRef] [PubMed]
- Kidd, E.A.; Siegel, B.A.; Dehdashti, F.; Grigsby, P.W. The standardized uptake value for F-18 fluorodeoxyglucose is a sensitive predictive biomarker for cervical cancer treatment response and survival. Cancer 2007, 110, 1738–1744. [Google Scholar] [CrossRef]
- Wahl, R.L.; Jacene, H.; Kasamon, Y.; Lodge, M.A. From RECIST to PERCIST: Evolving Considerations for PET Response Criteria in Solid Tumors. J. Nucl. Med. 2009, 50, 122S–150S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akaike, G.; Akaike, T.; Fadl, S.A.; Lachance, K.; Nghiem, P.; Behnia, S. Imaging of Merkel Cell Carcinoma: What Imaging Experts Should Know. Radiographics 2019, 39, 2069–2084. [Google Scholar] [CrossRef]
- Lampreave, J.L.; Bénard, F.; Alavi, A.; Jimenez-Hoyuela, J.; Fraker, D. PET evaluation of therapeutic limb perfusion in Merkel’s cell carcinoma. J. Nucl. Med. 1998, 39, 2087–2090. [Google Scholar]
- Wong, C. F-18 FDG Accumulation in an Octreotide Negative Merkel Cell Tumor. Clin. Positron Imaging 2000, 3, 71–73. [Google Scholar] [CrossRef]
- Nguyen, B.D. Positron Emission Tomographic Imaging of Merkel Cell Carcinoma. Clin. Nucl. Med. 2002, 27, 922–923. [Google Scholar] [CrossRef]
- Lin, O.; Thomas, A.; Singh, A.; Greenspan, B. Complementary Role of Positron Emission Tomography in Merkel Cell Carcinoma. South Med. J. 2004, 97, 1110–1112. [Google Scholar] [CrossRef]
- Golan, H.; Volkov, O.; Linchinsky, O.; Melloul, M. FDG-PET imaging in Merkel cell carcinoma—Value of head-to-toe scan. Nucl. Med. Rev. 2005, 8, 135–136. [Google Scholar]
- Greene, G.S.; Mezheritskiy, I.; Biko, D.M. PET/CT imaging of metastatic Merkel cell carcinoma to the adrenal glands. BMJ Case Rep. 2010, 2010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lemos, B.D.; Storer, B.E.; Iyer, J.G.; Phillips, J.L.; Bichakjian, C.K.; Fang, L.C.; Johnson, T.M.; Liegeois-Kwon, N.J.; Otley, C.C.; Paulson, K.G.; et al. Pathologic nodal evaluation improves prognostic accuracy in Merkel cell carcinoma: Analysis of 5823 cases as the basis of the first consensus staging system. J. Am. Acad. Dermatol. 2010, 63, 751–761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, S.G.; Wang, L.C.; Fernández-Peñas, P.; Gellenthin, M.; Lee, S.J.; Nghiem, P. Sentinel Lymph Node Biopsy for Evaluation and Treatment of Patients With Merkel Cell Carcinoma. Arch. Dermatol. 2006, 142, 685–690. [Google Scholar] [CrossRef] [PubMed]
- Nghiem, P.; Bhatia, S.; Lipson, E.J.; Kudchadkar, R.R.; Miller, N.J.; Annamalai, L.; Berry, S.; Chartash, E.K.; Daud, A.; Fling, S.P.; et al. PD-1 Blockade with Pembrolizumab in Advanced Merkel-Cell Carcinoma. N. Engl. J. Med. 2016, 374, 2542–2552. [Google Scholar] [CrossRef]
- Topalian, S.L.; Bhatia, S.; Hollebecque, A.; Awada, A.; De Boer, J.P.; Kudchadkar, R.R.; Gonçalves, A.; Delord, J.-P.; Martens, U.M.; Picazo, J.M.L.; et al. Abstract CT074: Non-comparative, open-label, multiple cohort, phase 1/2 study to evaluate nivolumab (NIVO) in patients with virus-associated tumors (CheckMate 358): Efficacy and safety in Merkel cell carcinoma (MCC). In Proceedings of the Clinical Trials; American Association for Cancer Research (AACR), Washington, DC, USA, 1–5 April 2017; Volume 77, p. CT074. [Google Scholar]
