Electronic Cigarettes and Head and Neck Cancer Risk—Current State of Art
Abstract
:Simple Summary
Abstract
1. Introduction
2. Toxic and Carcinogenic Compounds in E-Cigarettes vs. Traditional Cigarettes
3. Interaction with Genetic Material
4. Biological Effects and Risk on Cancer
4.1. The Impact of E-Cigarette Liquid Exposure Based on Cell Models (In Vitro Study)
4.2. The Impact of E-Cigarette Liquid Exposure in Animal Models (In Vivo Studies)
4.3. The Impact of Aerosol from E-Cigarette on Their Users (In Vivo Studies)
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Grana, R.; Benowitz, N.; Glantz, S.A. E-cigarettes: A scientific review. Circulation 2014, 129, 1972–1986. [Google Scholar] [CrossRef] [PubMed]
- European Union. Tobacco Products Directive (2014/40/EU). Available online: https://ec.europa.eu/health/tobacco/products/revision (accessed on 28 April 2020).
- Food and Drug Administration; HHS. Deeming Tobacco Products To Be Subject to the Federal Food, Drug, and Cosmetic Act, as Amended by the Family Smoking Prevention and Tobacco Control Act; Restrictions on the Sale and Distribution of Tobacco Products and Required Warning Statements for Tobacco Products. Final rule. Fed. Regist. 2016, 81, 28973–29106. [Google Scholar]
- Romagna, G.; Allifranchini, E.; Bocchietto, E.; Todeschi, S.; Esposito, M.; Farsalinos, K.E. Cytotoxicity evaluation of electronic cigarette vapor extract on cultured mammalian fibroblasts (ClearStream-LIFE): Comparison with tobacco cigarette smoke extract. Inhal. Toxicol. 2013, 25, 354–361. [Google Scholar] [CrossRef] [PubMed]
- Saitta, D.; Ferro, G.A.; Polosa, R. Achieving appropriate regulations for electronic cigarettes. Ther. Adv. Chronic Dis. 2014, 5, 50–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Commission. Special Eurobarometer 429. Attitudes of Europeans towards Tobacco and Electronic Cigarettes. Available online: http://ec.europa.eu/public_opinion/archives/ebs/ebs_429_en.pdf (accessed on 28 April 2020).
- Kulik, M.C.; Lisha, N.E.; Glantz, S.A. E-cigarettes Associated with Depressed Smoking Cessation: A Cross–sectional Study of 28 European Union Countries. Am. J. Prev. Med. 2018, 54, 603–609. [Google Scholar] [CrossRef]
- Douptcheva, N.; Gmel, G.; Studer, J.; Deline, S.; Etter, J.F. Use of electronic cigarettes among young Swiss men. J. Epidemiol. Community Health 2013, 67, 1075–1076. [Google Scholar] [CrossRef]
- Zhu, S.H.; Gamst, A.; Lee, M.; Cummins, S.; Yin, L.; Zoref, L. The use and perception of electronic cigarettes and snus among the U.S. population. PLoS ONE 2013, 8, e79332. [Google Scholar] [CrossRef] [Green Version]
- Al Rifai, M.; Merchant, A.T.; Nambi, V.; Jia, X.; Gulati, M.; Valero-Elizondo, J.; Nasir, K.; Ballantyne, C.M.; Virani, S.S. Temporal Trends in E–Cigarette Use Among U.S. Adults: Behavioral Risk Factor Surveillance System, 2016 to 2018. Am. J. Med. 2020. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention (CDC). Notes from the field: Electronic cigarette use among middle and high school students—United States, 2011–2012. MMWR Morb. Mortal. Wkly. Rep. 2013, 62, 729–730. [Google Scholar]
- Soneji, S.; Barrington-Trimis, J.L.; Wills, T.A.; Leventhal, A.M.; Unger, J.B.; Gibson, L.A.; Yang, J.; Primack, B.A.; Andrews, J.A.; Miech, R.A.; et al. Association Between Initial Use of e-Cigarettes and Subsequent Cigarette Smoking Among Adolescents and Young Adults: A Systematic Review and Meta-analysis. JAMA Pediatr. 2017, 171, 788–797. [Google Scholar] [CrossRef]
- Cullen, K.A.; Gentzke, A.S.; Sawdey, M.D.; Chang, J.T.; Anic, G.M.; Wang, T.W.; Creamer, M.R.; Jamal, A.; Ambrose, B.K.; King, B.A. E-Cigarette Use Among Youth in the United States, 2019. JAMA 2019, 322, 2095–2103. [Google Scholar] [CrossRef]
- Pisinger, C.; Døssing, M. A systematic review of health effects of electronic cigarettes. Prev. Med. 2014, 69, 248–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, I.L. FDA summary of adverse events on electronic cigarettes. Nicotine Tob. Res. 2013, 15, 615–616. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Special Eurobarometer 458. Attitudes of Europeans towards Tobacco and Electronic Cigarettes. Available online: https://data.europa.eu/euodp/en/data/dataset/S2146_87_1_458_ENG (accessed on 27 April 2020).
