Risks of Solid and Lymphoid Malignancies in Patients with Myeloproliferative Neoplasms: Clinical Implications
Abstract
:Simple Summary
Abstract
1. Introduction
2. Results
2.1. Cumulative Incidence of Solid Cancer in Patients with MPN
2.2. Relative Increase in Cancer Risk
2.3. Specific Solid Cancer Types
2.4. Lymphoid Malignancies
2.5. Prognosis of Patients with MPN and a Second Cancer
2.6. Effects of Age on Second Cancer Risk
2.7. Other Factors Potentially Associated with Second Cancer Risk
3. Discussion
Routine Cancer Surveillance in Patients with MPNs
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Swerdlow, S.H.; Campo, E.; Harris, N.L.; Jaffe, E.S.; Pileri, S.A.; Stein, H.; Thiele, J.; Arber, D.A.; Hasserjian, R.P.; Le Beau, M.M.; et al. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues; Agency for Research on Cancer (IARC): Lyon, France, 2017. [Google Scholar]
- Mesa, R.A.; Li, C.Y.; Ketterling, R.P.; Schroeder, G.S.; Knudson, R.A.; Tefferi, A. Leukemic transformation in myelofibrosis with myeloid metaplasia: A single-institution experience with 91 cases. Blood 2005, 105, 973–977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Passamonti, F.; Rumi, E.; Arcaini, L.; Castagnola, C.; Lunghi, M.; Bernasconi, P.; Giovanni Della Porta, M.; Columbo, N.; Pascutto, C.; Cazzola, M.; et al. Leukemic transformation of polycythemia vera: A single center study of 23 patients. Cancer 2005, 104, 1032–1036. [Google Scholar] [CrossRef] [PubMed]
- Grinfeld, J.; Nangalia, J.; Baxter, E.J.; Wedge, D.C.; Angelopoulos, N.; Cantrill, R.; Godfrey, A.L.; Papaemmanuil, E.; Gundem, G.; MacLean, C.; et al. Classification and Personalized Prognosis in Myeloproliferative Neoplasms. N. Engl. J. Med. 2018, 379, 1416–1430. [Google Scholar] [CrossRef] [PubMed]
- Brochmann, N.; Flachs, E.M.; Christensen, A.I.; Bak, M.; Andersen, C.L.; Juel, K.; Hasselbalch, H.C.; Zwisler, A.D.; Rottmann, N. Anxiety and depression in patients with Philadelphia-negative myeloproliferative neoplasms: A nationwide population-based survey in Denmark. Clin. Epidemiol. 2019, 11, 23–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hultcrantz, M.; Kristinsson, S.Y.; Andersson, T.M.L.; Landgren, O.; Eloranta, S.; Derolf, Å.R.; Dickman, P.W.; Björkholm, M. Patterns of survival among patients with myeloproliferative neoplasms diagnosed in Sweden from 1973 to 2008: A population-based study. J. Clin. Oncol. 2012, 30, 2995–3001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tefferi, A.; Guglielmelli, P.; Larson, D.R.; Finke, C.; Wassie, E.A.; Pieri, L.; Gangat, N.; Fjerza, R.; Belachew, A.A.; Lasho, T.L.; et al. Long-term survival and blast transformation in molecularly annotated essential thrombocythemia, polycythemia vera, and myelofibrosis. Blood 2014, 124, 2507–2513. [Google Scholar] [CrossRef]
- Frederiksen, H.; Szepligeti, S.; Bak, M.; Ghanima, W.; Hasselbalch, H.C.; Christiansen, C.F. Vascular Diseases In Patients With Chronic Myeloproliferative Neoplasms - Impact Of Comorbidity. Clin. Epidemiol. 2019, 11, 955–967. [Google Scholar] [CrossRef] [Green Version]
- Brunner, A.M.; Hobbs, G.; Jalbut, M.M.; Neuberg, D.S.; Fathi, A.T. A population-based analysis of second malignancies among patients with myeloproliferative neoplasms in the SEER database. Leuk. Lymphoma 2016, 57, 1197–1200. [Google Scholar] [CrossRef] [Green Version]