- Gilardi, L.; Grana, C.M.; Paganelli, G. Evaluation of response to immunotherapy: New challenges and opportunities for PET imaging. Eur. J. Nucl. Med. Mol. Imaging 2014, 41, 2090–2092. [Google Scholar] [CrossRef] [Green Version]
- Tirumani, S.H.; Ramaiya, N.H.; Keraliya, A.; Bailey, N.D.; Ott, P.A.; Hodi, F.S.; Nishino, M. Radiographic Profiling of Immune-Related Adverse Events in Advanced Melanoma Patients Treated with Ipilimumab. Cancer Immunol. Res. 2015, 3, 1185–1192. [Google Scholar] [CrossRef] [Green Version]
- Amin, A.; Lawson, D.H.; Salama, A.K.S.; Koon, H.B.; Guthrie, T.; Thomas, S.S.; O’Day, S.J.; Shaheen, M.; Zhang, B.; Francis, S.; et al. Phase II study of vemurafenib followed by ipilimumab in patients with previously untreated BRAF-mutated metastatic melanoma. J. Immunother. Cancer 2016, 4, 44. [Google Scholar] [CrossRef] [Green Version]
- Dimitrakopoulou-Strauss, A. Monitoring of patients with metastatic melanoma treated with immune checkpoint inhibitors using PET–CT. Cancer Immunol. Immunother. 2018, 68, 813–822. [Google Scholar] [CrossRef]
- Sachpekidis, C.; Dimitrakopoulou-Strauss, A. Melanoma: 18F-FDG PET/CT for Response Assessment of Melanoma Following Immunotherapy. In Atlas of Response to Immunotherapy; Springer Science and Business Media LLC: Cham, Switzerland, 2019; pp. 55–65. [Google Scholar]
- Winkler, J.; Dimitrakopoulou-Strauss, A.; Sachpekidis, C.; Enk, A.; Hassel, J.C. Ipilimumab has efficacy in metastatic Merkel Cell Carcinoma: A case series of five patients. J. Eur. Acad. Dermatol. Venereol. 2017, 31. [Google Scholar] [CrossRef]
- Eshghi, N.; Lundeen, T.F.; MacKinnon, L.; Avery, R.; Kuo, P.H. 18F-FDG PET/CT for Monitoring Response of Merkel Cell Carcinoma to the Novel Programmed Cell Death Ligand 1 Inhibitor Avelumab. Clin. Nucl. Med. 2018, 43, e142–e144. [Google Scholar] [CrossRef] [PubMed]
- Vellani, C.; D’Ambrosio, D.; Licata, L.; Vacchieri, I.; Bernardo, A.; Trifirò, G. Monitoring response of advanced Merkel cell carcinoma to Avelumab with 18F-FDG PET/CT. Eur. J. Nucl. Med. Mol. Imaging 2018, 46, 1197–1198. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, M.H.; Leong, S.P.; Abendroth, R.; Kashani-Sabet, M.; Kim, K.B. Complete clinical response to intralesional talimogene laherparepvec injection in a patient with recurrent, regionally advanced Merkel cell carcinoma. JAAD Case Rep. 2019, 5, 849–851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giroulet, F.; Tabotta, F.; Pomoni, A.; Prior, J. Primary parotid Merkel cell carcinoma: A first imagery and treatment response assessment by 18F-FDG PET. BMJ Case Rep. 2019, 12, e226511. [Google Scholar] [CrossRef]
- Maecke, H.R.; Hofmann, M.; Haberkorn, U. Ga-68-labeled peptides in tumor imaging. J. Nucl. Med. 2005, 46 (Suppl. 1), 172S–178S. [Google Scholar] [PubMed]
- Kwekkeboom, D.J.; Hoff, A.M.; Lamberts, S.W.; Oei, H.Y.; Krenning, E.P. Somatostatin analogue scintigraphy. A simple and sensitive method for the in vivo visualization of Merkel cell tumors and their metastases. Arch. Dermatol. 1992, 128, 818–821. [Google Scholar] [CrossRef] [Green Version]
