Integrative Data Augmentation with U-Net Segmentation Masks Improves Detection of Lymph Node Metastases in Breast Cancer Patients
Abstract
:Simple Summary
Abstract
1. Introduction
2. Results
2.1. Summary of Methods
2.2. Training and Validation of the Models
2.3. Model Performance on the Test Set
3. Discussion
4. Materials and Methods
4.1. Datasets
4.2. Deep Learning Models
4.3. Performance Benchmarking
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- The Expert Panel on SLNB in Breast Cancer. Sentinel Lymph Node Biopsy in Breast Cancer in Early-Stage Breast Cancer; George, R., Quan, M.L., McCready, D., McLeod, R., Rumble, R.B., Reviewer; Cancer Care Ontario: Toronto, ON, Canada, 2009. [Google Scholar]
- Veronesi, U.; Viale, G.; Paganelli, G.; Zurrida, S.; Luini, A.; Galimberti, V.; Veronesi, P.; Intra, M.; Maisonneuve, P.; Zucca, F.; et al. Sentinel lymph node biopsy in breast cancer: Ten-year results of a randomized controlled study. Ann. Surg. 2010, 251, 595–600. [Google Scholar] [CrossRef] [PubMed]
- Bejnordi, B.E.; Litjens, G.; Timofeeva, N.; Otte-Höller, I.; Homeyer, A.; Karssemeijer, N.; van der Laak, J.A.W.M. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA 2017, 318, 2199–2210. [Google Scholar] [CrossRef] [PubMed]
- Bándi, P.; Geessink, O.; Manson, Q.; van Dijk, M.; Balkenhol, M.; Hermsen, M.; Bejnordi, B.E.; Lee, B.; Paeng, K.; Zhong, A.; et al. From Detection of Individual Metastases to Classification of Lymph Node Status at the Patient Level: The CAMELYON17 Challenge. IEEE Trans. Med. Imaging 2019, 38, 550–560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Kohlberger, T.; Norouzi, M.; Dahl, G.E.; Smith, J.L.; Mohtashamian, A.; Olson, N.; Peng, L.H.; Hipp, J.D.; Stumpe, M.C. Artificial intelligence–based breast cancer nodal metastasis detection insights into the black box for pathologists. Arch. Pathol. Lab. Med. 2019, 143, 859–868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Komura, D.; Ishikawa, S. Machine Learning Methods for Histopathological Image Analysis. Comput. Struct. Biotechnol. J. 2018, 16, 34–42. [Google Scholar] [CrossRef]
- Vesal, S.; Ravikumar, N.; Davari, A.; Ellmann, S.; Maier, A. Classification of breast cancer histology images using transfer learning. In ICIAR 2018, LNCS 10882; Campilho, A., Ed.; Springer: Cham, Switzerland, 2018; pp. 812–819. [Google Scholar]
- Griffin, J.; Treanor, D. Digital pathology in clinical use: Where are we now and what is holding us back? Histopathology 2017, 70, 134–145. [Google Scholar] [CrossRef]
- Ghaznavi, F.; Evans, A.; Madabhushi, A.; Feldman, M. Digital imaging in pathology: Whole-slide imaging and beyond. Annu. Rev. Pathol. 2013, 8, 331–359. [Google Scholar] [CrossRef] [Green Version]
- Steiner, D.F.; MacDonald, R.; Liu, Y.; Truszkowski, P.; Hipp, J.D.; Gammage, C.; Thng, F.; Peng, L.; Stumpe, M.C. Impact of Deep Learning Assistance on the Histopathologic Review of Lymph Nodes for Metastatic Breast Cancer. Am. J. Surg. Pathol. 2018, 42, 1636–1646. [Google Scholar] [CrossRef]
- Madabhushi, A.; Lee, G. Image analysis and machine learning in digital pathology: Challenges and opportunities. Med. Image Anal. 2016, 33, 170–175. [Google Scholar] [CrossRef] [Green Version]
- Veeling, B.S.; Linmans, J.; Winkens, J.; Cohen, T.; Welling, M. Rotation Equivariant CNNs for Digital Pathology. In MICCAI 2018 LNCS 11071; Frangi, A.F., Ed.; Springer: Cham, Switzerland, 2018; pp. 210–218. [Google Scholar]
- Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; Li, F.-F. ImageNet: A large-scale hierarchical image database. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, H.M.; Ghuffar, S.; Khurshid, K. Classification of breast cancer histology images using transfer learning. In Proceedings of the 16th International Bhurban Conference on Applied Sciences and Technology (IBCAST 2019), Islamabad, Pakistan, 8–12 January 2019; pp. 328–332. [Google Scholar] [CrossRef]
