Ramucirumab in Combination with Pembrolizumab in Treatment-Naïve Advanced Gastric or GEJ Adenocarcinoma: Safety and Antitumor Activity from the Phase 1a/b JVDF Trial
Abstract
:Simple Summary
Abstract
1. Introduction
2. Results
2.1. Patients
2.2. Safety
2.3. Response and Survival
2.4. Immune Profiling Analysis
3. Discussion
4. Materials and Methods
4.1. Pateints
4.2. Study Design and Treatment
4.3. Outcomes and Assessments
4.4. Biomarker Analysis
4.5. Statistical Analysis
4.6. Nanostring Methods
4.7. Data Availability
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cancer Fact Sheet: Stomach. Globocan. 2018. Available online: https://gco.iarc.fr/today/data/factsheets/cancers/7-Stomach-fact-sheet.pdf (accessed on 18 February 2020).
- Bang, Y.-J.; Van Cutsem, E.; Feyereislova, A.; Chung, H.C.; Shen, L.; Sawaki, A.; Lordick, F.; Ohtsu, A.; Omuro, Y.; Satoh, T.; et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): A phase 3, open-label, randomised controlled trial. Lancet 2010, 376, 687–697. [Google Scholar] [CrossRef]
- Van Cutsem, E.; Moiseyenko, V.M.; Tjulandin, S.; Majlis, A.; Constenla, M.; Boni, C.; Rodrigues, A.; Fodor, M.; Chao, Y.; Voznyi, E.; et al. Phase III study of docetaxel and cisplatin plus fluorouracil compared with cisplatin and fluorouracil as first-line therapy for advanced gastric cancer: A report of the V325 study group. Am. J. Clin. Oncol. 2006, 24, 4991–4997. [Google Scholar] [CrossRef] [PubMed]
- Waters, J.S.; Norman, A.; Cunningham, D.; Scarffe, J.H.; Webb, A.; Harper, P.; Joffe, J.K.; Mackean, M.; Mansi, J.; Leahy, M.; et al. Long-Term survival after epirubicin, cisplatin and fluorouracil for gastric cancer: Results of a randomized trial. Br. J. Cancer 1999, 80, 269–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Curea, F.G.; Hebbar, M.; Ilie, S.M.; Bacinschi, X.E.; Trifanescu, O.G.; Botnariuc, I.; Anghel, R.M. Current targeted therapies in HER2-positive gastric adenocarcinoma. Cancer Biother. Radiopharm. 2017, 32, 351–363. [Google Scholar] [CrossRef] [PubMed]
- Lordick, F.; Kang, Y.K.; Chung, H.C.; Salman, P.; Oh, S.C.; Bodoky, G.; Kurteva, G.; Volovat, C.; Moiseyenko, V.M.; Gorbunova, V.; et al. Capecitabine and cisplatin with or without cetuximab for patients with previously untreated advanced gastric cancer (EXPAND): A randomised, open-label phase 3 trial. Lancet Oncol. 2013, 14, 490–499. [Google Scholar] [CrossRef]
- Waddell, T.; Chau, I.; Cunningham, D.; Gonzalez, D.; Okines, A.F.; Okines, C.; Wotherspoon, A.; Saffery, C.; Middleton, G.; Wadsley, J.; et al. Epirubicin, oxaliplatin, and capecitabine with or without panitumumab for patients with previously untreated advanced oesophagogastric cancer (REAL3): A randomised, open-label phase 3 trial. Lancet Oncol. 2013, 14, 481–489. [Google Scholar] [CrossRef] [Green Version]
- Fuchs, C.S.; Shitara, K.; Di Bartolomeo, M.; Lonardi, S.; Al-Batran, S.E.; Van Cutsem, E.; Ilson, D.H.; Alsina, M.; Chau, I.; Lacy, J.; et al. Ramucirumab with cisplatin and fluoropyrimidine as first-line therapy in patients with metastatic gastric or junctional adenocarcinoma (RAINFALL): A double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol. 2019, 20, 420–435. [Google Scholar] [CrossRef]