- Guitera-Rovel, P.; Lumbroso, J.; Gautier-Gougis, M.S.; Spatz, A.; Mercier, S.; Margulis, A.; Mamelle, G.; Kolb, F.; Lartigau, E.; Avril, M.F. Indium-III octreotide scintigraphy of Merkel cell carcinomas and their metastases. Ann. Oncol. 2001, 12, 807–811. [Google Scholar] [CrossRef]
- Durani, B.; Klein, A.; Henze, M.; Haberkorn, U.; Hartschuh, W. Somatostatin analogue scintigraphy in Merkel cell tumours. Br. J. Dermatol. 2003, 148, 1135–1140. [Google Scholar] [CrossRef]
- Akaike, T.; Qazi, J.; Anderson, A.J.; Behnia, F.; Shinohara, M.; Akaike, G.; Hippe, D.S.; Thomas, H.; Takagishi, S.; Lachance, K.; et al. High somatostatin receptor expression and efficacy of somatostatin analogues in patients with metastatic Merkel cell carcinoma. Br. J. Dermatol. 2020, 10. [Google Scholar] [CrossRef]
- Hofmann, M.; Maecke, H.; Börner, A.; Weckesser, E.; Schöffski, P.; Oei, M.; Schumacher, J.; Henze, M.; Heppeler, A.; Meyer, G.; et al. Biokinetics and imaging with the somatostatin receptor PET radioligand 68Ga-DOTATOC: Preliminary data. Eur. J. Nucl. Med. Mol. Imaging 2001, 28, 1751–1757. [Google Scholar] [CrossRef]
- Gabriel, M.; Decristoforo, C.; Kendler, D.; Dobrozemsky, G.; Heute, D.; Uprimny, C.; Kovacs, P.; Von Guggenberg, E.; Bale, R.; Virgolini, I.J. 68Ga-DOTA-Tyr3-octreotide PET in neuroendocrine tumors: Comparison with somatostatin receptor scintigraphy and CT. J. Nucl. Med. 2007, 48, 508–518. [Google Scholar] [CrossRef] [PubMed]
- Buchmann, I.; Henze, M.; Engelbrecht, S.; Eisenhut, M.; Runz, A.; Schäfer, M.; Schilling, T.; Haufe, S.; Herrmann, T.; Haberkorn, U. Comparison of 68Ga-DOTATOC PET and 111In-DTPAOC (Octreoscan) SPECT in patients with neuroendocrine tumours. Eur. J. Nucl. Med. Mol. Imaging 2007, 34, 1617–1626. [Google Scholar] [CrossRef] [PubMed]
- Salavati, A.; Prasad, V.; Schneider, C.-P.; Herbst, R.; Baum, R.P. Peptide receptor radionuclide therapy of Merkel cell carcinoma using 177lutetium-labeled somatostatin analogs in combination with radiosensitizing chemotherapy: A potential novel treatment based on molecular pathology. Ann. Nucl. Med. 2012, 26, 365–369. [Google Scholar] [CrossRef] [PubMed]
- Schneider, C.; Schlaak, M.; Bludau, M.; Markiefka, B.; Schmidt, M.C. 68Ga-DOTATATE-PET/CT Positive Metastatic Lymph Node in a 69-Year-Old Woman With Merkel Cell Carcinoma. Clin. Nucl. Med. 2012, 37, 1108–1111. [Google Scholar] [CrossRef] [PubMed]
- Epstude, M.; Tornquist, K.; Riklin, C.; Di Lenardo, F.; Winterhalder, R.; Hug, U.; Strobel, K. Comparison of 18F-FDG PET/CT and 68Ga-DOTATATE PET/CT Imaging in Metastasized Merkel Cell Carcinoma. Clin. Nucl. Med. 2013, 38, 283–284. [Google Scholar] [CrossRef]
- Basu, S.; Ranade, R. Metastatic Merkel Cell Carcinoma responding favourably to targeted therapy with 177Lu-DOTATATE: Will PRRT evolve as an important treatment approach in Receptor positive cases? J. Nucl. Med. Technol. 2015, 44, 85–87. [Google Scholar] [CrossRef] [Green Version]