- Nishio, M.; Sugiyama, O.; Yakami, M.; Ueno, S.; Kubo, T.; Kuroda, T.; Togashi, K. Computer-aided diagnosis of lung nodule classification between benign nodule, primary lung cancer, and metastatic lung cancer at different image size using deep convolutional neural network with transfer learning. PLoS ONE 2018, 13, e0200721. [Google Scholar] [CrossRef] [Green Version]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. In Proceedings of the ICLR 2015, San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Janowczyk, A.; Basavanhally, A.; Madabhushi, A. Stain Normalization using Sparse AutoEncoders (StaNoSA): Application to digital pathology. Comput. Med. Imaging Graph. 2017, 57, 50–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tellez, D.; Litjens, G.; Bándi, P.; Bulten, W.; Bokhorst, J.; Ciompi, F.; van der Laak, J. Quantifying the effects of data augmentation and stain color normalization in convolutional neural networks for computational pathology. Med. Image Anal. 2019, 58, 101544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bejnordi, B.E.; Litjens, G.; Timofeeva, N.; Otte-Höller, I.; Homeyer, A.; Karssemeijer, N.; van der Laak, J.A.W.M. Stain specific standardization of whole-slide histopathological images. IEEE Trans. Med. Imaging 2016, 35, 404–415. [Google Scholar] [CrossRef] [PubMed]
- Naik, S.; Doyle, S.; Feldman, M.; Tomaszewski, J.; Madabhushi, A. Gland segmentation in prostate histopathological images. J. Med. Imaging 2017, 4, 027501. [Google Scholar] [CrossRef]
- Gurcan, M.N.; Boucheron, L.E.; Can, A.; Madabhushi, A.; Rajpoot, N.M.; Yener, B. Histopathological Image Analysis: A Review. IEEE Rev. Biomed. Eng. 2009, 2, 147–171. [Google Scholar] [CrossRef] [Green Version]
- Valkonen, M.; Kartasalo, K.; Liimatainen, K.; Nykter, M.; Latonen, L.; Ruusuvuori, P. Metastasis detection from whole slide images using local features and random forests. Cytometry A 2017, 91, 555–565. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional networks for biomedical image segmentation. In MICCAI 2015, Part III, LNCS 9351; Springer International Publishing: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar] [CrossRef] [Green Version]
- Janowczyk, A.; Madabhushi, A. Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use cases. J. Pathol. Inform. 2016, 7, 29. [Google Scholar] [CrossRef]
- Sundararajan, M.; Taly, A.; Yan, Q. Axiomatic Attribution for Deep Networks. In Proceedings of the Machine Learning Research, ICML 2017, Sydney, Australia, 6–11 August 2017; Precup, D., Teh, Y.W., Eds.; Volume 70, pp. 3319–3328. [Google Scholar]
- Sundararajan, M.; Taly, A. A note about: Local explanation methods for deep neural networks lack sensitivity to parameter values. arXiv 2018, arXiv:1806.04205. [Google Scholar]
- Ancona, M.; Ceolini, E.; Oztireli, C.; Gross, M. Towards better understanding of gradient-based attribution methods for deep neural networks. In Proceedings of the ICLR 2018, Vancouver, BC, Canada, 30 April–3 May 2018; pp. 1–16. [Google Scholar]
- Jha, A.; Aicher, J.K.; Gazzara, M.R.; Singh, D.; Barash, Y. Enhanced Integrated Gradients: Improving interpretability of deep learning models using splicing codes as a case study. Genome Biol. 2020, 21, 149. [Google Scholar] [CrossRef]
- Shrestha, A.; Mahmood, A. Review of deep learning algorithms and architectures. IEEE Access 2019, 7, 53040–53065. [Google Scholar] [CrossRef]
- Albarqouni, S.; Baur, C.; Achilles, F.; Belagiannis, V.; Demirci, S.; Navab, N. AggNet: Deep learning from crowds for mitosis detection in breast cancer histology images. IEEE Trans. Med. Imaging 2016, 35, 1313–1321. [Google Scholar] [CrossRef] [PubMed]
- Menden, M.P.; Wang, D.; Mason, M.J.; Szalai, B.; Bulusu, K.C.; Guan, Y.; Yu, T.; Kang, J.; Jeon, M.; Wolfinger, R.; et al. Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen. Nat. Commun. 2019, 10, 2674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peck, M.; Moffat, D.; Latham, B.; Badrick, T. Review of diagnostic error in anatomical pathology and the role and value of second opinions in error prevention. J. Clin. Pathol. 2018, 71, 995–1000. [Google Scholar] [CrossRef] [PubMed]
- Renshaw, A.A.; Gould, E.W. Reducing false-negative and false-positive diagnoses in anatomic pathology consultation material. Arch. Pathol. Lab. Med. 2013, 137, 1770–1773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mormont, R.; Geurts, P.; Maree, R. Comparison of deep transfer learning strategies for digital pathology. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Salt Lake City, UT, USA, 18–22 June 2018; Volume 2018, pp. 2343–2352. [Google Scholar] [CrossRef] [Green Version]
- Sirinukunwattana, K.; Raza, S.E.A.; Tsang, Y.; Snead, D.R.J.; Cree, I.A.; Rajpoot, N.M. Locality Sensitive Deep Learning for Detection and Classification of Nuclei in Routine Colon Cancer Histology Images. IEEE Trans. Med. Imaging 2016, 35, 1196–1206. [Google Scholar] [CrossRef] [Green Version]
- Zhixuhao. Unet. Available online: https://github.com/zhixuhao/unet (accessed on 10 March 2019).