- Frederiksen, H.; Farkas, D.K.; Christiansen, C.F.; Hasselbalch, H.C.; Sorensen, H.T. Chronic myeloproliferative neoplasms and subsequent cancer risk: A Danish population-based cohort study. Blood 2011, 118, 6515–6520. [Google Scholar] [CrossRef] [Green Version]
- Landtblom, A.R.; Bower, H.; Andersson, T.M.L.; Dickman, P.W.; Samuelsson, J.; Björkholm, M.; Kristinsson, S.Y.; Hultcrantz, M. Second malignancies in patients with myeloproliferative neoplasms: A population-based cohort study of 9379 patients. Leukemia 2018, 32, 2203–2210. [Google Scholar] [CrossRef]
- Pettersson, H.; Knutsen, H.; Holmberg, E.; Andreasson, B. Increased incidence of another cancer in myeloproliferative neoplasms patients at the time of diagnosis. Eur. J. Haematol. 2015, 94, 152–156. [Google Scholar] [CrossRef] [PubMed]
- Chattopadhyay, S.; Zheng, G.; Sud, A.; Yu, H.; Sundquist, K.; Sundquist, J.; Försti, A.; Hemminki, A.; Houlston, R.; Hemminki, K. Risk of second primary cancer following myeloid neoplasia and risk of myeloid neoplasia as second primary cancer: A nationwide, observational follow up study in Sweden. Lancet Haematol. 2018, 5, e368–e377. [Google Scholar] [CrossRef] [Green Version]
- Berk, P.D.; Goldberg, J.D.; Silverstein, M.N.; Weinfeld, A.; Donovan, P.B.; Ellis, J.T.; Landaw, S.A.; Laszlo, J.; Najean, Y.; Pisciotta, A.V.; et al. Increased incidence of acute leukemia in polycythemia vera associated with chlorambucil therapy. N. Engl. J. Med. 1981, 304, 441–447. [Google Scholar] [CrossRef] [PubMed]
- Finazzi, G.; Caruso, V.; Marchioli, R.; Capnist, G.; Chisesi, T.; Finelli, C.; Gugliotta, L.; Landolfi, R.; Kutti, J.; Gisslinger, H.; et al. Acute leukemia in polycythemia vera: An analysis of 1638 patients enrolled in a prospective observational study. Blood 2005, 105, 2664–2670. [Google Scholar] [CrossRef]
- Finazzi, G.; Ruggeri, M.; Rodeghiero, F.; Barbui, T. Second malignancies in patients with essential thrombocythaemia treated with busulphan and hydroxyurea: Long-term follow-up of a randomized clinical trial. Br. J. Haematol. 2000, 110, 577–583. [Google Scholar] [CrossRef]
- Najean, Y.; Rain, J.D.; Dresch, C.; Goguel, A.; Lejeune, F.; Echard, M.; Grange, M.J. Risk of leukaemia, carcinoma, and myelofibrosis in 32P- or chemotherapy-treated patients with polycythaemia vera: A prospective analysis of 682 cases. The “French Cooperative Group for the Study of Polycythaemias”. Leuk. Lymphoma 1996, 22 (Suppl. 1), 111–119. [Google Scholar] [CrossRef]
- Nielsen, C.; Birgens, H.S.; Nordestgaard, B.G.; Kjaer, L.; Bojesen, S.E. The JAK2 V617F somatic mutation, mortality and cancer risk in the general population. Haematologica 2011, 96, 450–453. [Google Scholar] [CrossRef]
- Thoennissen, N.H.; Krug, U.O.; Lee, D.H.T.; Kawamata, N.; Iwanski, G.B.; Lasho, T.; Weiss, T.; Nowak, D.; Koren-Michowitz, M.; Kato, M.; et al. Prevalence and prognostic impact of allelic imbalances associated with leukemic transformation of Philadelphia chromosome-negative myeloproliferative neoplasms. Blood 2010, 115, 2882–2890. [Google Scholar] [CrossRef] [Green Version]