- Balogova, S.; Talbot, J.-N.; Nataf, V.; Michaud, L.; Huchet, V.; Kerrou, K.; Montravers, F. 18F-Fluorodihydroxyphenylalanine vs. other radiopharmaceuticals for imaging neuroendocrine tumours according to their type. Eur. J. Nucl. Med. Mol. Imaging 2013, 40, 943–966. [Google Scholar] [CrossRef] [Green Version]
- Giammarile, F.; Castellucci, P.; Dierckx, R.; Lobato, E.E.; Farsad, M.; Hustinx, R.; Jalilian, A.; Pellet, O.; Rossi, S.; Paez, D. Non-FDG PET/CT in Diagnostic Oncology: A pictorial review. Eur. J. Hybrid. Imaging 2019, 3, 1–46. [Google Scholar] [CrossRef] [Green Version]
- Dimitrakopoulou-Strauss, A.; Strauss, L.G.; Burger, C. Quantitative PET studies in pretreated melanoma patients: A comparison of 6-[18F]fluoro-L-dopa with 18F-FDG and (15)O-water using compartment and noncompartment analysis. J. Nucl. Med. 2001, 42, 248–256. [Google Scholar]
Author (Year) | Study Design | No. of Patients (Mean Age; % Male) | PET Radiotracers | Main Findings |
---|---|---|---|---|
Scanga et al. (2004) [14] | Retrospective | 2 (n.r.) | 18F-FDG | 1 TP patient, 1 TN patient |
Yao et al. (2005) [15] | Report of 2 cases | 2 (68 years; 100%) | 18F-FDG | Pre-treatment PET scans revealed metastatic disease not detected in CT. Post-treatment PET imaging predicted response to therapy. |
Talbot et al. (2005) [16] | Case series | 3 (63 years; 67%) | 18F-FDOPA 18F-FDG | 2 TP cases with both 18F-FDOPA and 18F-FDG. No uptake of 18F-FDOPA, and unclear findings with 18F-FDG in the TN patient. Lower image contrast with 18F-FDOPA compared to 18F-FDG. |
Belhocine et al. (2006) [17] | Retrospective | 11 (64 years; 36%) | 18F-FDG | Sensitivity 92% (11 TP, 1 FN), specificity 100% (3 TN, 0 FP). Contributive PET findings in 10/11 MCC cases. |
Iagaru et al. (2006) [18] | Retrospective case series | 6 (69 years; 67%) | 18F-FDG | 9 TP, 7 TN, 1 FP, and 1 FN lesions. |
Concannon et al. (2009) [19] | Retrospective | 18 (74 years; 67%) | 18F-FDG | PET/CT altered staging in 33% and management in 43% of cases. Sensitivity 94%. |
Peloschek et al. (2010) [20] | Retrospective | 16 (75 years; 69%) | 18F-FDG (16 pts.) 18F-FDOPA (5 pts) | 18F-FDG: Sensitivity 85.7%, specificity 96.2% 18F-FDOPA: Negative findings in all cases (19 TN, 2 FN). |
Maury et al. (2011) [21] | Retrospective | 15 (68 years; 60%) | 18F-FDG | PET/CT had significant impact on staging and management in 46% of cases vs. clinical examination alone. Sensitivity, specificity, PPV, and NPV were 89%, 100%, 100%, and 93%, respectively. |
Lu et al. (2012) [22] | Retrospective | 9 (70 years; 78%) | 18F-FDG | 18F-FDG PET/CT detected more lesions and staged patients more accurately than 111In-Pentetreotide scintigraphy. 6 TP, and 4 TN scans. |
Colgan et al. (2012) [23] | Retrospective | 33 (70 years; 72%) * | 18F-FDG | Sensitivity 83%, specificity 95%, PPV 91%, NPV 91% in detecting nodal basin disease. |
Hawryluk et al. (2012) [24] | Retrospective | 97 (70 years; 58%) | 18F-FDG | PET/CT detected regional nodal disease in 14% of patients, and upstaged 16% of more advanced cases. |
Schmidt et al. (2012) [25] | Report of 2 cases | 2 (72 years; 50%) | 68Ga-DOTATATE | Disease extent was determined in both cases leading to management changes with inclusion of DOTATATE-peptide receptor radiotherapy in the therapeutic regimen. |