- Yoshikawa, T.; Muro, K.; Shitara, K.; Oh, D.Y.; Kang, Y.K.; Chung, H.C.; Kudo, T.; Chin, K.; Kadowaki, S.; Hamamoto, Y.; et al. Effect of first-line S-1 plus oxaliplatin with or without ramucirumab followed by paclitaxel plus ramucirumab on advanced gastric cancer in East Asia: The phase 2 RAINSTORM randomized clinical trial. JAMA Netw. Open 2019, 2, e198243. [Google Scholar] [CrossRef]
- Ohtsu, A.; Shah, M.A.; Van Cutsem, E.; Rha, S.Y.; Sawaki, A.; Park, S.R.; Lim, H.Y.; Yamada, Y.; Wu, J.; Langer, B.; et al. Bevacizumab in combination with chemotherapy as first-line therapy in advanced gastric cancer: A randomized, double-blind, placebo-controlled phase III study. Am. J. Clin. Oncol. 2011, 29, 3968–3976. [Google Scholar] [CrossRef]
- Catenacci, D.V.T.; Tebbutt, N.C.; Davidenko, I.; Murad, A.M.; Al-Batran, S.E.; Ilson, D.H.; Tjulandin, S.; Gotovkin, E.; Karaszewska, B.; Bondarenko, I.; et al. Rilotumumab plus epirubicin, cisplatin, and capecitabine as first-line therapy in advanced MET-positive gastric or gastro-oesophageal junction cancer (RILOMET-1): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2017, 18, 1467–1482. [Google Scholar] [CrossRef]
- Shah, M.A.; Bang, Y.-J.; Lordick, F.; Alsina, M.; Chen, M.; Hack, S.P.; Bruey, J.M.; Smith, D.; McCaffery, I.; Shames, D.S.; et al. Effect of fluorouracil, leucovorin, and oxaliplatin with or without onartuzumab in HER2-negative, MET-positive gastroesophageal adenocarcinoma. The METGastric randomized clinical trial. JAMA Oncol. 2017, 3, 620–627. [Google Scholar] [CrossRef]
- Shah, M.A.; Yanez Ruiz, E.P.; Bodoky, G.; Starodub, A.; Cunningham, D.; Desmond, Y.; Wainberg, Z.A.; Bendell, J.C.; Thai, D.; Bhargava, P.; et al. A phase III, randomized, double-blind, placebo-controlled study to evaluate the efficacy and safety of andecaliximab combined with mFOLFOX6 as first-line treatment in patients with advanced gastric or gastroesophageal junction adenocarcinoma (GAMMA-1). J. Clin. Oncol. 2019, 37, 4. [Google Scholar] [CrossRef]
- Tabernero, J.; Cutsem, E.V.; Bang, Y.-J.; Fuchs, C.S.; Wyrwicz, L.; Lee, K.W.; Kudaba, I.; Garrido, M.; Chung, H.C.; Salguero, H.R.C.; et al. Pembrolizumab with or without chemotherapy versus chemotherapy for advanced gastric or gastroesophageal junction (G/GEJ) adenocarcinoma: The phase III KEYNOTE-062 study. J. Clin. Oncol. 2019, 37 (Suppl. 18). [Google Scholar] [CrossRef]
- Herbst, R.S.; Soria, J.C.; Kowanetz, M.; Fine, G.D.; Hamid, O.; Gordon, M.S.; Sosman, J.A.; McDermott, D.F.; Powderly, J.D.; Gettinger, S.N.; et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 2014, 515, 563–567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuchs, C.S.; Doi, T.; Jang, R.W.; Muro, K.; Satoh, T.; Machado, M.; Sun, W.; Jalal, S.I.; Shah, M.A.; Metges, J.P.; et al. Safety and efficacy of pembrolizumab monotherapy in patients with previously treated advanced gastric and gastroesophageal junction cancer: Phase 2 clinical KEYNOTE-059 Trial. JAMA Oncol. 2018, 4, e180013. [Google Scholar] [CrossRef]
- Ayers, M.; Lunceford, J.; Nebozhyn, M.; Murphy, E.; Loboda, A.; Kaufman, D.R.; Albright, A.; Cheng, J.D.; Kang, S.P.; Shankaran, V.; et al. IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade. J. Clin. Investig. 2017, 127, 2930–2940. [Google Scholar] [CrossRef]
