Polyphenol Intake and Gastric Cancer Risk: Findings from the Stomach Cancer Pooling Project (StoP)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Participant Studies, Data Collection, and Harmonization
2.2. Analysis of Polyphenols Intake
2.3. Analysis of Polyphenols Intake
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yusefi, A.R.; Bagheri Lankarani, K.; Bastani, P.; Radinmanesh, M.; Kavosi, Z. Risk Factors for Gastric Cancer: A Systematic Review. Asian Pac. J. Cancer Prev. 2018, 19, 591–603. [Google Scholar] [CrossRef]
- de Martel, C.; Forman, D.; Plummer, M. Gastric cancer: Epidemiology and risk factors. Gastroenterol. Clin. North Am. 2013, 42, 219–240. [Google Scholar] [CrossRef]
- Stadtlander, C.T.; Waterbor, J.W. Molecular epidemiology, pathogenesis and prevention of gastric cancer. Carcinogenesis 1999, 20, 2195–2208. [Google Scholar] [CrossRef] [Green Version]
- Turati, F.; Rossi, M.; Pelucchi, C.; Levi, F.; La Vecchia, C. Fruit and vegetables and cancer risk: A review of southern European studies. Br. J. Nutr. 2015, 113 (Suppl. 2), S102–S110. [Google Scholar] [CrossRef]
- van Duijnhoven, F.J.; Bueno-De-Mesquita, H.B.; Ferrari, P.; Jenab, M.; Boshuizen, H.C.; Ros, M.M.; Casagrande, C.; Tjonneland, A.; Olsen, A.; Overvad, K.; et al. Fruit, vegetables, and colorectal cancer risk: The European Prospective Investigation into Cancer and Nutrition. Am. J. Clin. Nutr. 2009, 89, 1441–1452. [Google Scholar] [CrossRef]
- Key, T.J. Fruit and vegetables and cancer risk. Br. J. Cancer 2011, 104, 6–11. [Google Scholar] [CrossRef] [Green Version]
- Petrick, J.L.; Steck, S.E.; Bradshaw, P.T.; Trivers, K.F.; Abrahamson, P.E.; Engel, L.S.; He, K.; Chow, W.H.; Mayne, S.T.; Risch, H.A.; et al. Dietary intake of flavonoids and oesophageal and gastric cancer: Incidence and survival in the United States of America (USA). Br. J. Cancer 2015, 112, 1291–1300. [Google Scholar] [CrossRef]
- Grosso, G.; Godos, J.; Lamuela-Raventos, R.; Ray, S.; Micek, A.; Pajak, A.; Sciacca, S.; D’Orazio, N.; Del Rio, D.; Galvano, F. A comprehensive meta-analysis on dietary flavonoid and lignan intake and cancer risk: Level of evidence and limitations. Mol. Nutr. Food Res. 2017, 61. [Google Scholar] [CrossRef]
- Lagiou, P.; Samoli, E.; Lagiou, A.; Peterson, J.; Tzonou, A.; Dwyer, J.; Trichopoulos, D. Flavonoids, vitamin C and adenocarcinoma of the stomach. Cancer Causes Control 2004, 15, 67–72. [Google Scholar] [CrossRef]
- Vitelli Storelli, F.; Molina, A.J.; Zamora-Ros, R.; Fernandez-Villa, T.; Roussou, V.; Romaguera, D.; Aragones, N.; Obon-Santacana, M.; Guevara, M.; Gomez-Acebo, I.; et al. Flavonoids and the Risk of Gastric Cancer: An Exploratory Case-Control Study in the MCC-Spain Study. Nutrients 2019, 11, 967. [Google Scholar] [CrossRef] [Green Version]
- Bo, Y.; Sun, J.; Wang, M.; Ding, J.; Lu, Q.; Yuan, L. Dietary flavonoid intake and the risk of digestive tract cancers: A systematic review and meta-analysis. Sci. Rep. 2016, 6, 24836. [Google Scholar] [CrossRef]