- Barbui, T.; Ghirardi, A.; Masciulli, A.; Carobbio, A.; Palandri, F.; Vianelli, N.; De Stefano, V.; Betti, S.; Di Veroli, A.; Iurlo, A.; et al. Second cancer in Philadelphia negative myeloproliferative neoplasms (MPN-K). A nested case-control study. Leukemia 2019, 33, 1996–2005. [Google Scholar] [CrossRef] [Green Version]
- Radaelli, F.; Onida, F.; Rossi, F.G.; Zilioli, V.R.; Colombi, M.; Usardi, P.; Calori, R.; Zanella, A. Second malignancies in essential thrombocythemia (ET): A retrospective analysis of 331 patients with long-term follow-up from a single institution. Hematology 2008, 13, 195–202. [Google Scholar] [CrossRef]
- Fallah, M.; Kharazmi, E.; Sundquist, J.; Hemminki, K. Higher risk of primary cancers after polycythaemia vera and vice versa. Br. J. Haematol. 2011. [Google Scholar] [CrossRef]
- Khanal, N.; Giri, S.; Upadhyay, S.; Shostrom, V.K.; Pathak, R.; Bhatt, V.R. Risk of second primary malignancies and survival of adult patients with polycythemia vera: A United States population-based retrospective study. Leuk. Lymphoma 2016, 57, 129–133. [Google Scholar] [CrossRef] [PubMed]
- Rumi, E.; Passamonti, F.; Elena, C.; Pietra, D.; Arcaini, L.; Astori, C.; Zibellini, S.; Boveri, E.; Pascutto, C.; Lazzarino, M. Increased risk of lymphoid neoplasm in patients with myeloproliferative neoplasm: A study of 1915 patients. Haematologica 2011, 96, 454–458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Susini, M.C.; Masala, G.; Antonioli, E.; Pieri, L.; Guglielmelli, P.; Palli, D.; Bosi, A.; Vannucchi, A.M. Risk of second cancers in chronic myeloproliferative neoplasms. Blood 2012, 119, 3861–3862. [Google Scholar] [CrossRef]
- Vannucchi, A.M.; Masala, G.; Antonioli, E.; Susini, M.C.; Guglielmelli, P.; Pieri, L.; Maggi, L.; Caini, S.; Palli, D.; Bogani, C.; et al. Increased risk of lymphoid neoplasms in patients with Philadelphia chromosome-negative myeloproliferative neoplasms. Cancer Epidemiol. Biomark. Prev. 2009, 18, 2068–2073. [Google Scholar] [CrossRef] [Green Version]
- Frederiksen, H.; Farkas, D.K.; Christiansen, C.F.; Larsen, T.S.; Hasselbalch, H.C.; Stentoft, J.; Sørensen, H.T. Survival of patients with chronic myeloproliferative neoplasms and new primary cancers: A population-based cohort study. Lancet Haematol. 2015, 2, e289–e296. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, R.; Giri, S.; Pathak, R.; Bhatt, V.R. Risk of second primary malignancies in a population-based study of adult patients with essential thrombocythemia. World J. Clin. Oncol. 2016, 7, 324–330. [Google Scholar] [CrossRef]
- Masarova, L.; Cherry, M.; Newberry, K.J.; Estrov, Z.; Cortes, J.E.; Kantarjian, H.M.; Verstovsek, S. Secondary solid tumors and lymphoma in patients with essential thrombocythemia and polycythemia vera—Single center experience. Leuk. Lymphoma 2016, 57, 237–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hultcrantz, M.; Wilkes, S.R.; Kristinsson, S.Y.; Andersson, T.M.L.; Derolf, Å.R.; Eloranta, S.; Samuelsson, J.; Landgren, O.; Dickman, P.W.; Lambert, P.C.; et al. Risk and Cause of Death in Patients Diagnosed With Myeloproliferative Neoplasms in Sweden Between 1973 and 2005: A Population-Based Study. J. Clin. Oncol. 2015, 33, 2288–2295. [Google Scholar] [CrossRef]