- Fehrenbacher, L.; Spira, A.; Ballinger, M.; Kowanetz, M.; Vansteenkiste, J.; Mazieres, J.; Park, K.; Smith, D.; Artal-Cortes, A.; Lewanski, C.; et al. Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): A multicentre, open-label, phase 2 randomised controlled trial. Lancet 2016, 387, 1837–1846. [Google Scholar] [CrossRef]
- Ott, P.A.; Bang, Y.-J.; Piha-Paul, S.A.; Abdul Razak, A.R.; Bennouna, J.; Soria, J.-C.; Rugo, H.S.; Cohen, R.B.; O’Neil, B.H.; Mehnert, J.M.; et al. T-cell-inflamed gene-expression profile, programmed death ligand 1 expression, and tumor mutational burden predict efficacy in patients treated with pembrolizumab across 20 cancers: KEYNOTE-028. J. Clin. Oncol. 2019, 37, 318–327. [Google Scholar] [CrossRef]
- Shitara, K.; Ozguroglu, M.; Bang, Y.J.; Di Bartolomeo, M.; Mandala, M.; Ryu, M.H.; Fornaro, L.; Olesinski, T.; Caglevic, C.; Chung, H.C.; et al. Pembrolizumab versus paclitaxel for previously treated, advanced gastric or gastro-oesophageal junction cancer (KEYNOTE-061): A randomised, open-label, controlled, phase 3 trial. Lancet 2018, 392, 123–133. [Google Scholar] [CrossRef]
- Fuchs, C.S.; Tomasek, J.; Yong, C.J.; Dumitru, F.; Passalacqua, R.; Goswami, C.; Safran, H.; Vieira dos Santos, L.; Aprile, G.; Ferry, D.R.; et al. Ramucirumab monotherapy for previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (REGARD): An international, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet 2014, 383, 31–39. [Google Scholar] [CrossRef]
- Wilke, H.; Muro, K.; Van Cutsem, E.; Oh, S.-C.; Bodoky, G.; Shimada, Y.; Hironaka, S.; Sugimoto, N.; Lipatov, O.; Kim, T.-Y.; et al. Ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients with previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (RAINBOW): A double-blind, randomised phase 3 trial. Lancet Oncol. 2014, 15, 1224–1235. [Google Scholar] [CrossRef]
- Yasuda, S.; Sho, M.; Yamato, I.; Yoshiji, H.; Wakatsuki, K.; Nishiwada, S.; Yagita, H.; Nakajima, Y. Simultaneous blockade of programmed death 1 and vascular endothelial growth factor receptor 2 (VEGFR2) induces synergistic anti-tumour effect in vivo. Clin. Exp. Immunol. 2013, 172, 500–506. [Google Scholar] [CrossRef] [PubMed]
- Wallin, J.J.; Bendell, J.C.; Funke, R.; Sznol, M.; Korski, K.; Jones, S.; Hernandez, G.; Mier, J.; He, X.; Hodi, F.S.; et al. Atezolizumab in combination with bevacizumab enhances antigen-specific T-cell migration in metastatic renal cell carcinoma. Nat. Commun. 2016, 12624. [Google Scholar] [CrossRef] [PubMed]
- Tada, Y.; Togashi, Y.; Kotani, D.; Kuwata, T.; Sato, E.; Kawazoe, A.; Doi, T.; Wada, H.; Nishikawa, H.; Shitara, K. Targeting VEGFR2 with ramucirumab strongly impacts effector/ activated regulatory T cells and CD8+ T cells in the tumor microenvironment. J. Immunother. Cancer 2018, 6, 106. [Google Scholar] [CrossRef] [PubMed]
- Herbst, R.S.; Arkenau, H.T.; Santana-Davila, R.; Calvo, E.; Paz-Ares, L.; Cassier, P.A.; Bendell, J.; Penel, N.; Krebs, M.G.; Martin-Liberal, J.; et al. Ramucirumab plus pembrolizumab in patients with previously treated advanced non-small-cell lung cancer, gastro-oesophageal cancer, or urothelial carcinomas (JVDF): A multicohort, non-randomised, open-label, phase 1a/b trial. Lancet Oncol. 2019, 20, 1109–1123. [Google Scholar] [CrossRef]
