Targeting CREB in Cancer Therapy: A Key Candidate or One of Many? An Update
Abstract
:Simple Summary
Abstract
1. Introduction
2. Functions and Signaling Pathways of CREB Transcription Factor
3. Recent Advances in Tumor Pathophysiology: The Relevance of CREB Engagement
3.1. CREB and Melanoma
3.2. CREB and Gastric Cancer
3.3. CREB and Leukemia
3.4. CREB and Brain Cancer
3.5. CREB and Testis
4. How Far Is the Design of CREB Inhibitor in Clinical?
4.1. CREB:CBP Inhibitors
4.2. CREB:CRE-DNA Inhibitors
4.3. CREB-Related Pathways Inhibitors
5. GSKJ4 as a Novel CREB Inhibitor in AML Models
6. Strengths and Weaknesses of Targeting CREB in Cancer
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carugo, A.; Draetta, G.F. Academic Discovery of Anticancer Drugs: Historic and Future Perspectives. Annu. Rev. Cancer Biol. 2019, 3, 385–408. [Google Scholar] [CrossRef]
- Dhandapani, M.; Goldman, A. Preclinical Cancer Models and Biomarkers for Drug Development: New Technologies and Emerging Tools. J. Mol. Biomark. Diagn. 2017, 8, 356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, A.; Giuliano, C.J.; Palladino, A.; John, K.M.; Abramowicz, C.; Yuan, M.L.; Sausville, E.L.; Lukow, D.A.; Liu, L.; Chait, A.R.; et al. Off-target toxicity is a common mechanism of action of cancer drugs undergoing clinical trials. Sci. Transl. Med. 2019, 11, eaaw8412. [Google Scholar] [CrossRef]
- Dagogo-Jack, I.; Shaw, A.T. Tumour heterogeneity and resistance to cancer therapies. Nat. Rev. Clin. Oncol. 2018, 15, 81–94. [Google Scholar] [CrossRef] [PubMed]
- Ireson, C.R.; Alavijeh, M.S.; Palmer, A.M.; Fowler, E.R.; Jones, H.J. The role of mouse tumour models in the discovery and development of anticancer drugs. Br. J. Cancer 2019, 121, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Jacoby, M.A.; Duncavage, E.J.; Walter, M.J. Implications of Tumor Clonal Heterogeneity in the Era of Next-Generation Sequencing. Trends Cancer 2015, 1, 231–241. [Google Scholar] [CrossRef]
- McGranahan, N.; Swanton, C. Clonal Heterogeneity and Tumor Evolution: Past, Present, and the Future. Cell 2017, 168, 613–628. [Google Scholar] [CrossRef]
- Mazor, T.; Pankov, A.; Song, J.S.; Costello, J.F. Intratumoral Heterogeneity of the Epigenome. Cancer Cell 2016, 29, 440–451. [Google Scholar] [CrossRef] [Green Version]
- Greaves, M. Evolutionary determinants of cancer. Cancer Discov. 2015, 5, 806–820. [Google Scholar] [CrossRef] [Green Version]
- Seth, S.; Li, C.Y.; Ho, I.L.; Corti, D.; Loponte, S.; Sapio, L.; Del Poggetto, E.; Yen, E.Y.; Robinson, F.S.; Peoples, M.; et al. Pre-existing Functional Heterogeneity of Tumorigenic Compartment as the Origin of Chemoresistance in Pancreatic Tumors. Cell Rep. 2019, 26, 1518–1532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jamal-Hanjani, M.; Quezada, S.A.; Larkin, J.; Swanton, C. Translational implications of tumor heterogeneity. Clin. Cancer Res. 2015, 21, 1258–1266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fatehullah, A.; Tan, S.H.; Barker, N. Organoids as an in vitro model of human development and disease. Nat. Cell Biol. 2016, 18, 246–254. [Google Scholar] [CrossRef]
- Guerin, M.V.; Finisguerra, V.; van den Eynde, B.J.; Bercovici, N.; Trautmann, A. Preclinical murine tumor models: A structural and functional perspective. Elife 2020, 9, e50740. [Google Scholar] [CrossRef] [PubMed]
- Jardim, D.L.; Groves, E.S.; Breitfeld, P.P.; Kurzrock, R. Factors associated with failure of oncology drugs in late-stage clinical development: A systematic review. Cancer Treat. Rev. 2017, 52, 12–21. [Google Scholar] [CrossRef]
- Illiano, M.; Conte, M.; Salzillo, A.; Ragone, A.; Spina, A.; Nebbioso, A.; Altucci, L.; Sapio, L.; Naviglio, S. The KDM Inhibitor GSKJ4 Triggers CREB Downregulation via a Protein Kinase A and Proteasome-Dependent Mechanism in Human Acute Myeloid Leukemia Cells. Front. Oncol. 2020, 10, 799. [Google Scholar] [CrossRef] [PubMed]
- Montminy, M.R.; Bilezikjian, L.M. Binding of a Nuclear Protein to the cyclic-AMP Response Element of the Somatostatin Gene. Nature 1987, 328, 175–178. [Google Scholar] [CrossRef] [PubMed]
- Ichiki, T. Role of cAMP Response Element Binding Protein in Cardiovascular Remodeling: Good, Bad, or Both? Arterioscler. Thromb. Vasc. Biol. 2006, 26, 449–455. [Google Scholar] [CrossRef] [Green Version]
- Steven, A.; Seliger, B. Control of CREB Expression in Tumors: From Molecular Mechanisms and Signal Transduction Pathways to Therapeutic Target. Oncotarget 2016, 7, 35454–35465. [Google Scholar] [CrossRef] [Green Version]
- Don, J.; Stelzer, G. The Expanding Family of CREB/CREM Transcription Factors That Are Involved With Spermatogenesis. Mol. Cell Endocrinol. 2002, 187, 115–124. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, J.; Lu, L.; Yin, L.; Xu, M.; Wang, Y.; Zhou, Z.; Sha, J. Cloning and Expression of a Novel CREB mRNA Splice Variant in Human Testis. Reproduction 2004, 128, 775–782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Felinski, E.A.; Quinn, P.G. The coactivator dTAF(II)110/hTAF(II)135 is sufficient to recruit a polymerase complex and activate basal transcription mediated by CREB. Proc. Natl. Acad. Sci. USA 2001, 98, 13078–13083. [Google Scholar] [CrossRef] [Green Version]
- Mayr, B.M.; Guzman, E.; Montmin, M. Glutamine Rich and Basic region/leucine Zipper (bZIP) Domains Stabilize cAMP-response Element-Binding Protein (CREB) Binding to Chromatin. J. Biol. Chem. 2004, 280, 15103–15110. [Google Scholar] [CrossRef] [Green Version]