- Najean, Y.; Rain, J.D. Treatment of polycythemia vera: Use of 32P alone or in combination with maintenance therapy using hydroxyurea in 461 patients greater than 65 years of age. The French Polycythemia Study Group. Blood 1997, 89, 2319–2327. [Google Scholar] [CrossRef]
- Ferrari, A.; Carobbio, A.; Masciulli, A.; Ghirardi, A.; Finazzi, G.; De Stefano, V.; Vannucchi, A.M.; Barbui, T. Clinical outcomes under hydroxyurea treatment in polycythemia vera: A systematic review and meta-analysis. Haematologica 2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansen, I.O.; Sorensen, A.L.; Hasselbalch, H.C. Second malignancies in hydroxyurea and interferon-treated Philadelphia-negative myeloproliferative neoplasms. Eur J Haematol. 2017, 98, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Santoro, C.; Sperduti, I.; Latagliata, R.; Baldacci, E.; Anaclerico, B.; Avvisati, G.; Breccia, M.; Buccisano, F.; Cedrone, M.; Cimino, G.; et al. Role of treatment on the development of secondary malignancies in patients with essential thrombocythemia. Cancer Med. 2017, 6, 1233–1239. [Google Scholar] [CrossRef] [PubMed]
- Porpaczy, E.; Tripolt, S.; Hoelbl-Kovacic, A.; Gisslinger, B.; Bago-Horvath, Z.; Casanova-Hevia, E.; Clappier, E.; Decker, T.; Fajmann, S.; Fux, D.A.; et al. Aggressive B-cell lymphomas in patients with myelofibrosis receiving JAK1/2 inhibitor therapy. Blood 2018, 132, 694–706. [Google Scholar] [CrossRef] [PubMed]
- Lemonnier, F.; Dupuis, J.; Sujobert, P.; Tournillhac, O.; Cheminant, M.; Sarkozy, C.; Pelletier, L.; Marçais, A.; Robe, C.; Fataccioli, V.; et al. Treatment with 5-azacytidine induces a sustained response in patients with angioimmunoblastic T-cell lymphoma. Blood 2018, 132, 2305–2309. [Google Scholar] [CrossRef] [Green Version]
- Hasselbalch, H.C. Perspectives on chronic inflammation in essential thrombocythemia, polycythemia vera, and myelofibrosis: Is chronic inflammation a trigger and driver of clonal evolution and development of accelerated atherosclerosis and second cancer? Blood 2012, 119, 3219–3225. [Google Scholar] [CrossRef] [Green Version]
- Hasselbalch, H.C.; Bjorn, M.E. MPNs as Inflammatory Diseases: The Evidence, Consequences, and Perspectives. Mediat. Inflamm. 2015, 2015, 102476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riley, C.H.; Jensen, M.K.; Brimnes, M.K.; Hasselbalch, H.C.; Bjerrum, O.W.; Straten, P.T.; Svane, I.M. Increase in circulating CD4(+)CD25(+)Foxp3(+) T cells in patients with Philadelphia-negative chronic myeloproliferative neoplasms during treatment with IFN-alpha. Blood 2011, 118, 2170–2173. [Google Scholar] [CrossRef] [Green Version]
- Jayasuriya, N.A.; Kjaergaard, A.D.; Pedersen, K.M.; Sørensen, A.L.; Bak, M.; Larsen, M.K.; Nordestgaard, B.G.; Bojesen, S.E.; Çolak, Y.; Skov, V.; et al. Smoking, blood cells and myeloproliferative neoplasms: Meta-analysis and Mendelian randomization of 2.3 million people. Br. J. Haematol. 2020, 189, 323–334. [Google Scholar] [CrossRef]
- Cordua, S.; Kjaer, L.; Skov, V.; Pallisgaard, N.; Hasselbalch, H.C.; Ellervik, C. Prevalence and phenotypes of JAK2 V617F and calreticulin mutations in a Danish general population. Blood 2019, 134, 469–479. [Google Scholar] [CrossRef]