- Caponnetto, P.; Russo, C.; Bruno, C.M.; Alamo, A.; Amaradio, M.D.; Polosa, R. Electronic cigarette: A possible substitute for cigarette dependence. Monaldi Arch. Chest Dis. 2013, 79, 12–19. [Google Scholar] [CrossRef] [Green Version]
- Britton, J.; Bogdanovica, I. Electronic Cigarettes—A Report Commissioned by Public Health England. Public Health England 2014. Available online: https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/311887/Ecigarettes_report.pdf (accessed on 27 April 2020).
- Everard, C.D.; Silveira, M.L.; Kimmel, H.L.; Marshall, D.; Blanco, C.; Compton, W.M. Association of Electronic Nicotine Delivery System Use With Cigarette Smoking Relapse Among Former Smokers in the United States. JAMA Netw. Open 2020, 3, e204813. [Google Scholar] [CrossRef]
- Tzortzi, A.; Kapetanstrataki, M.; Evangelopoulou, V.; Beghrakis, P. A Systematic Literature Review of E-Cigarette-Related Illness and Injury: Not Just for the Respirologist. Int. J. Environ. Res. Public Health 2020, 17, 2248. [Google Scholar] [CrossRef] [Green Version]
- De Jesús, V.R.; Chambers, D.M.; Reese, C.; Braselton, M.; Espinosa, P.; Corstvet, J.; Blount, B.C. Novel Methods for the Analysis of Toxicants in Bronchoalveolar Lavage Fluid Samples from E-cigarette, or Vaping, Product Use-Associated Lung Injury (EVALI) Cases: Selected Petroleum Distillates. Rapid Commun. Mass Spectrom. 2020, 34, e8898. [Google Scholar] [CrossRef]
- Galo, J.; Celli, D.; Gross, D.; Holt, G.; Campos, M. A presentation of E-Cigarette vaping associated lung injury (EVALI) caused by THC-Containing electronic smoking device. Respir. Med. Case Rep. 2020, 31, 101154. [Google Scholar] [CrossRef]
- Lee, H. Vitamin E acetate as linactant in the pathophysiology of EVALI. Med. Hypotheses 2020, 144, 110182. [Google Scholar] [CrossRef]
- The Lancet Respiratory Medicine. The EVALI outbreak and vaping in the COVID-19 era. Lancet Respir. Med. 2020, 8, 831. [Google Scholar] [CrossRef]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [Green Version]
- Welz, C.; Canis, M.; Schwenk-Zieger, S.; Becker, S.; Stucke, V.; Ihler, F.; Baumeister, P. Cytotoxic and Genotoxic Effects of Electronic Cigarette Liquids on Human Mucosal Tissue Cultures of the Oropharynx. J. Environ. Pathol. Toxicol. Oncol. 2016, 35, 343–354. [Google Scholar] [CrossRef]
- Etter, J.F. Levels of saliva cotinine in electronic cigarette users. Addiction 2014, 109, 825–829. [Google Scholar] [CrossRef]
- Goniewicz, M.L.; Hajek, P.; McRobbie, H. Nicotine content of electronic cigarettes, its release in vapour and its consistency across batches: Regulatory implications. Addiction 2014, 109, 500–507. [Google Scholar] [CrossRef]
- Cheng, T. Chemical evaluation of electronic cigarettes. Tob. Control 2014, 23 (Suppl. 2), ii11–ii17. [Google Scholar] [CrossRef]
- Famele, M.; Ferranti, C.; Abenavoli, C.; Palleschi, L.; Mancinelli, R.; Draisci, R. The chemical components of electronic cigarette cartridges and refill fluids: Review of analytical methods. Nicotine Tob. Res. 2015, 17, 271–279. [Google Scholar] [CrossRef]
- Haussmann, H.J.; Fariss, M.W. Comprehensive review of epidemiological and animal studies on the potential carcinogenic effects of nicotine per se. Crit. Rev. Toxicol. 2016, 46, 701–734. [Google Scholar] [CrossRef] [Green Version]
- Sanner, T.; Grimsrud, T.K. Nicotine: Carcinogenicity and Effects on Response to Cancer Treatment—A Review. Front. Oncol. 2015, 5, 196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaal, C.; Chellappan, S. Nicotine-Mediated Regulation of Nicotinic Acetylcholine Receptors in Non-Small Cell Lung Adenocarcinoma by E2F1 and STAT1 Transcription Factors. PLoS ONE 2016, 11, e0156451. [Google Scholar] [CrossRef]