- Bang, Y.J.; Kang, Y.K.; Catenacci, D.V.; Muro, K.; Fuchs, C.S.; Geva, R.; Hara, H.; Golan, T.; Garrido, M.; Jalal, S.I.; et al. Pembrolizumab alone or in combination with chemotherapy as first-line therapy for patients with advanced gastric or gastroesophageal junction adenocarcinoma: Results from the phase II nonrandomized KEYNOTE-059 study. Gastric Cancer 2019, 22, 828–837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Socinski, M.A.; Jotte, R.M.; Cappuzzo, F.; Orlandi, F.; Stroyakovskiy, D.; Nogami, N.; Rodriguez-Abreu, D.; Moro-Sibilot, D.; Thomas, C.A.; Barlesi, F.; et al. Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. N. Engl. J. Med. 2018, 378, 2288–2301. [Google Scholar] [CrossRef] [PubMed]
- Motzer, R.J.; Penkov, K.; Haanen, J.; Rini, B.; Albiges, L.; Campbell, M.T.; Venugopal, B.; Kollmannsberger, C.; Negrier, S.; Uemura, M.; et al. Avelumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N. Engl. J. Med. 2019, 380, 1103–1115. [Google Scholar] [CrossRef]
- Rini, B.I.; Plimack, E.R.; Stus, V.; Gafanov, R.; Hawkins, R.; Nosov, D.; Pouliot, F.; Alekseev, B.; Soulieres, D.; Melichar, B.; et al. Pembrolizumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N. Engl. J. Med. 2019, 380, 1116–1127. [Google Scholar] [CrossRef]
- Rini, B.I.; Powles, T.; Atkins, M.B.; Escudier, B.; McDermott, D.F.; Suarez, C.; Bracarda, S.; Stadler, W.M.; Sonskov, F.; Lee, J.L.; et al. Atezolizumab plus bevacizumab versus sunitinib in patients with previously untreated metastatic renal cell carcinoma (IMmotion151): A multicentre, open-label, phase 3, randomised controlled trial. Lancet 2019, 393, 2404–2415. [Google Scholar] [CrossRef]
- Finn, R.S.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.-Y.; Kudo, M.; Breder, V.; Merle, P.; Kaseb, A.O.; et al. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N. Engl. J. Med. 2020, 382, 1894–1905. [Google Scholar] [CrossRef] [PubMed]
- Trujillo, J.A.; Sweis, R.F.; Bao, R.; Luke, J.J. T cell-inflamed versus non-T cell-inflamed tumors: A conceptual framework for cancer immunotherapy drug development and combination therapy. Cancer Immunol. Res. 2018, 6, 990–1000. [Google Scholar] [CrossRef] [Green Version]
- Herbst, R.S.; Arkenau, H.T.; Calvo, E.; Bendell, J.C.; Penel, N.; Fuchs, C.S.; McNeely, S.; Rasmussen, E.R.; Wang, H.; Oliveira, J.M.; et al. Immune profiling and clinical outcomes in patients treated with ramucirumab and pembrolizumab in phase I study JVDF. J. Clin. Oncol. 2020, 38, 3089. [Google Scholar] [CrossRef]
- Eisenhauer, E.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; et al. New response evaluation criteria in solid tumors: Revised RECIST guideline (version 1.1). J. Eur. J. Cancer 2009, 45, 228–247. [Google Scholar] [CrossRef] [PubMed]
- Waggot, D.; Chu, K.; Yin, S.; Wouters, B.G.; Liu, F.-F.; Boutros, P.C. NanoStringNorm: An extensible R package for the pre-processing of NanoString mRNA and miRNA data. Bioinformatics 2012, 28, 1546–1548. [Google Scholar] [CrossRef] [Green Version]