- Schumacher, M.A.; Goodman, R.H.; Brennan, R.G. The Structure of a CREB bZIP.somatostatin CRE Complex Reveals the Basis for Selective Dimerization and Divalent Cation-Enhanced DNA Binding. J. Biol. Chem. 2000, 275, 35242–35247. [Google Scholar] [CrossRef] [Green Version]
- Thakur, J.K.; Yadav, A.; Yadav, G. Molecular Recognition by the KIX Domain and Its Role in Gene Regulation. Nucleic Acids Res. 2014, 42, 2112–2125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, F.; Marshall, C.B.; Ikura, M. Transcriptional/epigenetic regulator CBP/p300 in tumorigenesis: Structural and functional versatility in target recognition. Cell Mol. Life Sci. 2013, 7021, 3989–4008. [Google Scholar] [CrossRef]
- Johannessen, M.; Moens, U. Multisite phosphorylation of the cAMP response element-binding protein (CREB) by diversity of protein kinases. Front. Biosci. 2007, 12, 1814–1832. [Google Scholar] [CrossRef] [Green Version]
- Naqvi, S.; Martin, K.J.; Arthur, J.S. CREB phosphorylation at Ser133 regulates transcription via distinct mechanisms downstream of cAMP and MAPK signalling. Biochem. J. 2014, 458, 469–479. [Google Scholar] [CrossRef]
- Wheaton, K.L.; Hansen, K.F.; Aten, S.; Sullivan, K.A.; Yoon, H.; Hoyt, K.R.; Obrietan, K. The Phosphorylation of CREB at Serine 133 Is a Key Event for Circadian Clock Timing and Entrainment in the Suprachiasmatic Nucleus. J. Biol. Rhythm. 2018, 33, 497–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takemoto-Kimura, S.; Suzuki, K.; Horigane, S.I.; Kamijo, S.; Inoue, M.; Sakamoto, M.; Fujii, H.; Bito, H. Calmodulin Kinases: Essential Regulators in Health and Disease. J. Neurochem. 2017, 141, 808–818. [Google Scholar] [CrossRef] [Green Version]
- van Dam, H.; Castellazzi, M. Distinct Roles of Jun:Fos and Jun:ATF Dimers in Oncogenesis. Oncogene 2001, 20, 2453–2464. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Ren, Y.; Zhuang, H.; Meng, X.; Huang, S.; Li, Y.; Hehir, M.; Wang, P. Decrease of phosphorylated proto-oncogene CREB at Ser 133 site inhibits growth and metastatic activity of renal cell cancer. Expert Opin. Targets 2015, 19, 985–995. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Le, Y.; Sun, F.; Li, K.; Xu, Y. ILF2 Directly Binds and Stabilizes CREB to Stimulate Malignant Phenotypes of Liver Cancer Cells. Anal. Cell Pathol. 2019, 2019, 1575031. [Google Scholar] [CrossRef] [Green Version]
- Briand, L.A.; Lee, B.G.; Lelay, J.; Kaestner, K.H.; Blendy, J.A. Serine 133 Phosphorylation Is Not Required for Hippocampal CREB-mediated Transcription and Behavior. Learn. Mem. 2015, 22, 109–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saura, C.A.; Cardinaux, J.R. Emerging Roles of CREB-Regulated Transcription Coactivators in Brain Physiology and Pathology. Trends Neurosci. 2017, 40, 720–733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tasoulas, J.; Rodon, L.; Kaye, F.J.; Montminy, M.; Amelio, A.L. Adaptive Transcriptional Responses by CRTC Coactivators in Cancer. Trends Cancer 2019, 5, 111–127. [Google Scholar] [CrossRef] [PubMed]
- Steven, A.; Friedrich, M.; Jank, P.; Heimer, N.; Budczies, J.; Denkert, C.; Seliger, B. What turns CREB on? And off? And why does it matter? Cell Mol. Life Sci. 2020. online ahead of print. [Google Scholar] [CrossRef]
- Sands, W.A.; Palmer, T.M. Regulating gene transcription in response to cyclic AMP elevation. Cell Signal 2008, 20, 460–466. [Google Scholar] [CrossRef]
- Chen, Y.C.; Hsu, W.L.; Ma, Y.L.; Tai, D.J.; Lee, E.H. CREB SUMOylation by the E3 ligase PIAS1 enhances spatial memory. J. Neurosci. 2014, 34, 9574–9589. [Google Scholar] [CrossRef]
- Lin, X.P.; Feng, L.; Xie, C.G.; Chen, D.B.; Pei, Z.; Liang, X.L.; Xie, Q.Y.; Li, X.H.; Pan, S.Y. Valproic acid attenuates the suppression of acetyl histone H3 and CREB activity in an inducible cell model of Machado-Joseph disease. Int. J. Dev. Neurosci. 2014, 38, 17–22. [Google Scholar] [CrossRef]
- Comerford, K.M.; Leonard, M.O.; Karhausen, J.; Carey, R.; Colgan, S.P.; Taylor, C.T. Small ubiquitin-related modifer-1 modifcation mediates resolution of CREB dependent responses to hypoxia. Proc. Natl. Acad. Sci. USA 2003, 100, 986–991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pigazzi, M.; Manara, E.; Bresolin, S.; Tregnago, C.; Beghin, A.; Baron, E.; Giarin, E.; Cho, E.C.; Masetti, R.; Rao, D.S.; et al. MicroRNA-34b Promoter Hypermethylation Induces CREB Overexpression and Contributes to Myeloid Transformation. Haematologica 2013, 98, 602–610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, W.; Liu, X.; Cao, J.; Meng, F.; Li, M.; Chen, B.; Zhang, J. miR-134 Regulates ischemia/reperfusion Injury-Induced Neuronal Cell Death by Regulating CREB. Signaling. J. Mol. Neurosci. 2015, 55, 821–829. [Google Scholar] [CrossRef] [PubMed]
- Belgacem, Y.H.; Borodinsky, L.N. CREB at the Crossroads of Activity-Dependent Regulation of Nervous System Development and Function. Adv. Exp. Med. Biol. 2017, 1015, 19–39. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Xu, J.; Lazarovici, P.; Quirion, R.; Zheng, W. cAMP Response Element-Binding Protein (CREB): A Possible Signaling Molecule Link in the Pathophysiology of Schizophrenia. Front. Mol. Neurosci. 2018, 11, 255. [Google Scholar] [CrossRef] [PubMed]
- Amidfar, M.; de Oliveira, J.; Kucharska, E.; Budni, J.; Kim, Y.K. CREB and BDNF: Neurobiology and treatment of Alzheimer’s disease. Life Sci. 2020, 257, 118020. [Google Scholar] [CrossRef]
- Tang, M.; Shi, S.; Guo, Y.; Xu, W.; Wang, L.; Chen, Y.; Wang, Z.; Qiao, Z. GSK-3/CREB pathway involved in the gx-50′s effect on Alzheimer’s disease. Neuropharmacology 2014, 81, 256–266. [Google Scholar] [CrossRef]