- Talhout, R.; Schulz, T.; Florek, E.; van Benthem, J.; Wester, P.; Opperhuizen, A. Hazardous compounds in tobacco smoke. Int. J. Environ. Res. Public Health 2011, 8, 613–628. [Google Scholar] [CrossRef]
- Szyfter, K.; Napierala, M.; Florek, E.; Braakhuis, B.J.M.; Takes, R.P.; Rodrigo, J.P.; Rinaldo, A.; Silver, C.E.; Ferlito, A. Molecular and health effects in the upper respiratory tract associated with tobacco smoking other than cigarettes. Int. J. Cancer 2019, 144, 2635–2643. [Google Scholar] [CrossRef]
- Jethwa, A.R.; Khariwala, S.S. Tobacco–related carcinogenesis in head and neck cancer. Cancer Metastasis Rev. 2017, 36, 411–423. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.H.; Shin, H.S. Measurement of aldehydes in replacement liquids of electronic cigarettes by headspace gas chromatography–mass spectrometry. B Korean Chem. Soc. 2013, 34, 2691–2696. [Google Scholar] [CrossRef] [Green Version]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Tobacco smoke and involuntary smoking. IARC Monogr. Eval. Carcinog. Risks Hum. 2004, 83, 1–1413. [Google Scholar]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Formaldehyde, 2–butoxyethanol and 1–tert–butoxypropan–2–ol. IARC Monogr. Eval. Carcinog. Risks Hum. 2006, 88, 1–478. [Google Scholar]
- Mizumoto, A.; Ohashi, S.; Hirohashi, K.; Amanuma, Y.; Matsuda, T.; Muto, M. Molecular Mechanisms of Acetaldehyde-Mediated Carcinogenesis in Squamous Epithelium. Int. J. Mol. Sci. 2017, 18, 1943. [Google Scholar] [CrossRef] [Green Version]
- Margham, J.; McAdam, K.; Forster, M.; Liu, C.; Wright, C.; Mariner, D.; Proctor, C. Chemical Composition of Aerosol from an E–Cigarette: A Quantitative Comparison with Cigarette Smoke. Chem. Res. Toxicol. 2016, 29, 1662–1678. [Google Scholar] [CrossRef]
- Rawlinson, C.; Martin, S.; Frosina, J.; Wright, C. Chemical characterisation of aerosols emitted by electronic cigarettes using thermal desorption-gas chromatography-time of flight mass spectrometry. J. Chromatogr. A 2017, 1497, 144–154. [Google Scholar] [CrossRef]
- Khariwala, S.S.; Carmella, S.G.; Stepanov, I.; Fernandes, P.; Lassig, A.A.; Yueh, B.; Hatsukami, D.; Hecht, S.S. Elevated levels of 1–hydroxypyrene and N′–nitrosonornicotine in smokers with head and neck cancer: A matched control study. Head Neck 2013, 35, 1096–1100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goniewicz, M.L.; Kuma, T.; Gawron, M.; Knysak, J.; Kosmider, L. Nicotine levels in electronic cigarettes. Nicotine Tob. Res. 2013, 15, 158–166. [Google Scholar] [CrossRef] [Green Version]
- Woźniak, A.; Napierała, M.; Golasik, M.; Herman, M.; Walas, S.; Piekoszewski, W.; Szyfter, W.; Szyfter, K.; Golusiński, W.; Barałkiewicz, D.; et al. Metal concentrations in hair of patients with various head and neck cancers as a diagnostic aid. Biometals 2016, 29, 81–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fowles, J.; Barreau, T.; Wu, N. Cancer and Non-Cancer Risk Concerns from Metals in Electronic Cigarette Liquids and Aerosols. Int. J. Environ. Res. Public Health 2020, 17, 2146. [Google Scholar] [CrossRef] [Green Version]
- Goniewicz, M.L.; Knysak, J.; Gawron, M.; Kosmider, L.; Sobczak, A.; Kurek, J.; Prokopowicz, A.; Jablonska-Czapla, M.; Rosik-Dulewska, C.; Havel, C.; et al. Levels of selected carcinogens and toxicants in vapour from electronic cigarettes. Tob. Control 2014, 23, 133–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bam, T.S.; Bellew, W.; Berezhnova, I.; Jackson-Morris, A.; Jones, A.; Latif, E.; Molinari, M.A.; Quan, G.; Singh, R.J.; Wisotzky, M. Tobacco Control Department International Union Against Tuberculosis and Lung Disease. Position statement on electronic cigarettes or electronic nicotine delivery systems. Int. J. Tuberc. Lung Dis. 2014, 18, 5–7. [Google Scholar] [CrossRef] [PubMed]