- Hernandez-Ramirez, R.U.; Galvan-Portillo, M.V.; Ward, M.H.; Agudo, A.; Gonzalez, C.A.; Onate-Ocana, L.F.; Herrera-Goepfert, R.; Palma-Coca, O.; Lopez-Carrillo, L. Dietary intake of polyphenols, nitrate and nitrite and gastric cancer risk in Mexico City. Int. J. Cancer 2009, 125, 1424–1430. [Google Scholar] [CrossRef] [Green Version]
- Pelucchi, C.; Lunet, N.; Boccia, S.; Zhang, Z.F.; Praud, D.; Boffetta, P.; Levi, F.; Matsuo, K.; Ito, H.; Hu, J.; et al. The stomach cancer pooling (StoP) project: Study design and presentation. Eur. J. Cancer Prev. 2015, 24, 16–23. [Google Scholar] [CrossRef]
- Ferro, A.; Costa, A.R.; Morais, S.; Bertuccio, P.; Rota, M.; Pelucchi, C.; Hu, J.; Johnson, K.C.; Zhang, Z.F.; Palli, D.; et al. Fruits and vegetables intake and gastric cancer risk: A pooled analysis within the Stomach cancer Pooling Project. Int. J. Cancer 2020. [Google Scholar] [CrossRef]
- Lucenteforte, E.; Scita, V.; Bosetti, C.; Bertuccio, P.; Negri, E.; La Vecchia, C. Food groups and alcoholic beverages and the risk of stomach cancer: A case-control study in Italy. Nutr. Cancer 2008, 60, 577–584. [Google Scholar] [CrossRef]
- Buiatti, E.; Palli, D.; Decarli, A.; Amadori, D.; Avellini, C.; Bianchi, S.; Biserni, R.; Cipriani, F.; Cocco, P.; Giacosa, A.; et al. A case-control study of gastric cancer and diet in Italy. Int. J. Cancer 1989, 44, 611–616. [Google Scholar] [CrossRef]
- Lagiou, P.; Trichopoulos, D. Parental family structure, Helicobacter pylori, and gastric adenocarcinoma. PLoS Med. 2007, 4, e25. [Google Scholar] [CrossRef]
- Zaridze, D.; Borisova, E.; Maximovitch, D.; Chkhikvadze, V. Aspirin protects against gastric cancer: Results of a case-control study from Moscow, Russia. Int. J. Cancer 1999, 82, 473–476. [Google Scholar] [CrossRef]
- Lunet, N.; Valbuena, C.; Vieira, A.L.; Lopes, C.; Lopes, C.; David, L.; Carneiro, F.; Barros, H. Fruit and vegetable consumption and gastric cancer by location and histological type: Case-control and meta-analysis. Eur. J. Cancer Prev. 2007, 16, 312–327. [Google Scholar] [CrossRef]
- Castano-Vinyals, G.; Aragones, N.; Perez-Gomez, B.; Martin, V.; Llorca, J.; Moreno, V.; Altzibar, J.M.; Ardanaz, E.; de Sanjose, S.; Jimenez-Moleon, J.J.; et al. Population-based multicase-control study in common tumors in Spain (MCC-Spain): Rationale and study design. Gac. Sanit. 2015, 29, 308–315. [Google Scholar] [CrossRef] [Green Version]
- Santibanez, M.; Alguacil, J.; de la Hera, M.G.; Navarrete-Munoz, E.M.; Llorca, J.; Aragones, N.; Kauppinen, T.; Vioque, J.; Group, P.S. Occupational exposures and risk of stomach cancer by histological type. Occup. Environ. Med. 2012, 69, 268–275. [Google Scholar] [CrossRef]
- Lopez-Carrillo, L.; Hernandez Avila, M.; Dubrow, R. Chili pepper consumption and gastric cancer in Mexico: A case-control study. Am. J. Epidemiol. 1994, 139, 263–271. [Google Scholar] [CrossRef]
- Lopez-Carrillo, L.; Lopez-Cervantes, M.; Robles-Diaz, G.; Ramirez-Espitia, A.; Mohar-Betancourt, A.; Meneses-Garcia, A.; Lopez-Vidal, Y.; Blair, A. Capsaicin consumption, Helicobacter pylori positivity and gastric cancer in Mexico. Int. J. Cancer 2003, 106, 277–282. [Google Scholar] [CrossRef]