Siva et al. (2013) [26] | Retrospective | 102 (77 years; n.r.) | 18F-FDG | PET-based staging had a significant impact on management in 37% of cases. High- and medium-impact scans were recorded for 22% and 15% of patients, respectively. PET staging results differed from conventional staging results in 22% of patients. In stratification by PET-defined stage, the 5-year OS was 67% in stage I/II patients and 31% in stage III cases (log-rank p < 0.001). On multivariate analysis, PET staging was significantly associated with OS (p < 0.001). |
Ibrahim et al. (2013) [27] | Retrospective | 20 (58 years; 45%) | 18F-FDG | Changes in tumor status and management occurred in 20% and 15% of cases, respectively, as a direct result of PET/CT. |
George et al. (2014) [28] | Retrospective | 23 (74 years #; 57%) | 18F-FDG | Sensitivity 97%, specificity 89%, PPV 94%, NPV 94%, with 2 FP and 1 FN results. Lesions neglected clinically or by conventional imaging were revealed in 44% of PET/CTs at initial presentation and during follow-up, with, respectively, 50% and 41% of scans identifying new lesions. At initial presentation, PET/CT altered tumor staging in 39% of cases. Management was modified by PET/CT in one-third of cases (33% at initial presentation; 32% during follow-up; 36% during evaluation of chemotherapy response). |
Buder et al. (2014) [29] | Retrospective | 24 (68 years; 67%) | 68Ga-DOTATOC 68Ga-DOTATATE | Sensitivity 73% for nodal, 100% for bone, and 67% for soft-tissue metastases. Up-staging and management changes in 17% and 13% of cases, respectively, as a result of PET. |
Byrne et al. (2015) [30] | Retrospective | 62 (n.r.) | 18F-FDG | The impact of PET on disease restaging was high in 45% and medium in 11% of cases, respectively. Patients who achieved no CMR had a 15% 1-year OS, while those with CMR had an 88% 2-year and a 68% 5-year OS. Both CMR achievement and nodal disease were significantly prognostic of the OS. |
Sollini et al. (2015) [31] | Retrospective | 23 (70 years; 78%) | 68Ga-DOTATOC 68Ga-DOTANOC 68Ga-DOTATATE | 11 TP, 8 TN, 3 FP, and 1 FN cases. Sensitivity 92%, specificity 73%, and diagnostic accuracy 83%. Impact on management in 30% of cases. |
Ben-Haim et al. (2016) [32] | Retrospective | 46 (68 years; 61%) | 18F-FDG | PET/CT altered disease stage in 26% resulting in management changes in 15% of cases. |
Liu et al. (2017) [33] | Retrospective | 16 (69 years; 75%) | 18F-FDG | In stage I-II MCC, PET/CT was less sensitive (6% positive results) vs. SLNB (63% positive results) in detecting occult nodal metastasis. |
Poulsen et al. (2017) [34] | Prospective | 58 (68 years; 78%) | 18F-FDG | Sensitivity 95%, specificity 88%, PPV 95%, NPV 88%. Pre-treatment PET impacted treatment decisions in 27.6% of cases, leading to upstaging in 25.9% of them. |