- Aguayo, F.; Muñoz, J.P.; Perez-Dominguez, F.; Carrillo-Beltrán, D.; Oliva, C.; Calaf, G.M.; Blanco, R.; Nuñez-Acurio, D. High-Risk Human Papillomavirus and Tobacco Smoke Interactions in Epithelial Carcinogenesis. Cancers 2020, 12, 2201. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, I.; Hoffmann, D. The changing cigarette: Chemical studies and bioassays. In Tobacco: Science, Policy and Public Health; Boyle, P., Gray, N., Henningfield, J., Seffrin, J., Zatonski, W., Eds.; Oxford University Press: Oxford, UK, 2010; pp. 281–286. [Google Scholar]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Personal habits and indoor combustions. Volume 100 E. A review of human carcinogens. IARC Monogr. Eval. Carcinog. Risks Hum. 2012, 100, 1–538. [Google Scholar]
- Williams, M.; Villarreal, A.; Bozhilov, K.; Lin, S.; Talbot, P. Metal and silicate particles including nanoparticles are present in electronic cigarette cartomizer fluid and aerosol. PLoS ONE 2013, 8, e57987. [Google Scholar] [CrossRef] [Green Version]
- Gaur, S.; Agnihotri, R. Health Effects of Trace Metals in Electronic Cigarette Aerosols-a Systematic Review. Biol. Trace Elem. Res. 2019, 188, 295–315. [Google Scholar] [CrossRef]
- Behar, R.Z.; Wang, Y.; Talbot, P. Comparing the cytotoxicity of electronic cigarette fluids, aerosols and solvents. Tob. Control 2018, 27, 325–333. [Google Scholar] [CrossRef]
- Löhler, J.; Wollenberg, B. Are electronic cigarettes a healthier alternative to conventional tobacco smoking? Eur. Arch. Otorhinolaryngol. 2019, 276, 17–25. [Google Scholar] [CrossRef]
- Kim, H.J.; Shin, H.S. Determination of tobacco–specific nitrosamines in replacement liquids of electronic cigarettes by liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 2013, 1291, 48–55. [Google Scholar] [CrossRef]
- Pankow, J.F.; Kim, K.; McWhirter, K.J.; Luo, W.; Escobedo, J.O.; Strongin, R.M.; Duell, A.K.; Peyton, D.H. Benzene formation in electronic cigarettes. PLoS ONE 2017, 12, e0173055. [Google Scholar] [CrossRef]
- Ogunwale, M.A.; Mingxiao, L.; Raju, M.V.R.; Chen, Y.; Nantz, M.H.; Conklin, D.J.F. Aldehyde Detection in Electronic Cigarette Aerosols. ACS Omega 2017, 2, 1207–1214. [Google Scholar] [CrossRef]
- Khlystov, A.; Samburova, V. Flavoring Compounds Dominate Toxic Aldehyde Production during E–Cigarette Vaping. Environ. Sci. Technol. 2016, 50, 13080–13085. [Google Scholar] [CrossRef]
- Aherrera, A.; Olmedo, P.; Grau-Perez, M.; Tanda, S.; Goessler, W.; Jarmul, S.; Chen, R.; Cohen, J.E.; Rule, A.M.; Navas-Acien, A. The association of e-cigarette use with exposure to nickel and chromium: A preliminary study of non-invasive biomarkers. Environ. Res. 2017, 159, 313–320. [Google Scholar] [CrossRef]
- Taylor, M.; Carr, T.; Oke, O.; Jaunky, T.; Breheny, D.; Lowe, F.; Gaca, M. E-cigarette aerosols induce lower oxidative stress in vitro when compared to tobacco smoke. Toxicol. Mech. Methods 2016, 26, 465–476. [Google Scholar] [CrossRef]
- Ganapathy, V.; Manyanga, J.; Brame, L.; McGuire, D.; Sadhasivam, B.; Floyd, E.; Rubenstein, D.A.; Ramachnadran, I.; Wagener, T.; Queimado, L. Electronic cigarette aerosols suppress cellular antioxidant defenses and induce significant oxidative DNA damage. PLoS ONE 2017, 12, e0177780. [Google Scholar] [CrossRef] [Green Version]