- Pedersen, K.M.; Colak, Y.; Hasselbalch, H.C.; Ellervik, C.; Nordestgaard, B.G.; Bojesen, S.E. Two-fold risk of pneumonia and respiratory mortality in individuals with myeloproliferative neoplasm: A population-based cohort study. EClinicalMedicine 2020, 21, 100295. [Google Scholar] [CrossRef] [PubMed]
- Barbui, T.; Tefferi, A.; Vannucchi, A.M.; Passamonti, F.; Silver, R.T.; Hoffman, R.; Verstovsek, S.; Mesa, R.; Kiladjian, J.J.; Hehlmann, R.; et al. Philadelphia chromosome-negative classical myeloproliferative neoplasms: Revised management recommendations from European LeukemiaNet. Leukemia 2018, 32, 1057–1069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Troelsen, F.S.; Farkas, D.K.; Ording, A.G.; Erichsen, R.; Jick, S.; Sorensen, H.T. Prevalence of Colorectal Neoplasms and Mortality in New Users of Low-Dose Aspirin With Lower Gastrointestinal Bleeding. Am. J. Ther. 2019. [Google Scholar] [CrossRef]
- Bardou, M.; Barkun, A.; Martel, M.; Chapelle, N. Chemoprevention of colorectal cancer in the general population: An umbrella metaanalysis. Gastroenterology 2019, 156, S472–S473. [Google Scholar] [CrossRef]
- Rothwell, P.M.; Wilson, M.; Elwin, C.E.; Norrving, B.; Algra, A.; Warlow, C.P.; Meade, T.W. Long-term effect of aspirin on colorectal cancer incidence and mortality: 20-year follow-up of five randomised trials. Lancet 2010, 376, 1741–1750. [Google Scholar] [CrossRef]
- Barbui, T.; Ghirardi, A.; Vannucchi, A.M.; Marchetti, M.; De Stefano, V.; on behalf of MPN-K authors. Reply to: Second primary malignancies in myeloproliferative neoplasms and the role of aspirin. Leukemia 2019, 34, 1208–1209. [Google Scholar] [CrossRef] [PubMed]
- Marchetti, M.; Ghirardi, A.; Masciulli, A.; Carobbio, A.; Palandri, F.; Vianelli, N.; Rossi, E.; Betti, S.; Di Veroli, A.; Iurlo, A.; et al. Second cancers in MPN: Survival analysis from an international study. Am. J. Hematol. 2020, 95, 295–301. [Google Scholar] [CrossRef]
- Vogel, V.G. Identifying and screening patients at risk of second cancers. Cancer Epidemiol. Biomark. Prev. 2006, 15, 2027–2032. [Google Scholar] [CrossRef] [Green Version]
- Rothman, K.J.; Greenland, S.; Lash, T.L. Modern Epidemiology, 3rd ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2008. [Google Scholar]
- Hernan, M.A. The hazards of hazard ratios. Epidemiology 2010, 21, 13–15. [Google Scholar] [CrossRef] [Green Version]
Author | Year | Type of Study | Patient Number | MPN Subtypes | Median Age (Range) | Median Years of Follow Up (Range) | Comparisons | Relative Solid Cancer Occurrence in Patients with MPN vs. Comparisons |
---|---|---|---|---|---|---|---|---|
Frederiksen [10] | 2011 | Retrospective cohort | 7229 | ET (22%) PV (63%) CML (14%) | ET: 65 PV: 66 CML: 60 | ET: 4.0 PV: 5.0 CML: 2.4 | Incidence of solid neoplasms in the Danish cancer registry | SIRET all solid: 1.2 (95% CI: 1.0–1.4) |
SIRPV all solid: 3.8 (95% CI: 3.1–4.6) | ||||||||
SIRCML all solid: 5.2 (95% CI: 2.8–8.7) | ||||||||
SIRPV colon: 0.9 (95% CI: 0.7–1.3) | ||||||||
SIRPV lung: 1.9 (95% CI: 1.6–2.2) | ||||||||
SIRPV breast: 1.1 (95% CI: 0.8–1.5) | ||||||||
SIRPV melanoma: 1.7 (95% CI: 1.0–2.7) | ||||||||
SIRPV NMSC: 1.7 (95% CI: 1.4–1.9) | ||||||||
SIRkidney: 1.9 (95% CI: 1.1–3.0) | ||||||||