- Gu, Z.; Eils, R.; Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 2016, 32, 2847–2849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spranger, S.; Luke, J.J.; Bao, R.; Zha, Y.; Hernandez, K.M.; Li, Y.; Gajewski, A.P.; Andrade, J.; Gajewski, T.F. Density of immunogenic antigens does not explain the presence or absence of the T-cell-inflamed tumor microenvironment in melanoma. Proc. Natl. Acad. Sci. USA 2016, 113, E7759–E7768. [Google Scholar] [CrossRef] [Green Version]
n (%), Unless Otherwise Indicated | Ramucirumab + Pembrolizumab N = 28 |
---|---|
Sex | |
Female | 7 (25) |
Male | 21 (75) |
Age | |
Median years (range) | 63 (31–83) |
≤65 years | 14 (50) |
Race | |
Black or African American | 1 (4) |
White | 17 (61) |
Unknown or not reported | 10 (36) |
Ethnicity | |
Hispanic or Latino | 3 (11) |
Not Hispanic or Latino | 16 (57) |
Unknown or not reported | 9 (32) |
ECOG PS | |
0 | 16 (57) |
1 | 12 (43) |
Disease stage | |
Metastatic | 27 (96) |
Non-metastatic | 1 (4) |
Histopathological diagnosis | |
Well differentiated | 2 (7) |
Moderately differentiated | 11 (39) |
Poorly differentiated | 13 (46) |
Unable to determine | 2 (7) |
Tumor location | |
Gastric | 17 (61) |
Gastroesophageal junction | 11 (39) |
HER2 negative | 28 (100) |
PD-L1 status | |
Positive 1 | 19 (68) |
Negative | 6 (21) |
Not reported 2 | 3 (11) |
Microsatellite instability | |
High | 2 (7) |
Stable | 15 (54) |
Not available | 11 (39) |
Prior surgery 3 | 11 (39) |
Prior radiotherapy | 6 (21) |
Prior systemic therapy 4 | |
≥1 prior systemic therapy | 7 (25) |
Adjuvant | 4 (14) |
Neoadjuvant | 4 (14) |
N = 28 n (%) | Grade 1 or Grade 2 | Grade 3 2 |
---|---|---|
TRAEs by preferred term | ||
Fatigue 3 | 11 (39) | 0 |
Headache | 6 (21) | 0 |
Rash 4 | 6 (21) | 1 (4) |
Epistaxis | 5 (18) | 0 |
Nausea | 5 (18) | 0 |
Proteinuria | 5 (18) | 0 |
Stomatitis | 5 (18) | 0 |
Decreased appetite | 4 (14) | 0 |
Hypertension | 4 (14) | 4 (14) |
Anemia | 3 (11) | 0 |
Diarrhea | 3 (11) | 2 (7) |
Peripheral edema | 3 (11) | 0 |
ALT increased | 2 (7) | 3 (11) |
AST increased | 2 (7) | 3 (11) |
Chills | 2 (7) | 0 |
Colitis | 2 (7) | 0 |
Dyspnea | 2 (7) | 0 |
Hematuria | 2 (7) | 0 |
Influenza-like illness | 2 (7) | 0 |
Myalgia | 2 (7) | 0 |
Decreased weight | 1 (4) | 1 (4) |
Gastrointestinal hemorrhage | 0 | 2 (7) |
AEs of special interest for ramucirumab | ||
Epistaxis | 6 (21) | 0 |
Hematuria | 3 (11) | 0 |
Gastrointestinal hemorrhage | 0 | 2 (7) |
Hypertension | 4 (14) | 7 (25) |
Proteinuria | 5 (18) | 1 (4) |
Deep vein thrombosis | 2 (7) | 1 (4) |
Angina pectoris | 2 (7) | 1 (4) |
Blood creatinine increased | 1 (4) | 1 (4) |
Immune-related AEs for pembrolizumab | ||
Diarrhea | 9 (32) | 2 (7) |
Colitis | 2 (7) | 0 |
Rash maculo-papular | 2 (7) | 1 (4) |
Rash | 2 (7) | 0 |
ALT increase | 2 (7) | 3 (11) |
AST increased | 2 (7) | 3 (11) |
Acute kidney injury | 1 (4) | 1 (4) |
Blood creatinine increased | 1 (4) | 1 (4) |
Pneumonitis | 2 (7) | 0 |
All 1 N = 28 | PD-L1-Negative (CPS < 1) N = 6 | PD-L1-Positive (CPS ≥ 1) N = 19 | CPS ≥ 10 2 N = 10 | |
---|---|---|---|---|
Best overall response, n (%) | ||||
Complete response | 1 (4) | 0 | 1 (5) | 0 |
Partial response | 6 (21) | 1 (17) | 5 (26) | 4 (40) |
Stable disease | 12 (43) | 3 (50) | 7 (37) | 4 (40) |
Progressive disease | 7 (25) | 1 (17) | 6 (32) | 2 (20) |