- Anderson, C.; Majeste, A.; Hanus, J.; Wang, S. E-Cigarette Aerosol Exposure Induces Reactive Oxygen Species, DNA Damage, and Cell Death in Vascular Endothelial Cells. Toxicol. Sci. 2016, 154, 332–340. [Google Scholar] [CrossRef] [Green Version]
- Muthumalage, T.; Prinz, M.; Ansah, K.O.; Gerloff, J.; Sundar, I.K.; Rahman, I. Inflammatory and Oxidative Responses Induced by Exposure to Commonly Used e-Cigarette Flavoring Chemicals and Flavored e–Liquids without Nicotine. Front. Physiol. 2018, 8, 1130. [Google Scholar] [CrossRef] [Green Version]
- Yu, V.; Rahimy, M.; Korrapati, A.; Xuan, Y.; Zou, A.E.; Krishnan, A.R.; Tsui, T.; Aguilera, J.A.; Advani, S.; Crotty Alexander, L.E.; et al. Electronic cigarettes induce DNA strand breaks and cell death independently of nicotine in cell lines. Oral Oncol. 2016, 52, 58–65. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.W.; Park, S.H.; Weng, M.W.; Wang, H.T.; Huang, W.C.; Lepor, H.; Wu, X.R.; Chen, L.C.; Tang, M.S. E-cigarette smoke damages DNA and reduces repair activity in mouse lung, heart, and bladder as well as in human lung and bladder cells. Proc. Natl. Acad. Sci. USA 2018, 115, E1560–E1569. [Google Scholar] [CrossRef] [Green Version]
- Azzopardi, D.; Patel, K.; Jaunky, T.; Santopietro, S.; Camacho, O.M.; McAughey, J.; Gaca, M. Electronic cigarette aerosol induces significantly less cytotoxicity than tobacco smoke. Toxicol. Mech. Methods 2016, 26, 477–491. [Google Scholar] [CrossRef] [Green Version]
- Goniewicz, M.L.; Gawron, M.; Smith, D.M.; Peng, M.; Jacob, P.; Benowitz, N.L. Exposure to Nicotine and Selected Toxicants in Cigarette Smokers Who Switched to Electronic Cigarettes: A Longitudinal Within-Subjects Observational Study. Nicotine Tob. Res. 2017, 19, 160–167. [Google Scholar] [CrossRef] [Green Version]
- Fuller, T.W.; Abhinav, A.P.; Meyyappa, T.; Yu, M.; Bhaskar, G.; Little, S.R.; Tarin, T.V. Comparison of Bladder Carcinogens in the Urine of E-cigarette Users Versus Non E-cigarette Using Controls. Sci. Rep. 2018, 8, 507. [Google Scholar] [CrossRef] [PubMed]
- Ramanathan, G.; Craver-Hoover, B.; Arechavala, R.J.; Herman, D.A.; Chen, J.H.; Lai, H.Y.; Renusch, S.R.; Kleinman, M.T.; Fleischman, A.G. E-Cigarette Exposure Decreases Bone Marrow Hematopoietic Progenitor Cells. Cancers 2020, 12, 2292. [Google Scholar] [CrossRef]
- Thorne, D.; Crooks, I.; Hollings, M.; Seymour, A.; Meredith, C.; Gaca, M. The mutagenic assessment of an electronic-cigarette and reference cigarette smoke using the Ames assay in strains TA98 and TA100. Mutat. Res. 2016, 812, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Tommasi, S.; Bates, S.E.; Behar, R.Z.; Talbot, P.; Besaratinia, A. Limited mutagenicity of electronic cigarettes in mouse or human cells in vitro. Lung Cancer 2017, 112, 41–46. [Google Scholar] [CrossRef]
- Callahan–Lyon, P. Electronic cigarettes: Human health effects. Tob. Control 2014, 23, ii36–ii40. [Google Scholar] [CrossRef] [PubMed]
- Willershausen, I.; Wolf, T.; Weyer, V.; Sader, R.; Ghanaati, S.; Willershausen, B. Influence of E-smoking liquids on human periodontal ligament fibroblasts. Head Face Med. 2014, 10, 39. [Google Scholar] [CrossRef] [Green Version]
- Sancilio, S.; Gallorini, M.; Cataldi, A.; di Giacomo, V. Cytotoxicity and apoptosis induction by e-cigarette fluids in human gingival fibroblasts. Clin. Oral Investig. 2016, 20, 477–483. [Google Scholar] [CrossRef]