- Rothwell, J.A.; Perez-Jimenez, J.; Neveu, V.; Medina-Remon, A.; M’Hiri, N.; Garcia-Lobato, P.; Manach, C.; Knox, C.; Eisner, R.; Wishart, D.S.; et al. Phenol-Explorer 3.0: A major update of the Phenol-Explorer database to incorporate data on the effects of food processing on polyphenol content. Database 2013, 2013, bat070. [Google Scholar] [CrossRef]
- Balentine, D.A.; Dwyer, J.T.; Erdman, J.W., Jr.; Ferruzzi, M.G.; Gaine, P.C.; Harnly, J.M.; Kwik-Uribe, C.L. Recommendations on reporting requirements for flavonoids in research. Am. J. Clin. Nutr. 2015, 101, 1113–1125. [Google Scholar] [CrossRef] [Green Version]
- Smith-Warner, S.A.; Spiegelman, D.; Ritz, J.; Albanes, D.; Beeson, W.L.; Bernstein, L.; Berrino, F.; van den Brandt, P.A.; Buring, J.E.; Cho, E.; et al. Methods for pooling results of epidemiologic studies: The Pooling Project of Prospective Studies of Diet and Cancer. Am. J. Epidemiol. 2006, 163, 1053–1064. [Google Scholar] [CrossRef] [Green Version]
- Willett, W.C.; Howe, G.R.; Kushi, L.H. Adjustment for total energy intake in epidemiologic studies. Am. J. Clin. Nutr. 1997, 65, 1220S–1228S. [Google Scholar] [CrossRef]
- DerSimonian, R.; Laird, N. Meta-analysis in clinical trials revisited. Contemp. Clin. Trials 2015, 45, 139–145. [Google Scholar] [CrossRef] [Green Version]
- StataCorp. Stata Statistical Software: Release 13; StataCorp LP: College Station, TX, USA, 2013. [Google Scholar]
- Python Software Foundation. Python Language Reference, Version 3.6.5; Available online: http://www.python.org (accessed on 19 July 2019).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017; Version 3.6, R; Available online: http://www.R-project.org/ (accessed on 26 December 2018).
- Garcia-Closas, R.; Gonzalez, C.A.; Agudo, A.; Riboli, E. Intake of specific carotenoids and flavonoids and the risk of gastric cancer in Spain. Cancer Causes Control 1999, 10, 71–75. [Google Scholar] [CrossRef]
- Knekt, P.; Kumpulainen, J.; Jarvinen, R.; Rissanen, H.; Heliovaara, M.; Reunanen, A.; Hakulinen, T.; Aromaa, A. Flavonoid intake and risk of chronic diseases. Am. J. Clin. Nutr. 2002, 76, 560–568. [Google Scholar] [CrossRef] [Green Version]
- Hirvonen, T.; Virtamo, J.; Korhonen, P.; Albanes, D.; Pietinen, P. Flavonol and flavone intake and the risk of cancer in male smokers (Finland). Cancer Causes Control 2001, 12, 789–796. [Google Scholar] [CrossRef]
- Sun, L.; Subar, A.F.; Bosire, C.; Dawsey, S.M.; Kahle, L.L.; Zimmerman, T.P.; Abnet, C.C.; Heller, R.; Graubard, B.I.; Cook, M.B.; et al. Dietary Flavonoid Intake Reduces the Risk of Head and Neck but Not Esophageal or Gastric Cancer in US Men and Women. J. Nutr. 2017, 147, 1729–1738. [Google Scholar] [CrossRef]
- Zamora-Ros, R.; Agudo, A.; Lujan-Barroso, L.; Romieu, I.; Ferrari, P.; Knaze, V.; Bueno-de-Mesquita, H.B.; Leenders, M.; Travis, R.C.; Navarro, C.; et al. Dietary flavonoid and lignan intake and gastric adenocarcinoma risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Am. J. Clin. Nutr. 2012, 96, 1398–1408. [Google Scholar] [CrossRef]