- Dozat, T. Incorporating Nesterov momentum into Adam. In Proceedings of the Workshop Track ICLR 2016, San Juan, Puerto Rico, 2–4 May 2016; pp. 1–4. [Google Scholar]
- Dice, L.R. Measures of the amount of ecologic association between species. Ecology 1945, 26, 297–302. [Google Scholar] [CrossRef]
- Rosebrock, A. Breast Cancer Classification with Keras and Deep Learning. Available online: https://www.pyimagesearch.com/2019/02/18/breast-cancer-classification-with-keras-and-deep-learning/ (accessed on 30 April 2019).
- Schisterman, E.F.; Perkins, N.J.; Liu, A.; Bondell, H. Optimal cut-point and its corresponding Youden index to discriminate individuals using pooled blood samples. Epidemiology 2005, 16, 73–81. [Google Scholar] [CrossRef]
Feature | Epochs | Training Accuracy | Train Dice Coefficient | Valid Accuracy | Valid Dice Coefficient |
---|---|---|---|---|---|
Nucleus | 50 | 0.9424 | 0.9751 | 0.9655 | 0.9845 |
Mitosis | 1000 | 0.7734 | 0.8004 | 0.9544 | 0.8004 |
Epithelial | 300 | 0.7951 | 0.9114 | 0.8291 | 0.8532 |
Tubule | 1000 | 0.9598 | 0.9455 | 0.8464 | 0.9399 |
Model | Number of Parameters (Trainable) | Number of Epochs Trained | Training Accuracy | Training Loss | Validation Accuracy | Validation Loss |
---|---|---|---|---|---|---|
Baseline | 4,772,220 | 50 | 95.25% | 0.1247 | 81.93% | 0.5657 |
Baseline + Augmentation | 4,772,220 | 50 | 93.82% | 0.1640 | 82.13% | 0.6210 |
VGG16 | 35,663,873 | 50 | 99.75% | 0.0081 | 79.00% | 2.9023 |
Baseline + Nucleus U-net | 4,772,261 | 50 | 95.85% | 0.1923 | 83.36% | 0.5808 |
Baseline + Mitosis U-net | 4,772,261 | 50 | 95.28% | 0.1236 | 83.97% | 0.4597 |
Baseline + Epithelium U-net | 4,772,261 | 50 | 95.23% | 0.1261 | 85.07% | 0.4045 |
Baseline + Tubule U-net | 4,772,261 | 50 | 96.02% | 0.1048 | 82.93% | 0.6176 |
ConcatNet (Baseline + all U-nets) | 4,772,384 | 50 | 95.90% | 0.1082 | 86.23% | 0.4357 |
Model | Sensitivity | Specificity | Accuracy | AUC |
---|---|---|---|---|
Baseline | 74.6% | 80.4% | 76.4% | 0.854 |
Baseline + Augmentation | 80.2% | 81.4% | 78.8% | 0.884 |
VGG16 | 75.3% | 82.6% | 76.5% | 0.862 |
Baseline + Nucleus U-net | 75.4% | 86.6% | 77.7% | 0.887 |
Baseline + Mitosis U-net | 74.2% | 86.9% | 79.9% | 0.882 |
Baseline + Epithelium U-net | 80.0% | 82.3% | 79.3% | 0.895 |
Baseline + Tubule U-net | 76.1% | 86.9% | 76.1% | 0.870 |
ConcatNet (+all U-nets) | 82.0% | 87.8% | 84.1% | 0.924 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, Y.W.; Jia, S.; Ashraf, A.B.; Hu, P. Integrative Data Augmentation with U-Net Segmentation Masks Improves Detection of Lymph Node Metastases in Breast Cancer Patients. Cancers 2020, 12, 2934. https://doi.org/10.3390/cancers12102934
Jin YW, Jia S, Ashraf AB, Hu P. Integrative Data Augmentation with U-Net Segmentation Masks Improves Detection of Lymph Node Metastases in Breast Cancer Patients. Cancers. 2020; 12(10):2934. https://doi.org/10.3390/cancers12102934
Chicago/Turabian StyleJin, Yong Won, Shuo Jia, Ahmed Bilal Ashraf, and Pingzhao Hu. 2020. "Integrative Data Augmentation with U-Net Segmentation Masks Improves Detection of Lymph Node Metastases in Breast Cancer Patients" Cancers 12, no. 10: 2934. https://doi.org/10.3390/cancers12102934
APA StyleJin, Y. W., Jia, S., Ashraf, A. B., & Hu, P. (2020). Integrative Data Augmentation with U-Net Segmentation Masks Improves Detection of Lymph Node Metastases in Breast Cancer Patients. Cancers, 12(10), 2934. https://doi.org/10.3390/cancers12102934