- Hwang, J.H.; Lyes, M.; Sladewski, K.; Enany, S.; McEachern, E.; Mathew, D.P.; Das, S.; Moshensky, A.; Bapat, S.; Pride, D.T.; et al. Electronic cigarette inhalation alters innate immunity and airway cytokines while increasing the virulence of colonizing bacteria. J. Mol. Med. 2016, 94, 667–679. [Google Scholar] [CrossRef]
- Ji, E.H.; Sun, B.; Zhao, T.; Shu, S.; Chang, C.H.; Messadi, D.; Xia, T.; Zhu, Y.; Hu, S. Correction: Characterization of Electronic Cigarette Aerosol and Its Induction of Oxidative Stress Response in Oral Keratinocytes. PLoS ONE 2016, 11, e0169380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rouabhia, M.; Park, H.J.; Semlali, A.; Zakrzewski, A.; Chmielewski, W.; Chakir, J. E-Cigarette Vapor Induces an Apoptotic Response in Human Gingival Epithelial Cells through the Caspase-3 Pathway. J. Cell. Physiol. 2017, 232, 1539–1547. [Google Scholar] [CrossRef] [PubMed]
- Sundar, I.K.; Javed, F.; Romanos, G.E.; Rahman, I. E-cigarettes and flavorings induce inflammatory and pro-senescence responses in oral epithelial cells and periodontal fibroblasts. Oncotarget 2016, 7, 77196–77204. [Google Scholar] [CrossRef] [Green Version]
- Song, J.-J.; Go, Y.Y.; Mun, J.Y.; Lee, S.; Im, G.J.; Kim, Y.Y.; Lee, J.H.; Chang, J. Effect of electronic cigarettes on human middle ear. Int. J. Pediatr. Otorhinolaryngol. 2018, 109, 67–71. [Google Scholar] [CrossRef]
- Salturk, Z.; Çakır, Ç.; Sünnetçi, G.; Atar, Y.; Kumral, T.L.; Yıldırım, G.; Berkiten, G.; Uyar, Y. Effects of Electronic Nicotine Delivery System on Larynx: Experimental Study. J. Voice 2015, 29, 560–563. [Google Scholar] [CrossRef] [PubMed]
- Franco, T.; Trapasso, S.; Puzzo, L.; Allegra, E. Electronic Cigarette: Role in the Primary Prevention of Oral Cavity Cancer. Clin. Med. Insights Ear Nose Throat 2016, 9, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Bustamante, G.; Ma, B.; Yakovlev, G.; Yershova, K.; Le, C.; Jensen, J.; Hatsukami, D.K.; Stepanov, I. Presence of the Carcinogen N′-Nitrosonornicotine in Saliva of E-cigarette Users. Chem. Res. Toxicol. 2018, 31, 731–738. [Google Scholar] [CrossRef]
- Reuther, W.J.; Hale, B.; Matharu, J.; Blythe, J.N.; Brennan, P.A. Do you mind if I vape? Immediate effects of electronic cigarettes on perfusion in buccal mucosal tissue—A pilot study. Br. J. Oral Maxillofac. Surg. 2016, 54, 338–341. [Google Scholar] [CrossRef]
- Bardellini, E.; Amadori, F.; Conti, G.; Majorana, A. Oral mucosal lesions in electronic cigarettes consumers versus former smokers. Acta Odontol. Scand. 2018, 76, 226–228. [Google Scholar] [CrossRef] [Green Version]
- Pushalkar, S.; Paul, B.; Li, Q.; Yang, J.; Vasconcelos, R.; Makwana, S.; González, J.M.; Shah, S.; Xie, C.; Janal, M.N.; et al. Electronic Cigarette Aerosol Modulates the Oral Microbiome and Increases Risk of Infection. iScience 2020, 23, 100884. [Google Scholar] [CrossRef] [Green Version]
- Whitmore, S.E.; Lamont, R.J. Oral bacteria and cancer. PLoS Pathog. 2014, 10, e1003933. [Google Scholar] [CrossRef]
- Fillon, M. Electronic cigarettes might not help cancer patients quit smoking. J. Natl. Cancer Inst. 2015, 107, 496. [Google Scholar] [CrossRef] [Green Version]
- Fillon, M. Electronic cigarettes may lead to nicotine addiction. J. Natl. Cancer Inst. 2015, 107, djv070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rowell, T.R.; Tarran, R. Will chronic e–cigarette use cause lung disease? Am. J. Physiol. Lung Cell. Mol. Physiol. 2015, 309, L1398–L1409. [Google Scholar] [CrossRef]
- Canistro, D.; Vivarelli, F.; Sirillo, S.; Marquillas, C.B.; Buschini, A.; Lazzaretti, M.; Cardenia, V.; Rodriques-Estrada, M.T.; Lodovici, M.; Cipriani, C.; et al. E-cigarettes induce toxicological effects that can raise the cancer risk. Sci. Rep. 2017, 7, 2028. [Google Scholar] [CrossRef] [PubMed]