- Pigazzi, M.; Ricotti, E.; Germano, G.; Faggian, D.; Aricò, M.; Basso, G. cAMP Response Element Binding Protein (CREB) Overexpression CREB Has Been Described as Critical for Leukemia Progression. Hematologica 2007, 92, 1435–1437. [Google Scholar] [CrossRef] [Green Version]
- Mantamadiotis, T.; Papalexis, N.; Dworkin, S. CREB signalling in neural stem/progenitor cells: Recent developments and the implications for brain tumour biology. Bioessays 2012, 34, 293–300. [Google Scholar] [CrossRef]
- Park, S.J.; Yoon, B.H.; Kim, S.K.; Kim, S.Y. GENT2: An Updated Gene Expression Database for Normal and Tumor Tissues. BMC Med. Genom. 2019, 12, 101. [Google Scholar] [CrossRef]
- Uhlen, M.; Zhang, C.; Lee, S.; Sjöstedt, E.; Fagerberg, L.; Bidkhori, G.; Benfeitas, R.; Arif, M.; Liu, Z.; Edfors, F.; et al. A Pathology Atlas of the Human Cancer Transcriptome. Science 2017, 357, eaan2507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Mello, S.A.; Finlay, G.J.; Baguley, B.C.; Askarian-Amiri, M.E. Signaling Pathways in Melanogenesis. Int. J. Mol. Sci. 2016, 17, 1144. [Google Scholar] [CrossRef] [Green Version]
- Slominski, A.; Kim, T.K.; Brożyna, A.A.; Janjetovic, Z.; Brooks, D.L.P.; Schwab, L.P.; Skobowiat, C.; Jóźwicki, W.; Seagroves, T.N. The role of melanogenesis in regulation of melanoma behavior: Melanogenesis leads to stimulation of HIF-1α expression and HIF-dependent attendant pathways. Arch. Biochem. Biophys. 2014, 563, 79–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, M.G. CAS (CSE1L) Signaling Pathway in Tumor Progression and Its Potential as a Biomarker and Target for Targeted Therapy. Tumor Biol. 2016, 37, 13077–13090. [Google Scholar] [CrossRef]
- Yun, C.Y.; Ko, S.M.; Choi, Y.P.; Kim, B.J.; Lee, J.; Kim, J.M.; Kim, J.Y.; Song, J.Y.; Kim, S.H.; Hwang, B.Y.; et al. α-Viniferin Improves Facial Hyperpigmentation via Accelerating Feedback Termination of cAMP/PKA- Signaled Phosphorylation Circuit in Facultative Melanogenesis. Theranostics 2018, 8, 2031–2043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melnikova, V.O.; Dobroff, A.S.; Melnikova, M.Z.; Villares, G.J.; Braeuer, R.R.; Wang, H.; Huang, L.; Bar-Eli, M. CREB Inhibits AP-2α Expression to Regulate the Malignant Phenotype of Melanoma. PLoS ONE 2010, 5, e12452. [Google Scholar] [CrossRef] [Green Version]
- Dobroff, A.S.; Wang, H.; Melnikova, V.O.; Villares, G.J.; Zigler, M.; Huang, L.; Bar-Eli, M. Silencing cAMP-response element-binding protein (CREB) identifies CYR61 as a tumor suppressor gene in melanoma. J. Biol. Chem. 2009, 284, 26194–26206. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; He, Y.; Robinson, V.; Yang, Z.; Hessler, P.; Lasko, L.M.; Lu, X.; Bhathena, A.; Lai, A.; Uziel, T.; et al. Targeting Lineage-specific MITF Pathway in Human Melanoma Cell Lines by A-485, the Selective Small-molecule Inhibitor of p300/CBP. Mol. Cancer 2018, 17, 2543–2550. [Google Scholar] [CrossRef] [Green Version]
- Cancer Genome Atlas Network. Genomic Classification of Cutaneous Melanoma. Cell 2015, 161, 1681–1696. [Google Scholar] [CrossRef]
- Choi, M.H.; Jo, H.G.; Yang, J.H.; Ki, S.H.; Shin, H.J. Antioxidative and Anti-Melanogenic Activities of Bamboo Stems (Phyllostachys nigra variety henosis) via PKA/CREB-Mediated MITF Downregulation in B16F10 Melanoma Cells. Int. J. Mol. Sci. 2018, 19, 409. [Google Scholar] [CrossRef] [Green Version]
- Qomaladewi, N.P.; Kim, M.Y.; Cho, J.Y. Rottlerin Reduces cAMP/CREB-Mediated Melanogenesis via Regulation of Autophagy. Int. J. Mol. Sci. 2019, 20, 2081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, J.; Ren, T.; Li, Y.; Cheng, A.; Xie, W.; Xu, L.; Peng, L.; Lin, J.; Lian, L.; Diao, Y.; et al. Oleoylethanolamide Inhibits α-melanocyte Stimulating Hormone-Stimulated Melanogenesis via ERK, Akt and CREB Signaling Pathways in B16 Melanoma Cells. Oncotarget 2017, 8, 56868–56879. [Google Scholar] [CrossRef] [Green Version]
- Seo, G.H.; Ha, Y.; Park, A.H.; Kwon, O.W.; Kim, Y.J. Leathesia difformis Extract Inhibits α-MSH-Induced Melanogenesis in B16F10 Cells via Down-Regulation of CREB Signaling Pathway. Int. J. Mol. Sci. 2019, 20, 536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yun, C.Y.; Roh, E.; Kim, S.H.; Han, J.; Lee, J.; Jung, D.E.; Kim, G.H.; Jung, S.H.; Cho, W.J.; Han, S.B.; et al. Stem Cell Factor-Inducible MITF-M Expression in Therapeutics for Acquired Skin Hyperpigmentation. Theranostics 2020, 10, 340–352. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Hong, A.R.; Kim, Y.H.; Yoo, H.; Kang, S.W.; Chang, S.E.; Song, Y. JNK suppresses melanogenesis by interfering with CREB-regulated transcription coactivator 3-dependent MITF expression. Theranostics 2020, 10, 4017–4029. [Google Scholar] [CrossRef]
- Lee, W.R.; Shen, S.C.; Wu, P.R.; Chou, C.L.; Shih, Y.H.; Yeh, C.M.; Yeh, K.T.; Jiang, M.C. CSE1L Links cAMP/PKA and Ras/ERK pathways and regulates the expressions and phosphorylations of ERK1/2, CREB, and MITF in melanoma cells. Mol. Carcinog. 2016, 55, 1542–1552. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.I.; Jeong, D.S.; Jung, E.C.; Lee, J.H.; Kim, C.D.; Yoon, T.J. Wnt/β-catenin signaling inhibitor ICG-001 enhances pigmentation of cultured melanoma cells. J. Dermatol. Sci. 2016, 84, 160–168. [Google Scholar] [CrossRef] [PubMed]
- Gajos-Michniewicz, A.; Czyz, M. WNT Signaling in Melanoma. Int. J. Mol. Sci. 2020, 21, 4852. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Diao, L.; Yu, S.; Xu, X.; Li, J.; Zhang, R.; Yang, Y.; Werner, H.M.J.; Eterovic, A.K.; Yuan, Y.; et al. The Genomic Landscape and Clinical Relevance of A-to-I RNA Editing in Human Cancers. Cancer Cell 2015, 28, 515–528. [Google Scholar] [CrossRef] [Green Version]