SIRPV prostate: 1.3 (95% CI: 1.0–1.6) | ||||||||
Fallah [22] | 2011 | Retrospective cohort | 3530 | PV | Incidence of solid neoplasms in the Swedish cancer registry | SIRcolon: 0.9 (95% CI: 0.6–1.2) | ||
SIRlung: 1.3 (95% CI: 1.0–1.8) | ||||||||
SIRbreast: 1.1 (95% CI: 0.8–1.5) | ||||||||
SIRmelanoma: 1.9 (95% CI: 1.1–2.9) | ||||||||
SIRNMSC: 2.0 (95% CI: 1.5–2.7) | ||||||||
SIRprostate: 1.0 (95% CI: 0.8–1.2) | ||||||||
SIRkidney: 2.2 (95% CI: 1.5–3.3) | ||||||||
SIRthyroid: 0.5 (95% CI: 0.0–2.7) | ||||||||
Susini [25] | 2012 | Retrospective cohort | 733 | ET (51%) PV (41%) PMF (8%) | Mean 6.5 | General population incidence of solid neoplasms in the Tuscany cancer registry, Italy | All solid cancers | |
SIRMPN: 0.9 (95% CI: 0.6–1.1) | ||||||||
SIRET: 0.8 (95% CI: 0.5–1.3) | ||||||||
SIRPV: 1.0 (95% CI: 0.6–1.4) | ||||||||
All MPNs | ||||||||
SIRcolon: 0.6 (95% CI: 0.3–1.5) | ||||||||
SIRlung: 0.9 (95% CI: 0.4–1.9) | ||||||||
SIRbreast: 0.8 (95% CI: 0.3–1.9) | ||||||||
SIRmelanoma: 3.7 (95% CI: 1.4–9.6) | ||||||||
SIRNMSC: 1.0 (95% CI: 0.6–1.9) | ||||||||
SIRkidney: 1.1 (95% CI: 0.3–4.5) | ||||||||
SIRprostate: 0.7 (95% CI: 0.3–1.8) | ||||||||
Khanal [23] | 2015 | Retrospective cohort | 3941 | PV | 64 | 4.7 (0.4–12.5) | Incidence of solid neoplasms in the US National Cancer Institute database | SIRall solid: 1.2 (95% CI: 1.3–20.7) |
SIRcolon: 0.6 (95% CI: 0.3–1.0) | ||||||||
SIRlung: 1.2 (95% CI: 0.9–1.6) | ||||||||
SIRbreast: 1.0 (95% CI: 0.6–1.5) | ||||||||
SIRmelanoma: 1.8 (95% CI: 1.1–2.8) | ||||||||
SIRprostate: 1.3 (95% CI: 1.0–1.7) | ||||||||
SIRkidney: 1.8 (95% CI: 1.0–3.1) | ||||||||
SIRthyroid: 3.1 (95% CI: 1.5–5.7) | ||||||||
Brunner [9] | 2016 | Retrospective cohort | 20,250 | ET PV MF MPN-U | ET: 66 PV: 63 MF: 69 MPN-U: 71 | 3.5 | Age-adjusted general US population | All solid cancers |
IRRET: 1.4 (95% CI: 1.3–1.5) | ||||||||
IRRPV: 1.4 (95% CI: 1.3–1.6) | ||||||||
IRRMF: 1.5 (95% CI: 1.3–1.8) | ||||||||
IRRMPN-U: 1.6 (95% CI: 1.4–1.8) | ||||||||
All MPNs | ||||||||
IRRcolon: 1.0 (95% CI: 0.8–1.1) | ||||||||
IRRlung: 1.6 (95% CI: 1.4–1.8) | ||||||||
IRRbreast: 1.1 (95% CI: 0.9–1.3) | ||||||||
IRRmelanoma: 2.2 (95% CI: 1.8–2.7) | ||||||||
IRRprostate: 0.6 (95% CI: 0.5–0.6) | ||||||||
IRRkidney: 2.0 (95% CI: 1.6–2.6) | ||||||||
IRRthyroid: 2.3 (95% CI: 1.6–3.2) | ||||||||
Shrestha [28] | 2016 | Retrospective cohort | 8116 | ET | 68 (1–107) | 3 (0.5–10.8) | US SEER database cancer incidence | SIRall solid: 1.2 (95% CI: 1.0–1.4) |
SIRcolon: 0.7 (95% CI: 0.3–1.2) | ||||||||
SIRlung: 1.3 (95% CI: 0.9–1.9) | ||||||||
SIRbreast: 1.1 (95% CI: 0.7–1.6) | ||||||||
SIRprostate: 1.1 (95% CI: 0.7–1.7) | ||||||||
SIRkidney: 2.4 (95% CI: 1.2–4.4) | ||||||||
Masarova [29] | 2016 | Retrospective cohort | 417 | ET (40%) PV (60%) | (15–84) | US general population | SIRcolon: 1.6 (95% CI: −0.2–3.5) | |
SIRlung: 1.2 (95% CI: −2.1–4.4) | ||||||||
SIRbreast: 1.3 (95% CI: 0.0–2.5) | ||||||||
SIRmelanoma: 3.3 (95% CI: −0.4–7.1) | ||||||||
SIRprostate: 0.8 (95% CI:−0.3–1.9) | ||||||||
SIRthyroid: 3.7 (95% CI: −1.4–8.8) | ||||||||