Chemical Class | Carcinogen | IARC Group * | Vapor Generated from E-Cigarette (per 15 puffs) | Smoke from Single Non-Filter Cigarette [50] | Relationship of Carcinogens to HNSCC ** |
---|---|---|---|---|---|
PAHs and Heterocyclic Analogs | Benzo(a)anthracene Benzo(a)pyrene Dibenzo(a,h)anthracene | 2A 1 2A | ND in 1–100 puffs (LOD = 0.37 ng) [41] ND in 1–100 puffs (LOD = 0.53 ng) [41] ND in 1–100 puffs (LOD = 0.62 ng) [41] | 20–70 ng 20–40 ng 4 ng | Larynx Oral cavity [50,51] |
Aromatic Amines | 4-aminobiphenyl 2-naphthylamine | 1 1 | NQ in 1–100 puffs (LOQ = 0.05 ng) [41] NQ in 1–100 puffs (LOQ = 0.12 ng) [41] | 2–5.6 ng 1–334 ng | |
N-Nitrosamines | NNK NNN | 1 1 | ND–2.83 ng [47] ND–0.43 ng [47] | 130 ng 200 ng | Nasal Oral cavity Oesophagus [50,51] |
Volatile Hydrocarbons | Benzene 1,3–butadiene Isoprene Styrene | 1 1 2B 2B | ND in 1–100 puffs (LOD = 0.17 µg) [41] ND in 1–100 puffs (LOD = 0.29 µg) [41] ND in 1–100 puffs (LOD = 0.41 µg) [41] 0.518 µg/1–100 puffs [41] | 20–70 µg 20–75 µg 450–1000 µg 10 µg | |
Aldehydes | Formaldehyde Acetaldehyde | 1 2B | 0.32–5.61 µg [47] 0.20–1.36 µg [47] | 70–100 µg 18–1400 µg | Nasopharyngeal Nasal [50,51] |
Phenols | Catechol Caffeic acid | 2B 2B | ND in 1–100 puffs (LOD = 0.26 µg) [41] ND in 1–100 puffs (LOD = 2.39 µg) [41] | 100–360 µg <3 µg | |
Miscellaneous Organic Compounds | Acrylonitrile Vinyl chloride Ethylene oxide | 2B 1 1 | ND in 1–100 puffs (LOD = 0.32 µg) [41] ND in 1–100 puffs (LOD = 6.57 ng) [41] ND in 1–100 puffs (LOD = 0.36 µg) [41] | 3–15 µg 11–15 ng 7 µg | |
Metals and Inorganic Compounds | Arsenic Beryllium Cadmium Chromium Cobalt Lead Nickel Polon-210 | 1 1 1 1 2B 2B 1 1 | NQ in 1–100 puffs (LOQ = 8.79 ng) [41] ND in 1–100 puffs (LOD = 9.36 ng) [41] ND–22 ng [47] 10.5 ng [52] ND in 1–100 puffs (LOD = 8.93 ng) [41] 3–57 ng [47] 11–29 ng [47] ND in 1–100 puffs (LOD = N/A) [41] | 40–120 ng 0.5 ng 7–350 ng 4–70 ng 0.13–0.2 ng 34–85 ng ND–600 ng 0.03–1.0 pCi | Oral cavity [53] |
Type of Cells | Characteristic of E-Liquid | Action | Reference |
---|---|---|---|
| E-liquids (12 manufacturers) | HMEEC viability reduction even without the application of nicotine. E–liquids cytotoxicity affected by the flavoring agents. | Song et al., 2018 (South Korea) [80] |
| E-cigarette vapor extracts (5) | Dose–related ↑ of DNA damage, regardless of nicotine content. Significantly ↑ ROS: ↓ TAC; ↓ expression of 8-oxoguanine DNA glycosylase (OGG1), an enzyme essential for the removal of oxidative DNA damage. | Ganapathy et al., 2017 (USA) [62] |
| E-cigarette aerosol extract (7 brands) | ↓ keratinocyte antimicrobial activity. Cytotoxic to cells (necrotic cell death). Alerted macrophage and neutrophil antimicrobial function. | Hwang et al., 2016 (USA) [76] |
| E-cigarette aerosol with different nicotine strength and flavors | Induced oxidative stress: significant ↓ of intracellular glutathione (GSH) levels. ↑ cytotoxicity in oral epithelial cells. | Ji at al., 2016 (USA) [77] |
| E-cigarette aerosol | Altered cellular morphology. ↑ lactate dehydrogenase (LDH) activity. ↑ apoptotic cell numbers. | Rouabhia et al., 2016 (Canada) [78] |
| E-cigarette aerosol | ↑ levels of prostaglandin–E2 and ↑ cycloxygenase–2. ↑ oxidative/carbonyl and inflammatory responses, ↑ DNA damage, and ↓ histone deacetylase 2 (HDAC2) through RAGE–dependent mechanisms in gingival epithelium. Increased response in case of flavored e-cigarettes. | Sundar et al., 2016 (USA) [79] |