- Shoshan, E.; Mobley, A.K.; Braeuer, R.R.; Kamiya, T.; Huang, L.; Vasquez, M.E.; Salameh, A.; Lee, H.J.; Kim, S.J.; Ivan, C.; et al. Reduced adenosine-to-inosine miR-455-5p editing promotes melanoma growth and metastasis. Nat. Cell Biol. 2015, 17, 311–321. [Google Scholar] [CrossRef] [PubMed]
- Voropaev, H.; Vatkin, M.G.; Shneor, D.; Luski, S.; Honigman, A.; Frenkel, S. Infectious Knockdown of CREB and HIF-1 for the Treatment of Metastatic Uveal Melanoma. Cancers 2019, 11, 1056. [Google Scholar] [CrossRef] [Green Version]
- Chang, H.; Jung, W.Y.; Kang, Y.; Lee, H.; Kim, A.; Kim, B. Expression of ROR1, pAkt, and pCREB in gastric adenocarcinoma. Ann. Diagn. Pathol. 2015, 19, 330–334. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.W.; Chen, X.; Gao, J.W.; Zhang, H.; Ma, R.R.; Gao, Z.H.; Gao, P. High expression of cAMP responsive element binding protein 1 (CREB1) is associated with metastasis, tumor stage and poor outcome in gastric cancer. Oncotarget 2015, 6, 10646–10657. [Google Scholar] [CrossRef] [PubMed]
- Resende, C.; Regalo, G.; Durães, C.; Pinto, M.T.; Wen, X.; Figueiredo, C.; Carneiro, F.; Machado, J.C. Interleukin-1B signalling leads to increased survival of gastric carcinoma cells through a CREB-C/EBPβ-associated mechanism. Gastric Cancer 2016, 19, 74–84. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Cheng, Z.; Liu, F.; Zhang, H.; Li, J.; Li, F. CREB Is a Key Negative Regulator of Carbonic Anhydrase IX (CA9) in Gastric Cancer. Cell Signal 2015, 27, 1369–1379. [Google Scholar] [CrossRef]
- van Kuijk, S.J.; Yaromina, A.; Houben, R.; Niemans, R.; Lambin, P.; Dubois, L.J. Prognostic Significance of Carbonic Anhydrase IX Expression in Cancer Patients: A Meta-Analysis. Front. Oncol. 2016, 6, 69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Guo, X.; Zhang, D.; Fan, Y.; Qin, L.; Dong, S. Upregulated miR-132 in Lgr5+ gastric cancer stem cell-like cells contributes to cisplatin-resistance via SIRT1/CREB/ABCG2 signaling pathway. Mol. Carcinog. 2017, 56, 2022–2034. [Google Scholar] [CrossRef] [PubMed]
- Rao, M.; Zhu, Y.; Cong, X.; Li, Q. Knockdown of CREB1 inhibits tumor growth of human gastric cancer in vitro and in vivo. Oncol. Rep. 2017, 37, 3361–3368. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Feng, D.; Gao, C.; Zhang, Y.; Xu, J.; Wu, M.; Zhan, X. Isoforms S and L of MRPL33 from alternative splicing have isoform-specific roles in the chemoresponse to epirubicin in gastric cancer cells via the PI3K/AKT signaling pathway. Int. J. Oncol. 2019, 54, 1591–1600. [Google Scholar] [CrossRef] [Green Version]
- Cho, E.C.; Mitton, B.; Sakamoto, K.M. CREB and Leukemogenesis. Crit. Rev. Oncol. 2011, 16, 37–46. [Google Scholar] [CrossRef] [Green Version]
- van der Sligte, N.E.; Kampen, K.R.; ter Elst, A.; Scherpen, F.J.G.; Meeuwsen-de Boer, T.G.J.; Guryev, V.; van Leeuwen, F.N.; Kornblau, S.M.; de Bont, E.S.J.M. Essential Role for cyclic-AMP Responsive Element Binding Protein 1 (CREB) in the Survival of Acute Lymphoblastic Leukemia. Oncotarget 2015, 6, 14970–14981. [Google Scholar] [CrossRef]
- Shankar, D.B.; Cheng, J.C.; Kinjo, K.; Federman, N.; Moore, T.B.; Gill, A.; Rao, N.P.; Landaw, E.M.; Sakamoto, K.M. The Role of CREB as a Proto-Oncogene in Hematopoiesis and in Acute Myeloid Leukemia. Cancer Cell 2005, 7, 351–362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, H.; Gong, Z.; Lian, Y.; Zhou, J.; Wang, X. Gene Expression Profile Regulated by CREB in K562 Cell Line. Transpl. Proc. 2016, 48, 2221–2234. [Google Scholar] [CrossRef]
- Tregnago, C.; Manara, E.; Zampini, M.; Bisio, V.; Borga, C.; Bresolin, S.; Aveic, S.; Germano, G.; Basso, G.; Pigazzi, M. CREB Engages C/EBPδ to Initiate Leukemogenesis. Leukemia 2016, 30, 1887–1896. [Google Scholar] [CrossRef]
- Balasis, M.; Vedder, A.; Sun, L.; Quintana, A.; Dhawan, A.; Newman, H.; Merlevede, J.; McGraw, K.; Kruer, T.; Ben-Crentsilet, N.; et al. Depletion of the Long Non-Coding RNA MALAT1 primes Chronic Myelomonocytic Leukemia (CMML) for Differentiation Therapy with All- Trans retinoic Acid (ATRA) through the Transcription Factor CREB. Blood 2019, 7, 50666–50681. [Google Scholar] [CrossRef]
- Pigazzi, M.; Manara, E.; Baron, E.; Basso, G. miR-34b Targets Cyclic AMP-responsive Element Binding Protein in Acute Myeloid Leukemia. Cancer Res. 2009, 69, 2471–2478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chae, H.D.; Mitton, B.; Lacayo, N.J.; Sakamoto, K.M. Replication Factor C3 Is a CREB Target Gene That Regulates Cell Cycle Progression Through the Modulation of Chromatin Loading of PCNA. Leukemia 2015, 29, 1379–1389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shabestari, R.M.; Safa, M.; Alikarami, F.; Banan, M.; Kazemi, A. CREB Knockdown Inhibits Growth and Induces Apoptosis in Human pre-B Acute Lymphoblastic Leukemia Cells through Inhibition of Prosurvival Signals. Biomed. Pharmacother. 2017, 87, 274–279. [Google Scholar] [CrossRef]
- Jiang, X.; Hu, C.; Arnovitz, S.; Bugno, J.; Yu, M.; Zuo, Z.; Chen, P.; Huang, H.; Ulrich, B.; Gurbuxani, S.; et al. miR-22 has a potent anti-tumour role with therapeutic potential in acute myeloid leukaemia. Nat. Commun. 2016, 7, 11452. [Google Scholar] [CrossRef] [Green Version]
- Tan, X.; Wang, S.; Zhu, L.; Chao, W.; Yin, B.; Zhao, J.; Yuan, J.; Qiang, B.; Peng, X. cAMP response element-binding protein promotes gliomagenesis by modulating the expression of oncogenic microRNA-23a. Proc. Natl. Acad. Sci. USA 2012, 109, 15805–15810. [Google Scholar] [CrossRef] [Green Version]