Not evaluable | 2 (7) | 1 (17) | 0 | 0 |
Objective response rate, % (95% CI) | 25 (10.7–44.9) | 17 (0.4–64.1) | 32 (12.6–56.6) | 40 (12.2–73.8) |
Disease control rate, % (95% CI) | 68 (47.6–84.1) | 67 (22.3–95.7) | 68 (43.4–87.4) | 80 (44.4–97.5) |
Time to response, median months (95% CI) | 2.7 (1.3–2.8) | 2.8 (NC) | 2.1 (1.3–9.8) | 1.4 (1.3–2.8) |
Duration of response, median months (95% CI) | NR (9.7–NC) | NR (NC) | NR (9.7–NC) | NR (9.7–NC) |
Duration of stable disease, median months (95% CI) | 5.6 (3.9–12.3) | 5.1 (4.3–5.8) | 8.6 (4.1–13.5) | 5.0 (4.1–13.5) |
Progression-free survival | ||||
Number of events | 20 | 4 | 14 | 8 |
Median duration, months (95% CI) | 5.6 (2.7–11.5) | 4.3 (2.4–NR) | 8.6 (1.5–13.5) | 8.3 (1.2–13.5) |
6-month rate, % (95% CI) | 42.9 (23.9–60.6) | 20.8 (0.9–59.5) | 52.6 (28.7–71.9) | 50.0 (18.4–75.3) |
12-month rate, % (95% CI) | 30.3 (14.0–48.4) | 20.8 (0.9–59.5) | 35.5 (15.2–56.6) | 30.0 (7.1–57.8) |
18-month rate, % (95% CI) | 20.8 (7.3–38.9) | 20.8 (0.9–59.5) | 22.2 (6.3–44.0) | 20.0 (3.1–47.5) |
Overall survival | ||||
Number of events | 17 | 3 | 11 | 5 |
Median duration, months (95% CI) | 14.6 (5.4–27.7) | 11.3 (2.4–NR) | 17.3 (8.6–NR) | 24.7 (5.4–NR) |
6-month rate, % (95% CI) | 69.4 (48.0–83.4) | 62.5 (14.2–89.3) | 77.8 (51.1–91.0) | 90.0 (47.3–98.5) |
12-month rate, % (95% CI) | 54.0 (33.4–70.7) | 41.7 (5.6–76.7) | 66.7 (40.4–83.4) | 80.0 (40.9–94.6) |
18-month rate, % (95% CI) | 40.9 (21.7–59.2) | 41.7 (5.6–76.7) | 48.1 (23.6–69.0) | 57.1 (21.7–81.5) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chau, I.; Penel, N.; Soriano, A.O.; Arkenau, H.-T.; Cultrera, J.; Santana-Davila, R.; Calvo, E.; Le Tourneau, C.; Zender, L.; Bendell, J.C.; et al. Ramucirumab in Combination with Pembrolizumab in Treatment-Naïve Advanced Gastric or GEJ Adenocarcinoma: Safety and Antitumor Activity from the Phase 1a/b JVDF Trial. Cancers 2020, 12, 2985. https://doi.org/10.3390/cancers12102985
Chau I, Penel N, Soriano AO, Arkenau H-T, Cultrera J, Santana-Davila R, Calvo E, Le Tourneau C, Zender L, Bendell JC, et al. Ramucirumab in Combination with Pembrolizumab in Treatment-Naïve Advanced Gastric or GEJ Adenocarcinoma: Safety and Antitumor Activity from the Phase 1a/b JVDF Trial. Cancers. 2020; 12(10):2985. https://doi.org/10.3390/cancers12102985
Chicago/Turabian StyleChau, Ian, Nicolas Penel, Andres O. Soriano, Hendrik-Tobias Arkenau, Jennifer Cultrera, Rafael Santana-Davila, Emiliano Calvo, Christophe Le Tourneau, Lars Zender, Johanna C. Bendell, and et al. 2020. "Ramucirumab in Combination with Pembrolizumab in Treatment-Naïve Advanced Gastric or GEJ Adenocarcinoma: Safety and Antitumor Activity from the Phase 1a/b JVDF Trial" Cancers 12, no. 10: 2985. https://doi.org/10.3390/cancers12102985
APA StyleChau, I., Penel, N., Soriano, A. O., Arkenau, H. -T., Cultrera, J., Santana-Davila, R., Calvo, E., Le Tourneau, C., Zender, L., Bendell, J. C., Mi, G., Gao, L., McNeely, S. C., Oliveira, J. M., Ferry, D., Herbst, R. S., & Fuchs, C. S. (2020). Ramucirumab in Combination with Pembrolizumab in Treatment-Naïve Advanced Gastric or GEJ Adenocarcinoma: Safety and Antitumor Activity from the Phase 1a/b JVDF Trial. Cancers, 12(10), 2985. https://doi.org/10.3390/cancers12102985