- Rossi, M.; Rosato, V.; Bosetti, C.; Lagiou, P.; Parpinel, M.; Bertuccio, P.; Negri, E.; La Vecchia, C. Flavonoids, proanthocyanidins, and the risk of stomach cancer. Cancer Causes Control 2010, 21, 1597–1604. [Google Scholar] [CrossRef]
- Woo, H.D.; Lee, J.; Choi, I.J.; Kim, C.G.; Lee, J.Y.; Kwon, O.; Kim, J. Dietary flavonoids and gastric cancer risk in a Korean population. Nutrients 2014, 6, 4961–4973. [Google Scholar] [CrossRef] [Green Version]
- Lei, L.; Yang, Y.; He, H.; Chen, E.; Du, L.; Dong, J.; Yang, J. Flavan-3-ols consumption and cancer risk: A meta-analysis of epidemiologic studies. Oncotarget 2016, 7, 73573–73592. [Google Scholar] [CrossRef] [Green Version]
- Yang, D.; Wang, X.; Yuan, W.; Chen, Z. Intake of Anthocyanins and Gastric Cancer Risk: A Comprehensive Meta-Analysis on Cohort and Case-Control Studies. J. Nutr. Sci. Vitaminol. 2019, 65, 72–81. [Google Scholar] [CrossRef] [Green Version]
- Ekstrom, A.M.; Serafini, M.; Nyren, O.; Wolk, A.; Bosetti, C.; Bellocco, R. Dietary quercetin intake and risk of gastric cancer: Results from a population-based study in Sweden. Ann. Oncol. 2011, 22, 438–443. [Google Scholar] [CrossRef]
- Xie, Y.; Huang, S.; Su, Y. Dietary Flavonols Intake and Risk of Esophageal and Gastric Cancer: A Meta-Analysis of Epidemiological Studies. Nutrients 2016, 8, 91. [Google Scholar] [CrossRef] [Green Version]
- Bohn, T. Dietary factors affecting polyphenol bioavailability. Nutr. Rev. 2014, 72, 429–452. [Google Scholar] [CrossRef]
- Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Med. Cell. Longev. 2009, 2, 270–278. [Google Scholar] [CrossRef] [Green Version]
- Grosso, G.; Bella, F.; Godos, J.; Sciacca, S.; Del Rio, D.; Ray, S.; Galvano, F.; Giovannucci, E.L. Possible role of diet in cancer: Systematic review and multiple meta-analyses of dietary patterns, lifestyle factors, and cancer risk. Nutr. Rev. 2017, 75, 405–419. [Google Scholar] [CrossRef]
- Lampe, J.W. Interindividual differences in response to plant-based diets: Implications for cancer risk. Am. J. Clin. Nutr. 2009, 89, 1553S–1557S. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Garcia, C.; Sanchez-Quesada, C.; Gaforio, J.J. Dietary Flavonoids as Cancer Chemopreventive Agents: An Updated Review of Human Studies. Antioxidants 2019, 8, 137. [Google Scholar] [CrossRef] [Green Version]
- Cory, H.; Passarelli, S.; Szeto, J.; Tamez, M.; Mattei, J. The Role of Polyphenols in Human Health and Food Systems: A Mini-Review. Front. Nutr. 2018, 5, 87. [Google Scholar] [CrossRef] [Green Version]
- Manach, C.; Scalbert, A.; Morand, C.; Remesy, C.; Jimenez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [CrossRef] [Green Version]
- Metere, A.; Giacomelli, L. Absorption, metabolism and protective role of fruits and vegetables polyphenols against gastric cancer. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 5850–5858. [Google Scholar] [CrossRef]