- Mantamadiotis, T. Towards Targeting PI3K-Dependent Regulation of Gene Expression in Brain Cancer. Cancer 2017, 9, 60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajesh, Y.; Pal, I.; Banik, P.; Chakraborty, S.; Borkar, S.A.; Dey, G.; Mukherjee, A.; Mandal, M. Insights into molecular therapy of glioma: Current challenges and next generation blueprint. Acta Pharm. Sin. 2017, 38, 591–613. [Google Scholar] [CrossRef] [Green Version]
- Barresi, V.; Mondello, S.; Branca, G.; Rajan, T.S.; Vitarelli, E.; Tuccari, G. p-CREB expression in human gliomas: Potential use in the differential diagnosis between astrocytoma and oligodendroglioma. Hum. Path 2015, 46, 231–238. [Google Scholar] [CrossRef]
- Daniel, P.; Filiz, G.; Brown, D.V.; Hollande, F.; Gonzales, M.; D’Abaco, G.; Papalexis, N.; Phillips, W.A.; Malaterre, J.; Ramsay, R.G.; et al. Selective CREB-dependent cyclin expression mediated by the PI3K and MAPK pathways supports glioma cell proliferation. Oncogenesis 2014, 3, e108. [Google Scholar] [CrossRef] [PubMed]
- Daniel, P.M.; Filiz, G.; Brown, D.V.; Christie, M.; Waring, P.M.; Zhang, Y.; Haynes, J.M.; Pouton, C.; Flanagan, D.; Vincan, E.; et al. PI3K activation in neural stem cells drives tumorigenesis which can be ameliorated by targeting the cAMP response element binding protein. Neuro-Oncology 2018, 20, 1344–1355. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, S.; Tucker-Burden, C.; Kaissi, E.; Newsam, A.; Duggireddy, H.; Chau, M.; Zhang, C.; Diwedi, B.; Rupji, M.; Seby, S.; et al. CDK5 Inhibition Resolves PKA/cAMP-Independent Activation of CREB1 Signaling in Glioma Stem Cells. Cell Rep. 2018, 23, 1651–1664. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.T.; Shang, E.; Karpel-Massler, G.; Siegelin, M.D. Metabolic Reprogramming by c-MET Inhibition as a Targetable Vulnerability in Glioblastoma pgc1. Oncoscience 2020, 7, 14–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geng, F.; Wu, J.L.; Lu, G.F.; Liang, Z.P.; Duan, Z.L.; Gu, X. MicroRNA-132 targets PEA-15 and suppresses the progression of astrocytoma in vitro. J. Neurooncol. 2016, 129, 211–220. [Google Scholar] [CrossRef]
- Peng, B.; Hu, S.; Jun, Q.; Luo, D.; Zhang, X.; Zhao, H.; Li, D. MicroRNA-200b targets CREB1 and suppresses cell growth in human malignant glioma. Mol. Cell. Biochem. 2013, 379, 51–58. [Google Scholar] [CrossRef]
- Qian, J.; Li, R.; Wang, Y.Y.; Shi, Y.; Luan, W.K.; Tao, T.; Zhang, J.X.; Xu, Y.C.; You, Y.P. MiR-1224-5p acts as a tumor suppressor by targeting CREB1 in malignant gliomas. Mol. Cell. Biochem. 2015, 403, 33–41. [Google Scholar] [CrossRef]
- Xu, W.M.; Chen, J.; Chen, H.; Diao, R.Y.; Fok, K.L.; Dong, J.D.; Sun, T.T.; Chen, W.Y.; Yu, M.K.; Zhang, X.H.; et al. Defective CFTR-dependent CREB Activation Results in Impaired Spermatogenesis and Azoospermia. PLoS ONE 2011, 6, e19120. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Ji, J.; Zhuang, J.; Wang, L.; Hong, F. Nanoparticulate TiO₂ Induced Suppression of Spermatogenesis Is Involved in Regulatory Dysfunction of the cAMP-CREB/CREM Signaling Pathway in Mice. J. Biomed. Nanotechnol. 2019, 15, 571–580. [Google Scholar] [CrossRef]
- Thompson, I.R.; Ciccone, N.A.; Xu, S.; Zaytseva, S.; Carroll, R.S.; Kaiser, U.B. GnRH Pulse Frequency-Dependent Stimulation of FSHβ Transcription Is Mediated via Activation of PKA and CREB. Mol. Endocrinol. 2013, 27, 606–618. [Google Scholar] [CrossRef] [PubMed]
- Ipsa, E.; Cruzat, V.F.; Kagize, J.N.; Yovich, J.L.; Keane, K. Growth Hormone and Insulin-Like Growth Factor Action in Reproductive Tissues. Front. Endocrinol. 2019, 10, 777. [Google Scholar] [CrossRef]
- Arai, K.Y.; Roby, K.F.; Terranova, P.F. Tumor Necrosis Factor Alpha (TNF) Suppresses cAMP Response Element (CRE) Activity and Nuclear CRE Binding Protein in MA-10 Mouse Leydig Tumor Cells. Endocrine 2005, 27, 17–24. [Google Scholar] [CrossRef]
- Lee, W.; Son, Y.; Jang, H.; Bae, M.J.; Kim, J.; Kang, D.; Kim, J.S. Protective Effect of Administered Rolipram Against Radiation-Induced Testicular Injury in Mice. World J. Men Health 2015, 33, 20–29. [Google Scholar] [CrossRef] [Green Version]
- Tang, Z.; Li, C.; Kang, B.; Gao, G.; Li, C.; Zhang, Z. GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017, 45, W98–W102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Illiano, M.; Nigro, E.; Sapio, L.; Caiafa, I.; Spina, A.; Scudiero, O.; Bianco, A.; Esposito, S.; Mazzeo, F.; Pedone, P.V.; et al. Adiponectin Down-Regulates CREB and Inhibits Proliferation of A549 Lung Cancer Cells. Pulm. Pharm. 2017, 45, 114–120. [Google Scholar] [CrossRef]
- Huang, S.; Cui, P.; Lin, S.; Yao, X.; Wang, X.; Ren, Y.; Weng, G. The Transcription Factor Creb is Involved in Sorafenib-Inhibited Renal Cancer Cell Proliferation, Migration and Invasion. Acta Pharm. 2018, 68, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Gschwantler-Kaulich, D.; Grunt, T.W.; Muhr, D.; Wagner, R.; Kölbl, H.; Singer, C.F. HER Specific TKIs Exert Their Antineoplastic Effects on Breast Cancer Cell Lines through the Involvement of STAT5 and JNK. PLoS ONE 2016, 11, e0146311. [Google Scholar] [CrossRef] [Green Version]
- Best, J.L.; Amezcua, C.A.; Mayr, B.; Flechner, L.; Murawsky, C.M.; Emerson, B.; Zor, Y.; Gardner, K.H.; Montminy, M. Identification of small-molecule antagonists that inhibit an activator:coactivator interaction. Proc. Natl. Acad. Sci. USA 2004, 101, 17622–17627. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Chung, W.C.; Ryu, S.H.; Ju, Z.; Tran, H.T.; Kim, E.; Kurie, J.M.; Koo, J.S. Cyclic AMP-responsive element binding protein- and nuclear factor-kappaB-regulated CXC chemokine gene expression in lung carcinogenesis. Cancer Prev. Res. 2008, 1, 316–328. [Google Scholar] [CrossRef] [Green Version]