Landtblom [11] | 2018 | Retrospective single cohort and matched cohort study | 9379 | ET (28%) PV (45%) PMF (15%) MPN-NOS (12%) | 67.5 | 7.7 | Incidence of solid neoplasms in the Swedish cancer registry For the matched cohort study, four comparisons per MPN patient from the general population matched on age, sex, and residency | All solid cancers |
SIRMPN: 1.4 (95% CI: 1.3–1.5) | ||||||||
HRMPN: 1.6 (95% CI: 1.5–1.7) | ||||||||
HRET: 1.6 (95% CI: 1.4–1.8) | ||||||||
HRPV: 1.5 (95% CI: 1.4–1.7) | ||||||||
HRPMF: 1.5 (95% CI: 1.2–1.9) | ||||||||
HRMPN-U: 1.9 (95% CI: 1.5–2.5) | ||||||||
All MPNs | ||||||||
SIRcolon: 1.0 (95% CI: 0.8–1.2) | ||||||||
SIRlung: 1.3 (95% CI: 1.1–1.6) | ||||||||
SIRbreast: 1.0 (95% CI: 0.8–1.2) | ||||||||
SIRmelanoma: 1.9 (95% CI: 1.4–2.7) | ||||||||
SIRNMSC: 3.3 (95% CI: 2.9–3.8) | ||||||||
SIRprostate: 1.1 (95% CI: 1.0–1.3) | ||||||||
SIRkidney: 2.0 (95% CI: 1.5–2.7) | ||||||||
Chattopadhyay [13] | 2018 | Retrospective cohort | 13,805 | ET (30%) PV (48%) MF (11%) MPN-NOS (12%) | ET: 4 PV: 6 MF: 2 MPN-U: 3 | Incidence of solid neoplasms in the Swedish cancer registry | All MPNs | |
IRRcolon: 0.9 (95% CI: 0.8–1.0) | ||||||||
IRRlung: 1.4 (95% CI: 1.2–1.6) | ||||||||
IRRbreast: 1.0 (95% CI: 0.8–1.2) | ||||||||
IRRmelanoma: 1.8 (95% CI: 1.4–2.2) | ||||||||
IRRNMSC: 2.0 (95% CI: 1.7–2.3) | ||||||||
IRRprostate: 1.1 (95% CI: 1.0–1.2) | ||||||||
IRRkidney: 2.1 (95% CI: 1.7–2.7) |
Author | Year | Type of Study | Patient Number | MPN Subtypes | Median Age (Range) | Median Years of Follow Up (Range) | Comparisons | Relative Lymphoid Cancer Occurrence in Patients with MPN vs. Comparisons |
---|---|---|---|---|---|---|---|---|
Vannuchi [26] | 2009 | Retrospective cohort | 820 | ET (57%) PV (43%) | 3.3 | General population incidence of lymphoid neoplasms in the Tuscany cancer registry, Italy | SIRall: 3.4 (95% CI: 1.9–6.2) | |
SIRET: 2.5 (95% CI: 0.9–6.5) | ||||||||
SIRPV: 4.5 (95% CI: 2.1–9.3) | ||||||||
SIRall NHL: 3.4 (95% CI: 1.4–8.3) | ||||||||
SIRall CLL: 12.4 (95% CI: 4.7–33.1) | ||||||||
Rumi [24] | 2011 | Retrospective cohort | 1915 | ET (44%) PV (34%) PMF (18%) SMF (4%) | 55.6 | 5.2 (0–33) | General population incidence of lymphoid neoplasms in the north Italian cancer registry | SIRall: 2.8 (95% CI: 1.8–4.3) |
SIR♂: 3.2 (95% CI: 1.9–5.6) | ||||||||
SIR♀: 2.2 (95% CI: 1.1–4.7) | ||||||||
SIR < 50: 6.2 (95% CI: 3.2–11.8) | ||||||||
SIR + 50: 1.9 (95% CI: 1.1–3.5) | ||||||||
Frederiksen [10] | 2011 | Retrospective cohort | 4625 | PV | 66 | 5.0 | General population incidence of lymphoid neoplasms in the Danish cancer registry | SIRNHL: 1.8 (95% CI: 1.1–2.7) |
Fallah [22] | 2011 | Retrospective cohort | 3530 | PV | General population incidence of lymphoid neoplasms in the Swedish cancer registry | SIRNHL: 1.2 (95% CI: 0.7–2.0) | ||
SIRMM: 1.6 (95% CI: 0.8–3.0) | ||||||||
Khanal [23] | 2015 | Retrospective cohort | 3941 | PV | 64 | 4.7 (0.4–12.5) | General population incidence of lymphoid neoplasms in the US National Cancer Institute database | SIRNHL: 1.1 (95% CI: 0.6–1.9) |
Brunner [9] | 2016 | Retrospective cohort | 20,250 | ET, PV, MF, MPN-NOS | ET: 66 PV: 63 MF: 69 MPN-NOS: 71 | 3.5 | General US population lymphoid neoplasm incidences | IRRNHL: 2.3 (95% CI: 1.9–2.8) |
IRRHL: 3.1 (95% CI: 1.4–6.7) | ||||||||
IRRCLL: 2.5 (95% CI: 1.6–3.6) | ||||||||
IRRMM: 1.6 (95% CI: 1.0–2.3) | ||||||||