- Bertuccio, P.; Alicandro, G.; Rota, M.; Pelucchi, C.; Bonzi, R.; Galeone, C.; Bravi, F.; Johnson, K.C.; Hu, J.; Palli, D.; et al. Citrus fruit intake and gastric cancer: The stomach cancer pooling (StoP) project consortium. Int. J. Cancer 2019, 144, 2936–2944. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, H.; Zhou, L.; Li, G.; Yi, D.; Zhang, Y.; Wu, Y.; Liu, X.; Wu, X.; Song, Q.; et al. Association between green tea intake and risk of gastric cancer: A systematic review and dose-response meta-analysis of observational studies. Public Health Nutr. 2017, 20, 3183–3192. [Google Scholar] [CrossRef] [Green Version]
- Heim, K.E.; Tagliaferro, A.R.; Bobilya, D.J. Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships. J. Nutr. Biochem. 2002, 13, 572–584. [Google Scholar] [CrossRef]
- Sznarkowska, A.; Kostecka, A.; Meller, K.; Bielawski, K.P. Inhibition of cancer antioxidant defense by natural compounds. Oncotarget 2017, 8, 15996–16016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaulmann, A.; Bohn, T. Bioactivity of Polyphenols: Preventive and Adjuvant Strategies toward Reducing Inflammatory Bowel Diseases-Promises, Perspectives, and Pitfalls. Oxidative Med. Cell. Longev. 2016, 2016, 9346470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serafini, M.; Peluso, I.; Raguzzini, A. Flavonoids as anti-inflammatory agents. Proc. Nutr. Soc. 2010, 69, 273–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baltas, N.; Karaoglu, S.A.; Tarakci, C.; Kolayli, S. Effect of propolis in gastric disorders: Inhibition studies on the growth of Helicobacter pylori and production of its urease. J. Enzym. Inhib. Med. Chem. 2016, 31, 46–50. [Google Scholar] [CrossRef] [Green Version]
- Harsha, C.; Banik, K.; Bordoloi, D.; Kunnumakkara, A.B. Antiulcer properties of fruits and vegetables: A mechanism based perspective. Food Chem. Toxicol. 2017, 108, 104–119. [Google Scholar] [CrossRef]
- Ramos, S. Effects of dietary flavonoids on apoptotic pathways related to cancer chemoprevention. J. Nutr. Biochem. 2007, 18, 427–442. [Google Scholar] [CrossRef] [Green Version]
- Onoda, C.; Kuribayashi, K.; Nirasawa, S.; Tsuji, N.; Tanaka, M.; Kobayashi, D.; Watanabe, N. (-)-Epigallocatechin-3-gallate induces apoptosis in gastric cancer cell lines by down-regulating survivin expression. Int. J. Oncol. 2011, 38, 1403–1408. [Google Scholar] [CrossRef] [Green Version]
- Bao, L.; Liu, F.; Guo, H.B.; Li, Y.; Tan, B.B.; Zhang, W.X.; Peng, Y.H. Naringenin inhibits proliferation, migration, and invasion as well as induces apoptosis of gastric cancer SGC7901 cell line by downregulation of AKT pathway. Tumour Biol. 2016, 37, 11365–11374. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, J.; Luo, J.; Wang, Q.; Liu, J.; Zeng, Q.Q. Study on Mulberry Anthocyanins Induced Autophagy and Apoptosis of Human Gastric Cancer SGC-7901 Cell Autophagy. Zhong Yao Cai 2016, 39, 1134–1138. [Google Scholar]
- Aragones, N.; Izarzugaza, M.I.; Ramos, M.; Chirlaque, M.D.; Almar, E.; Martinez, C.; Oesophago-gastric Cancer Working Group. Trends in oesophago-gastric cancer incidence in Spain: Analysis by subsite and histology. Ann. Oncol. 2010, 21 (Suppl. 3), iii69–iii75. [Google Scholar] [CrossRef]
StoP Project | |||||
---|---|---|---|---|---|
Study | Study Type | Country 1 | Cases (%) | Control (%) | Total 2 (%) |
La Vecchia et al. [15] | Hospital-based | Italy 1 | 223 (29.2) | 541 (70.8) | 764 (6.4) |