- Uttarkar, S.; Dukare, S.; Bopp, B.; Goblirsch, M.; Jose, J.; Klempnauer, K.H. Naphthol AS-E Phosphate Inhibits the Activity of the Transcription Factor Myb by Blocking the Interaction with the KIX Domain of the Coactivator p300. Mol. Cancer 2015, 2014, 1276–1285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steven, A.; Heiduk, M.; Recktenwald, C.V.; Hiebl, B.; Wickenhauser, C.; Massa, C.; Seliger, B. Colorectal Carcinogenesis: Connecting K-RAS-Induced Transformation and CREB Activity In Vitro and In Vivo. Mol. Cancer Res. 2015, 13, 1248–1262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, B.; Wu, C.; Chen, W.; Qiu, L.; Li, S.; Wang, T.; Xie, H.; Li, Y.; Li, C.; Li, L. The stress hormone norepinephrine promotes tumor progression through β2-adrenoreceptors in oral cancer. Arch. Oral Biol. 2020, 113, 104712. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.W.; Park, H.S.; Park, S.A.; Ryu, S.H.; Meng, W.; Jürgensmeier, J.M.; Kurie, J.M.; Hong, W.K.; Boyer, J.L.; Herbst, R.S. A Novel Small Molecule Inhibitor Targeting CREB CBP Complex Possesses Anti-Cancer Effects along with Cell Cycle Regulation, Autophagy Suppression and Endoplasmic Reticulum Stress. PLoS ONE 2015, 10, e012262. [Google Scholar] [CrossRef] [PubMed]
- Park, S.A.; Platt, J.; Lee, J.W.; López-Giráldez, F.; Herbst, R.S.; Koo, J.S. E2F8 as a Novel Therapeutic Target for Lung Cancer. J. Natl. Cancer Inst. 2015, 107, djv151. [Google Scholar] [CrossRef] [Green Version]
- Jiang, M.; Li, B.X.; Xie, F.; Delaney, F.; Xiao, X. Design, Synthesis and Biological Evaluation of Conformationally Constrained Analogs of Naphthol AS-E as Inhibitors of CREB-mediated Gene Transcription. J. Med. Chem. 2012, 55, 4020–4024. [Google Scholar] [CrossRef]
- Li, B.X.; Xie, F.; Fan, Q.; Barnhart, K.M.; Moore, C.E.; Rheingold, A.L.; Xiao, X. Novel Type of Prodrug Activation through a Long-Range O, N-Acyl Transfer: A Case of Water-Soluble CREB Inhibitor. ACS Med. Chem. Lett. 2014, 5, 1104–1109. [Google Scholar] [CrossRef] [PubMed]
- Xie, F.; Li, B.X.; Kassenbrock, A.; Xue, C.; Wang, X.; Qian, D.Z.; Sears, R.C.; Xiao, X. Identification of a Potent Inhibitor of CREB-Mediated Gene Transcription with Efficacious in Vivo Anticancer Activity. J. Med. Chem. 2015, 58, 5075–5087. [Google Scholar] [CrossRef] [Green Version]
- Li, B.X.; Gardner, R.; Xue, C.; Qian, D.Z.; Xie, F.; Thomas, G.; Kazmierczak, S.C.; Habecker, B.A.; Xiao, X. Systemic Inhibition of CREB is Well-tolerated in vivo. Sci. Rep. 2016, 6, 34513. [Google Scholar] [CrossRef] [Green Version]
- Qin, Y.; Chen, W.; Jiang, G.; Zhou, L.; Yang, X.; Li, H.; He, X.; Wang, H.L.; Zhou, Y.B.; Huanget, S.; et al. Interfering MSN-NONO complex-activated CREB signaling serves as a therapeutic strategy for triple-negative breast cancer. Sci. Adv. 2020, 6, eaaw9960. [Google Scholar] [CrossRef] [Green Version]
- Srinivasan, S.; Totiger, T.; Shi, C.; Castellanos, J.; Lamichhane, P.; Dosch, A.R.; Messaggio, F.; Kashikar, N.; Honnenahally, K.; Ban, Y.; et al. Tobacco Carcinogen-Induced Production of GM-CSF Activates CREB to Promote Pancreatic Cancer. Cancer Res. 2018, 78, 6146–6158. [Google Scholar] [CrossRef] [Green Version]
- Narasimhan, G.; Carrillo, E.D.; Hernández, A.; García, M.C.; Sánchez, J.A. Protective Action of Diazoxide on Isoproterenol-Induced Hypertrophy Is Mediated by Reduction in MicroRNA-132 Expression. J. Cardiovasc. Pharm. 2018, 72, 222–230. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Li, T.; Xue, H.; Wang, L.; Deng, L.; Xie, Y.; Bai, X.; Xin, D.; Yuan, H.; Qiu, J.; et al. Inhibition of Necroptosis Rescues SAH-Induced Synaptic Impairments in Hippocampus via CREB-BDNF Pathway. Front. Neurosci. 2019, 12, 990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guan, X.; Wang, Y.; Kai, G.; Zhao, S.; Huang, T.; Li, Y.; Xu, Y.; Zhang, L.; Pang, T. Cerebrolysin Ameliorates Focal Cerebral Ischemia Injury Through Neuroinflammatory Inhibition via CREB/PGC-1α Pathway. Front. Pharm. 2019, 10, 1245. [Google Scholar] [CrossRef] [PubMed]
- Xie, F.; Martín-Acosta, P.; Li, B.X.; Xiao, X. Mechanistic insights into the activation of ester prodrugs of 666-15. Bioorg. Med. Chem. Lett. 2020, 30, 127455. [Google Scholar] [CrossRef]
- Rishi, V.; Potter, T.; Laudeman, J.; Reinhart, T.; Silvers, T.; Selby, M.; Stevenson, T.; Krosky, P.; Stephen, A.G.; Acharya, A.; et al. A high-throughput fluorescence-anisotropy screen that identifies small molecule inhibitors of the DNA binding of B-ZIP transcription factors. Anal. Biochem. 2005, 340, 259–271. [Google Scholar] [CrossRef]
- Steven, A.; Leisz, S.; Wickenhauser, C.; Schulz, K.; Mougiakakos, D.; Kiessling, R.; Denkert, C.; Seliger, B. Linking CREB function with altered metabolism in murine fibroblast-based model cell lines. Oncotarget 2017, 8, 97439–97463. [Google Scholar] [CrossRef] [Green Version]
- Logun, M.T.; Wynens, K.E.; Simchick, G.; Zhao, W.; Mao, L.; Zhao, Q.; Mukherjee, S.; Brat, D.J.; Karumbaiah, L. Surfen-mediated blockade of extratumoral chondroitin sulfate glycosaminoglycans inhibits glioblastoma invasion. FASEB J. 2019, 33, 11973–11992. [Google Scholar] [CrossRef] [Green Version]
- Warford, J.R.; Lamport, A.C.; Clements, D.R.; Malone, A.; Kennedy, B.E.; Kim, Y.; Gujar, S.A.; Hoskin, D.W.; Easton, A.S. Surfen, a proteoglycan binding agent, reduces inflammation but inhibits remyelination in murine models of Multiple Sclerosis. Acta Neuropathol. Commun. 2018, 6, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rishi, V.; Oh, W.J.; Heyerdahl, S.L.; Zhao, J.; Scudiero, D.; Shoemaker, R.H.; Vinson, C. 12 Arylstibonic acids that inhibit the DNA binding of five B-ZIP dimers. J. Struct. Biol. 2010, 170, 216–225. [Google Scholar] [CrossRef] [PubMed]