Shrestha [28] | 2016 | Retrospective cohort | 8116 | ET | 68 (1–107) | 3 (0.5–10.8) | US SEER database cancer incidence | SIRlymphoma: 1.6 (95% CI: 0.8–2.8) |
Masarova [29] | 2016 | Retrospective cohort | 417 | ET (40%) PV (60%) | (15–84) | US general population | SIRNHL: 9.7 (95% CI: 3.0–16.0) | |
Landtblom [11] | 2018 | Retrospective single cohort and matched cohort study | 9379 | ET (28%) PV (45%) PMF (15%) MPN-NOS (12%) | 67.5 | 7.7 | General population incidence of lymphoid neoplasms in the Swedish cancer registry. For the matched cohort study, four comparisons per MPN patient from the general population matched on age, sex, and residency | Lymphoma |
SIRMPN: 2.1 (95% CI: 1.7–2.6) | ||||||||
HRMPN: 2.6 (95% CI: 2.0–3.3) | ||||||||
HRET: 2.3 (95% CI: 1.3–3.9) | ||||||||
HRPV: 1.9 (95% CI: 1.3–2.8) | ||||||||
HRPMF: 6.0 (95% CI: 3.4–10.8) | ||||||||
Multiple Myeloma | ||||||||
SIRMPN 1.2 (95% CI: 0.7–1.9) | ||||||||
HRMPN: 1.7 (95% CI: 1.0–3.0) | ||||||||
HRET: 1.4 (95% CI: 0.5–3.6) | ||||||||
HRPV: 1.6 (95% CI: 0.7–3.5) | ||||||||
HRPMF: 9.0 (95% CI: 1.8–44.0) | ||||||||
Chattopadhyay [13] | 2018 | Retrospective cohort | 13,805 | ET (30%) PV (48%) MF (11%) MPN-NOS (12%) | ET: 4 PV: 6 MF: 2 MPN-U: 3 | Incidence of lymphoid neoplasms in the Swedish cancer registry | IRRNHL: 1.6 (95% CI: 1.3–2.0) | |
IRRHL: 2.8 (95% CI: 1.5–5.2) | ||||||||
IRRMM: 1.6 (95% CI: 1.1–2.3) |
Author | Year | Type of Study | Patient Number | MPN Subtypes | Median Age at Solid Cancer Diagnosis | Median Lag Time to Solid Cancer after MPN Diagnosis (IQR) | Comparisons | Main Findings |
---|---|---|---|---|---|---|---|---|
Frederiksen [27] | 2015 | Retrospective cohort | 1246 | ET (24%) PV (67%) CML (9%) | ET: 73.6 PV: 72.1 CML: 63.7 | 2.0 (0.8-4-0) | Age/sex-matched patients with the same solid cancers but without preceding MPN (n = 5155) | Five-year cumulative incidence of solid cancer |
ET: 7.8% (95% CI: 6.6–9.1) | ||||||||
PV: 6.8% (95% CI: 6.1–7.6) | ||||||||
CML: 4.7% (95% CI: 3.5–6.1) | ||||||||
Death < 5 years | ||||||||
HRET: 1.5 (95% CI: 1.2–2.0) | ||||||||
HRPV: 1.2 (95% CI: 1.0–1.4) | ||||||||
HRCML: 1.5 (95% CI: 1.0–2.5) | ||||||||
Death ≥ 5 years | ||||||||
HRET: 1.7 (95% CI: 1.2–2.4) | ||||||||
HRPV: 1.5 (95% CI: 1.3–1.7) | ||||||||
HRCML: 2.3 (95% CI: 1.3–3.9) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brabrand, M.; Frederiksen, H. Risks of Solid and Lymphoid Malignancies in Patients with Myeloproliferative Neoplasms: Clinical Implications. Cancers 2020, 12, 3061. https://doi.org/10.3390/cancers12103061
Brabrand M, Frederiksen H. Risks of Solid and Lymphoid Malignancies in Patients with Myeloproliferative Neoplasms: Clinical Implications. Cancers. 2020; 12(10):3061. https://doi.org/10.3390/cancers12103061
Chicago/Turabian StyleBrabrand, Mette, and Henrik Frederiksen. 2020. "Risks of Solid and Lymphoid Malignancies in Patients with Myeloproliferative Neoplasms: Clinical Implications" Cancers 12, no. 10: 3061. https://doi.org/10.3390/cancers12103061
APA StyleBrabrand, M., & Frederiksen, H. (2020). Risks of Solid and Lymphoid Malignancies in Patients with Myeloproliferative Neoplasms: Clinical Implications. Cancers, 12(10), 3061. https://doi.org/10.3390/cancers12103061