Ferraroni et al. [16] | Population-based | Italy 2 | 1001 (46.6) | 1145 (53.3) | 2146 (18) |
Trichipoulos et al. [9] | Hospital-based | Greece | 105 (51.7) | 98 (48.2) | 203 (1.7) |
Zaridze et al. [18] | Hospital-based | Russia | 361 (43.2) | 474 (56.8) | 835 (7) |
Lunet et al. [19] | Population-based | Portugal | 577 (26.8) | 1578 (73.2) | 2155 (18.0) |
Aragonés;Martín et al. [20] | Population-based | Spain 1 | 329 (10.9) | 2700 (89.1) | 3029 (25.3) |
Vioque et al. [21] | Hospital-based | Spain 2 | 317 (44.5) | 396 (55.5) | 713 (7.2) |
Lopez-Carrillo et al. [12] | Population-based | Mexico 1 | 248 (34.2) | 478 (65.8) | 726 (6) |
Lopez-Carrillo et al. [22] | Population-based | Mexico 2 | 220 (22.6) | 752 (77.4) | 972 (8.1) |
Lopez-Carrillo et al. [23] | Hospital-based | Mexico 3 | 90 (33.3) | 182 (66.7) | 272 (2.3) |
Total | – | – | 3471 (100) | 8344 (100) | 11,815 (100) |
Polyphenol Class | Variables | Quartile of Polyphenols Intake b | OR Continuous c | |||
---|---|---|---|---|---|---|
1 d | 2 | 3 | 4 | |||
Total polyphenols | Mean intake (mg/day) a | 285.6 | 402.6 | 534.2 | 853.0 | 0.88 (0.78–0.97) |
Cases | 991 | 809 | 846 | 825 | ||
OR (95% CI) | 1 | 0.73 (0.59–0.88) | 0.72 (0.54–0.89) | 0.67 (0.54–0.81) | ||
Total flavonoids | Mean intake (mg/day) a | 123.7 | 184.1 | 256.4 | 415.0 | 0.90 (0.82–0.98) |
Cases | 942 | 814 | 830 | 885 | ||
OR (95% CI) | 1 | 0.78 (0.67–0.88) | 0.76 (0.58–0.94) | 0.73 (0.55–0.90) | ||
Anthocyanidins | Mean intake (mg/day) a | 12.8 | 21.9 | 36.9 | 79.3 | 0.93 (0.86–1.01) |
Cases | 951 | 779 | 857 | 884 | ||
OR (95% CI) | 1 | 0.65 (0.52–0.85) | 0.78 (0.62–0.93) | 0.74 (0.56–0.92) | ||
Flavanols | Mean intake (mg/day) a | 33.9 | 54.0 | 90.6 | 179.6 | 0.93 (0.85–1.00) |
Cases | 903 | 841 | 837 | 891 | ||
OR (95% CI) | 1 | 0.84 (0.73–0.95) | 0.73 (0.67–0.88) | 0.77 (0.66–0.88) | ||
Flavonols | Mean intake (mg/day) a | 19.6 | 30.2 | 36.7 | 61.2 | 0.90 (0.80–1.00) |
Cases | 982 | 818 | 798 | 873 | ||
OR (95% CI) | 1 | 0.75(0.62–0.88) | 0.70 (0.49–0.91) | 0.76 (0.51–1.01) | ||
Flavanones | Mean intake (mg/day) a | 7.1 | 19.9 | 34.8 | 59.0 | 0.84 (0.78–0.90) |
Cases | 1173 | 934 | 716 | 648 | ||
OR (95% CI) | 1 | 0.73 (0.55–0.92) | 0.60 (0.40–0.79) | 0.57 (0.44–0.69) | ||
Total phenolic acids | Mean intake (mg/day) a | 126.5 | 191.2 | 269.9 | 474.5 | 0.93 (0.81–1.04) |
Cases | 1023 | 843 | 822 | 783 | ||
OR (95% CI) | 1 | 0.76 (0.60–0.92) | 0.78 (0.68–0.88) | 0.75 (0.55–0.94) | ||
Hydroxybenzoic acids | Mean intake (mg/day) a | 16.3 | 20.4 | 27.6 | 64.3 | 0.91 (0.85–0.98) |
Cases | 959 | 875 | 813 | 824 | ||
OR (95% CI) | 1 | 0.87 (0.73–1.02) | 0.73 (0.55–0.91) | 0.73 (0.57–0.89) | ||
Hydroxycinnamic acids | Mean intake (mg/day) a | 102.7 | 163.3 | 239.0 | 425.0 | 0.93 (0.82–1.05) |
Cases | 1004 | 866 | 794 | 807 | ||
OR (95% CI) | 1 | 0.81 (0.63–0.99) | 0.75 (0.65–0.85) | 0.82 (0.58–1.06) |
Variable | OR (CI 95%) a | |||||||
---|---|---|---|---|---|---|---|---|
Sex | Age | Social Class | Smoking Status | |||||
Men | Women | ≤60 years | >60 years | Low | Medium-High | Never Smoker | Smoker | |