- Krosky, P.M.; Kenney, S.; Vistica, D.T.; Scudiero, D.A.; Shoemaker, R.H. NSC13778 disrupts interactions between transcription factors TFE3, ASPL-TFE3 type 1, and ASPL-TFE3 type 2 and cognate DNA. Proc. Am. Assoc. Cancer Res. 2006, 47, 4622. [Google Scholar]
- Yang, Q.E.; Stephen, A.G.; Adelsberger, J.W.; Flores-Teviño, S.M.; Borkow, G.; Rodriguez-Padilla, C. Discovery of small-molecule human immunodeficiency virus type 1 entry inhibitors that target the gp120-binding domain of CD4. J. Virol. 2005, 79, 6122–6133. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Stagno, J.R.; Varticovski, L.; Nimako, E.; Rishi, V.; McKinnon, K.; Akee, R.; Shoemaker, R.H.; Ji, X.; Vinson, C. P6981, an arylstibonic acid, is a novel low nanomolar inhibitor of cAMP response element-binding protein binding to DNA. Mol. Pharm. 2012, 82, 814–823. [Google Scholar] [CrossRef] [Green Version]
- Tsalkova, T.; Mei, F.C.; Cheng, X. A fluorescence-based high-throughput assay for the discovery of exchange protein directly activated by cyclic AMP (EPAC) antagonists. PLoS ONE 2012, 7, e3044. [Google Scholar] [CrossRef]
- Sakamoto, K.M.; Frank, D.A. CREB in the pathophysiology of cancer: Implications for targeting transcription factors for cancer therapy. Clin. Cancer Res. 2009, 15, 2583–2587. [Google Scholar] [CrossRef] [Green Version]
- Sapio, L.; Di Maiolo, F.; Illiano, M.; Esposito, A.; Chiosi, E.; Spina, A.; Naviglio, S. Targeting protein kinase A in cancer therapy: An update. EXCLI J. 2014, 13, 843–855. [Google Scholar] [CrossRef]
- Wiedemann, B.; Weisner, J.; Rauh, D. Chemical Modulation of Transcription Factors. Medchemcomm 2018, 9, 1249–1272. [Google Scholar] [CrossRef]
- Steven, A.; Leisz, S.; Massa, C.; Iezzi, M.; Lattanzio, R.; Lamolinara, A.; Bukur, J.; Müller, A.; Hiebl, B.; Holzhausenet, H.J.; et al. HER-2/neu Mediates Oncogenic Transformation via Altered CREB Expression and Function. Mol. Cancer Res. 2013, 11, 1462–1477. [Google Scholar] [CrossRef] [Green Version]
- Kim, C.; Lee, J.H.; Baek, S.H.; Ko, J.H.; Nam, D.; Ahn, K.S. Korean Red Ginseng Extract Enhances the Anticancer Effects of Sorafenib Through Abrogation of CREB and c-Jun Activation in Renal Cell Carcinoma. Phytother. Res. 2017, 31, 1078–1089. [Google Scholar] [CrossRef] [PubMed]
- Collins, D.M.; Conlon, N.T.; Kannan, S.; Verma, C.S.; Eli, L.D.; Lalani, A.S.; Crown, J. Preclinical Characteristics of the Irreversible Pan-HER Kinase Inhibitor Neratinib Compared With Lapatinib: Implications for the Treatment of HER2-Positive and HER2-Mutated Breast Cancer. Cancers 2019, 11, 737. [Google Scholar] [CrossRef] [Green Version]
- Satoh, T.; Xu, R.H.; Chung, H.C.; Sun, G.P.; Doi, T.; Xu, J.M.; Tsuji, A.; Omuro, Y.; Li, J.; Wang, J.W.; et al. Lapatinib Plus Paclitaxel Versus Paclitaxel Alone in the Second-Line Treatment of HER2-amplified Advanced Gastric Cancer in Asian Populations: TyTAN—A Randomized, Phase III Study. J. Clin. Oncol. 2014, 32, 2039–2049. [Google Scholar] [CrossRef]
- Zhu, Y.J.; Zheng, B.; Wang, H.Y.; Chen, L. New knowledge of the mechanisms of sorafenib resistance in liver cancer. Acta Pharm. Sin. 2017, 38, 614–622. [Google Scholar] [CrossRef] [Green Version]
- Lencioni, R.; Llovet, J.M.; Han, G.; Tak, W.Y.; Yang, J.; Guglielmi, A.; Paik, S.W.; Reig, M.; Kim, D.T.; Chau, G.Y.; et al. Sorafenib or placebo plus TACE with doxorubicin-eluting beads for intermediate stage HCC: The SPACE trial. J. Hepatol. 2016, 64, 1090–1098. [Google Scholar] [CrossRef] [Green Version]
- Ueshima, K.; Kudo, M.; Tanaka, M.; Kumada, T.; Chung, H.; Hagiwara, S.; Inoue, T.; Yada, N.; Kitaia, S. Phase I/II Study of Sorafenib in Combination with Hepatic Arterial Infusion Chemotherapy Using Low-Dose Cisplatin and 5-Fluorouracil. Liver Cancer 2015, 4, 263–273. [Google Scholar] [CrossRef] [Green Version]
- Sun, W.; Powell, M.; O’Dwyer, P.J.; Catalano, P.; Ansari, R.H.; Benson, A.B., III. Phase II Study of Sorafenib in Combination With Docetaxel and Cisplatin in the Treatment of Metastatic or Advanced Gastric and Gastroesophageal Junction Adenocarcinoma: ECOG 5203. J. Clin. Oncol. 2010, 28, 2947–2951. [Google Scholar] [CrossRef]
- Wu, D.W.; Wu, T.C.; Wu, J.Y.; Cheng, Y.W.; Chen, Y.C.; Lee, M.C.; Chen, C.Y.; Lee, H. Phosphorylation of Paxillin Confers Cisplatin Resistance in Non-Small Cell Lung Cancer via Activating ERK-mediated Bcl-2 Expression. Oncogene 2014, 33, 4385–4395. [Google Scholar] [CrossRef] [Green Version]
- Gross, A.M.; Wolters, P.L.; Dombi, E.; Baldwin, A.; Whitcomb, P.; Fisher, M.J.; Weiss, B.; Kim, A.; Bornhorst, M.; Shah, A.C.; et al. Selumetinib in Children with Inoperable Plexiform Neurofibromas. N. Engl. J. Med. 2020, 382, 1430–1442. [Google Scholar] [CrossRef]
- Robert, C.; Dummer, R.; Gutzmer, R.; Lorigan, P.; Kim, K.B.; Nyakas, M.; Arance, A.; Liszkay, G.; Schadendorf, D.; Cantarini, M.; et al. Selumetinib Plus Dacarbazine Versus Placebo Plus Dacarbazine as First-Line Treatment for BRAF-mutant Metastatic Melanoma: A Phase 2 Double-Blind Randomised Study. Lancet Oncol. 2013, 14, 733–740. [Google Scholar] [CrossRef]
- Daures, M.; Idrissou, M.; Judes, G.; Rifaï, K.; Penault-Llorca, F.; Bignon, Y.J.; Guy, L.; Bernard-Gallon, D. A new metabolic gene signature in prostate cancer regulated by JMJD3 and EZH2. Oncotarget 2018, 9, 23413–23425. [Google Scholar] [CrossRef] [Green Version]