Taralli et al. (2018) [35] | Retrospective | 15 (70 years; 80%) | 18F-FDG 68Ga-DOTATOC 68Ga-DOTANOC 68Ga-DOTATATE | On patient-based analysis, 18F-FDG and 68Ga-somatostatin analogs showed both 100% sensitivity, and 85.7% and 71.4% specificity, respectively, without significant difference. On lesion-based analysis, 18F-FDG detected 89% and 68Ga-somatostatin analogs 92% of the lesions, without significant difference. |
Singh et al. (2020) [10] | Retrospective | 352 (nr.; nr.) | 18F-FDG | PET/CT upstaged 16.8% of patients. Higher sensitivity vs. CT. Baseline imaging led to upstaging also in patients with clinically uninvolved regional nodes. |
Author (Year) | No. of Patients Undergoing PET/No. of Patients Undergoing CT | Main Findings |
---|---|---|
Yao et al. (2005) [15] | 2/2 | Pre-treatment PET detected metastatic disease in both patients not appreciated in CT. |
Peloschek et al. (2010) [20] | 16/16 | PET: Sensitivity 85.7%, specificity 96.2% Morphological imaging (CT, MRI, US): Combined sensitivity 95.5%, combined specificity 89.1%. |
Maury et al. (2011) [21] | 15/15 | PET: Sensitivity 89%, specificity 100%, PPV 100%, NPV 93%. CT: Sensitivity 89%, specificity 100%, PPV 100%, NPV 93%. |
Colgan et al. (2012) [23] | 33/69 | PET and PET/CT: Sensitivity 83%, specificity 95%, PPV 91%, NPV 91% in detecting nodal basin disease. CT: Sensitivity 47%, specificity 97%, PPV 94%, NPV 68% in detecting nodal basin disease. PET was significantly more sensitive and equally specific in comparison with CT. |
Hawryluk et al. (2012) [24] | 97/97 | Bone/bone marrow metastases in 10 cases were revealed only on PET with no CT correlate. |
George et al. (2014) [28] | 23/n.r. | All lesions identified by CT were also detected by PET. Lesions not detected clinically or by conventional imaging (not further specified) were found in 44% of PET/CTs performed at initial presentation and subsequent monitoring with, respectively, 50% and 41% of scans identifying new lesions. |
Poulsen et al. (2017) [34] | 58/58 | PET led to upstaging in 15 (25.9%) of patients, with no cases of downstaging. Upstaging was due to detection of distant metastases (4 cases) or regional nodes (6 cases) that were not reported on CT. |
Singh et al. (2020) [10] | 352/231 | PET/CT upstaged patients (16.8% of 352) significantly more often than CT alone (6.9% of 231). |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sachpekidis, C.; Sidiropoulou, P.; Hassel, J.C.; Drakoulis, N.; Dimitrakopoulou-Strauss, A. Positron Emission Tomography in Merkel Cell Carcinoma. Cancers 2020, 12, 2897. https://doi.org/10.3390/cancers12102897
Sachpekidis C, Sidiropoulou P, Hassel JC, Drakoulis N, Dimitrakopoulou-Strauss A. Positron Emission Tomography in Merkel Cell Carcinoma. Cancers. 2020; 12(10):2897. https://doi.org/10.3390/cancers12102897
Chicago/Turabian StyleSachpekidis, Christos, Polytimi Sidiropoulou, Jessica C. Hassel, Nikolaos Drakoulis, and Antonia Dimitrakopoulou-Strauss. 2020. "Positron Emission Tomography in Merkel Cell Carcinoma" Cancers 12, no. 10: 2897. https://doi.org/10.3390/cancers12102897
APA StyleSachpekidis, C., Sidiropoulou, P., Hassel, J. C., Drakoulis, N., & Dimitrakopoulou-Strauss, A. (2020). Positron Emission Tomography in Merkel Cell Carcinoma. Cancers, 12(10), 2897. https://doi.org/10.3390/cancers12102897