Total polyphenols | 0.61 (0.44–0.78) | 0.67 (0.52–0.83) | 0.71 (0.56–0.87) | 0.60 (0.43–0.77) | 0.59 (0.46–0.73) | 0.71 (0.54–0.88) | 0.64 (0.48–0.80) | 0.62 (0.45–0.78) |
Total flavonoids | 0.65 (0.45–0.86) | 0.74 (0.56–0.92) | 0.67 (0.49–0.85) | 0.74 (0.51–0.96) | 0.65 (0.42–0.88) | 0.73 (0.58–0.89) | 0.65 (0.48–0.83) | 0.63 (0.44–0.82) |
Anthocyanidins | 0.68 (0.46–0.90) | 0.79 (0.60–0.98) | 0.66 (0.52–0.81) | 0.78 (0.56–1.00) | 0.63 (0.44–0.81) | 0.74 (0.56–0.93) | 0.78 (0.56–1.00) | 0.64 (0.47–0.81) |
Flavanols | 0.76 (0.59–0.92) | 0.72 (0.54–0.90) | 0.80 (0.62–0.97) | 0.70 (0.53–0.88) | 0.72 (0.55–0.89) | 0.77 (0.61–0.93) | 0.65 (0.49–0.80) | 0.78 (0.63–0.93) |
Flavonols | 0.66 (0.43–0.89) | 0.75 (0.48–1.01) | 0.71 (0.55–0.87) | 0.74 (0.43–1.04) | 0.77 (0.44–1.11) | 0.66 (0.53–0.79) | 0.73 (0.57–0.89) | 0.67 (0.52–0.82) |
Flavanones | 0.55 (0.39–0.71) | 0.56 (0.43–0.68) | 0.48 (0.35–0.61) | 0.59 (0.43–0.74) | 0.51 (0.31–0.71) | 0.61 (0.48–0.73) | 0.56 (0.42–0.70) | 0.52 (0.37–0.67) |
Total phenolic acids | 0.66 (0.46–0.86) | 0.65 (0.45–0.84) | 0.78 (0.50–1.06) | 0.62 (0.43–0.81) | 0.55 (0.39–0.71) | 0.74 (0.50–0.97) | 0.68 (0.46–0.91 | 0.67 (0.50–0.84) |
Hydroxybenzoic acids | 0.65 (0.49–0.80) | 0.81 (0.48–1.14) | 0.72 (0.53–0.92) | 0.59 (0.40–0.78) | 0.77 (0.53–1.00) | 0.62 (0.39–0.84) | 0.77 (0.48–1.06) | 0.67 (0.55–0.80) |
Hydroxycinnamic acids | 0.74 (0.48–1.00) | 0.67 (0.45–0.90) | 0.87 (0.55–1.18) | 0.69 (0.45–0.93) | 0.56 (0.35–0.76) | 0.86 (0.56–1.16) | 0.69 (0.44–0.93) | 0.75 (0.52–0.99) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vitelli-Storelli, F.; Rossi, M.; Pelucchi, C.; Rota, M.; Palli, D.; Ferraroni, M.; Lunet, N.; Morais, S.; López-Carrillo, L.; Zaridze, D.G.; et al. Polyphenol Intake and Gastric Cancer Risk: Findings from the Stomach Cancer Pooling Project (StoP). Cancers 2020, 12, 3064. https://doi.org/10.3390/cancers12103064
Vitelli-Storelli F, Rossi M, Pelucchi C, Rota M, Palli D, Ferraroni M, Lunet N, Morais S, López-Carrillo L, Zaridze DG, et al. Polyphenol Intake and Gastric Cancer Risk: Findings from the Stomach Cancer Pooling Project (StoP). Cancers. 2020; 12(10):3064. https://doi.org/10.3390/cancers12103064
Chicago/Turabian StyleVitelli-Storelli, Facundo, Marta Rossi, Claudio Pelucchi, Matteo Rota, Domenico Palli, Monica Ferraroni, Nuno Lunet, Samantha Morais, Lizbeth López-Carrillo, David Georgievich Zaridze, and et al. 2020. "Polyphenol Intake and Gastric Cancer Risk: Findings from the Stomach Cancer Pooling Project (StoP)" Cancers 12, no. 10: 3064. https://doi.org/10.3390/cancers12103064
APA StyleVitelli-Storelli, F., Rossi, M., Pelucchi, C., Rota, M., Palli, D., Ferraroni, M., Lunet, N., Morais, S., López-Carrillo, L., Zaridze, D. G., Maximovich, D., Rubín García, M., Castaño-Vinyals, G., Aragonés, N., Garcia de la Hera, M., Hernández-Ramírez, R. U., Negri, E., Bonzi, R., Ward, M. H., ... Martín Sánchez, V. (2020). Polyphenol Intake and Gastric Cancer Risk: Findings from the Stomach Cancer Pooling Project (StoP). Cancers, 12(10), 3064. https://doi.org/10.3390/cancers12103064