- Lowe, B.R.; Maxham, L.A.; Hamey, J.J.; Wilkins, M.R.; Partridge, J.F. Histone H3 Mutations: An Updated View of Their Role in Chromatin Deregulation and Cancer. Cancers 2019, 11, 660. [Google Scholar] [CrossRef] [Green Version]
- Ntziachristos, P.; Tsirigos, A.; Welstead, G.G.; Trimarchi, T.; Bakogianni, S.; Xu, L.; Loizou, E.; Holmfeldt, L.; Strikoudis, A.; King, B.; et al. Contrasting roles of histone 3 lysine 27 demethylases in acute lymphoblastic leukaemia. Nature 2014, 514, 513–517. [Google Scholar] [CrossRef]
- Bender, S.; Tang, Y.; Lindroth, A.M.; Hovestadt, V.; Jones, D.T.W.; Kool, M.; Zapatka, M.; Northcott, P.A.; Sturm, D.; Wanget, W.; et al. Reduced H3K27me3 and DNA hypomethylation are major drivers of gene expression in K27M mutant pediatric high-grade gliomas. Cancer Cell 2013, 24, 660–672. [Google Scholar] [CrossRef]
- Pan, M.R.; Hsu, M.C.; Chen, L.T.; Hung, W.C. Orchestration of H3K27 Methylation: Mechanisms and Therapeutic Implication. Cell Mol. Life Sci. 2018, 75, 209–223. [Google Scholar] [CrossRef] [Green Version]
- Sui, A.; Xu, Y.; Li, Y.; Hu, Q.; Wang, Z.; Zhang, H.; Yang, J.; Guo, X.; Zhao, W. The pharmacological role of histone demethylase JMJD3 inhibitor GSK-J4 on glioma cells. Oncotarget 2017, 8, 68591–68598. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhang, M.; Sheng, M.; Zhang, P.; Chen, Z.; Xing, W.; Bai, J.; Cheng, T.; Yang, F.C.; Zhou, Y. Therapeutic potential of GSK-J4, a histone demethylase KDM6B/JMJD3 inhibitor, for acute myeloid leukemia. J. Cancer Res. Clin. Oncol. 2018, 144, 1065–1077. [Google Scholar] [CrossRef] [Green Version]
- Nikolaev, A.; Fiveash, J.B.; Yang, E.S. Combined Targeting of Mutant p53 and Jumonji Family Histone Demethylase Augments Therapeutic Efficacy of Radiation in H3K27M DIPG. Int. J. Mol. Sci. 2020, 21, 490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, N.; Xu, L.; Wu, X.; Zhang, L.; Fei, X.; Cao, Y.; Zhang, F. GSKJ4, an H3K27me3 demethylase inhibitor, effectively suppresses the breast cancer stem cells. Exp. Cell Res. 2017, 359, 405–414. [Google Scholar] [CrossRef] [PubMed]
- Watarai, H.; Okada, M.; Kuramoto, K. Impact of H3K27 Demethylase Inhibitor GSKJ4 on NSCLC Cells Alone and in Combination with Metformin. Anticancer Res. 2016, 36, 6083–6092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morozov, V.M.; Li, Y.; Clowers, M.M.; Ishov, A.M. Inhibitor of H3K27 demethylase JMJD3/UTX GSK-J4 is a potential therapeutic option for castration resistant prostate cancer. Oncotarget 2017, 8, 62131–62142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Illiano, M.; Conte, M.; Sapio, L.; Nebbioso, A.; Spina, A.; Altucci, L.; Naviglio, S. Forskolin Sensitizes Human Acute Myeloid Leukemia Cells to H3K27me2/3 Demethylases GSKJ4 Inhibitor via Protein Kinase A. Front. Pharm. 2018, 9, 792. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Hur, S.W.; Park, J.B.; Seo, J.; Shin, J.J.; Kim, S.Y.; Kim, M.H.; Han, D.H.; Park, J.W.; Park, J.M.; et al. Histone demethylase PHF2 activates CREB and promotes memory consolidation. EMBO Rep. 2019, 20, e45907. [Google Scholar] [CrossRef]
- Palomer, E.; Carretero, J.; Benvegnù, S.; Dotti, C.G.; Martin, M.G. Neuronal activity controls Bdnf expression via Polycomb de-repression and CREB/CBP/JMJD3 activation in mature neurons. Nat. Commun. 2016, 7, 11081. [Google Scholar] [CrossRef] [Green Version]
- Hu, E.; Du, H.; Zhu, X.; Wang, L.; Shang, S.; Wu, X.; Lu, H.; Lu, X. Beta-hydroxybutyrate Promotes the Expression of BDNF in Hippocampal Neurons under Adequate Glucose Supply. Neuroscience 2018, 386, 315–325. [Google Scholar] [CrossRef] [PubMed]
Target | Name | Efficacy (μM) | Anticancer Properties | Other Targets | Clinical Trials |
---|---|---|---|---|---|
CREB:CBP | Naphthol AS-E-P | 6.89 [a] | Primary and T-ALL cells (Jurkat and Molt4) [81] Primary and BCP-ALL cells (Nalm6 and RS4) [81] K-RASV12 transformant cells [114] HER-2/neu+ cells (MCF-7) [140] | NF-κB [112] Myb [113] | N/A |
Naphthol AS-TR-P | 3.70 [a] | LC cells (A549, H441, H1792, H1975, H520, H2170) [117] | E2F8 [117] | ||
666-15 | 0.073 [b] | LC cells (A549) [120] BC cells (MCF-7, MDA-MB-231, MDA-MB-468) [120] PDX model of TNBC (USTC11) [122] PDAC cells (MiaPaCa2) [123] PKT mice [123] | p53, NF-κB [120] | ||
CREB:CRE-DNA | NSC 12155 | 0.6 [c] | HER-2/neu+ cells [129] GBM cells (F98) [130] | C/EBPβ [128] GAG [130] | N/A |
NSC 13778 | 13.9 [c] | N/A | C/EBPβ, VBP, AP-1 [128] TFE3 [133] | ||
P6981 | 0.005 [d] | CCS cells (SU-CCS-1) [135] | C/EBPα, C/EBPβ [135] | ||
NSC 45576 | 11.9 [c] | N/A | C/EBPβ [128] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sapio, L.; Salzillo, A.; Ragone, A.; Illiano, M.; Spina, A.; Naviglio, S. Targeting CREB in Cancer Therapy: A Key Candidate or One of Many? An Update. Cancers 2020, 12, 3166. https://doi.org/10.3390/cancers12113166
Sapio L, Salzillo A, Ragone A, Illiano M, Spina A, Naviglio S. Targeting CREB in Cancer Therapy: A Key Candidate or One of Many? An Update. Cancers. 2020; 12(11):3166. https://doi.org/10.3390/cancers12113166
Chicago/Turabian StyleSapio, Luigi, Alessia Salzillo, Angela Ragone, Michela Illiano, Annamaria Spina, and Silvio Naviglio. 2020. "Targeting CREB in Cancer Therapy: A Key Candidate or One of Many? An Update" Cancers 12, no. 11: 3166. https://doi.org/10.3390/cancers12113166
APA StyleSapio, L., Salzillo, A., Ragone, A., Illiano, M., Spina, A., & Naviglio, S. (2020). Targeting CREB in Cancer Therapy: A Key Candidate or One of Many? An Update. Cancers, 12(11), 3166. https://doi.org/10.3390/cancers12113166