| E-liquids with nicotine (2 fruit-flavored and 1 tobacco-flavored), and the corresponding base mixtures (free of nicotine and flavor) | Cytotoxic to oropharyngeal tissue. Significantly ↑ DNA fragmentation. | Welz et al., 2016 (Germany) [26] |
| E-cigarette aerosol PG:VG (70%/30%) Flavors: “Classic Tobacco”, “Red American Tobacco” Nicotine: 12 mg/mL | Cytotoxic to epithelial cell lines. ↑ rates of apoptosis, ↑ rates of necrosis, independently of nicotine content. DNA strand break–induction. | Yu et al., 2016 (USA) [65] |
| E-liquids (Two kinds: with and without nicotine) | Cytotoxic to cells. Both nicotine-containing and nicotine-free liquids induced ↑ reactive oxygen species (ROS) production. | Sancilio et al., 2015 (Italy) [75] |
| Test solutions with components from E-liquids: lime-, hazelnut- and menthol-flavored liquids, nicotine, propylene glycol, and PBS as control group | Harmful effect of menthol additive on human periodontal ligament fibroblasts. | Willershausen et al., 2014 (Germany) [74] |
Animals | Characteristic of E-Liquid | Action | Reference |
---|---|---|---|
Female Wistar albino rats n = 16 (two groups) study group was exposed to vapor for 1 hour/day for 4 weeks | Electronic nicotine delivery system (ENDS) | Hyperplasia and metaplasia of the laryngeal mucosa of some rats but not significant statistically. | Salturk et al., 2015 (Turkey) [81] |
Patients and Material | Characteristic of E-Liquid | Action | Reference |
---|---|---|---|
119 volunteers: 40 ± 1 in each of three cohorts—never smokers; tobacco smokers (smoking at least 10 cigarettes per day); e-cigarettes users Material: saliva | E-cigarette aerosol | Statistically significant ↑ abundance of Veillonella and Porphyromonas among e-cigarettes consumers. Highly ↑ interleukin (IL)-6 and ↑ IL-1β among e-cigarette users in comparison to non-users. E-cigarette users more susceptible to infection. | Pushalkar et al., 2020 (USA) [86] |
90 volunteers: 45 former smokers and 45 E-cigarettes consumers. Material: oral mucosal lesions | E-cigarette aerosol | Oral mucosal lesions (a hairy tongue, nicotine stomatitis, and angular cheilitis) significantly more frequent among e-cigarettes users than in former smokers. | Bardellini et al., 2018 (Italy) [85] |
59 volunteers: 20 e-cigarette users, 20 smokers, and 19 nonsmokers Material: saliva | E-cigarette aerosol | Endogenous NNN formation inside oral cavity. Mean concentration of NNN among e-cigarette consumers: 14.6 (± 23.1) pg/mL of saliva. | Bustamante et al., 2018 (USA) [83] |
65 volunteers divided into three groups (non-smokers, tobacco smokers, e-cigarette users) Material: oral mucosa scrapings | E-cigarette aerosol | Prevalence of micronuclei significantly ↓ among e-cigarette users. | Franco et al., 2016 (Italy) [82] |
10 volunteers immediately after vaping Material: buccal mucosa | E-cigarette aerosol (with and without nicotine) | ↑ capillary perfusion of buccal mucosa (e-cigarette with nicotine). | Reuther et al., 2016 (UK) [84] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szukalska, M.; Szyfter, K.; Florek, E.; Rodrigo, J.P.; Rinaldo, A.; Mäkitie, A.A.; Strojan, P.; Takes, R.P.; Suárez, C.; Saba, N.F.; et al. Electronic Cigarettes and Head and Neck Cancer Risk—Current State of Art. Cancers 2020, 12, 3274. https://doi.org/10.3390/cancers12113274
Szukalska M, Szyfter K, Florek E, Rodrigo JP, Rinaldo A, Mäkitie AA, Strojan P, Takes RP, Suárez C, Saba NF, et al. Electronic Cigarettes and Head and Neck Cancer Risk—Current State of Art. Cancers. 2020; 12(11):3274. https://doi.org/10.3390/cancers12113274
Chicago/Turabian StyleSzukalska, Marta, Krzysztof Szyfter, Ewa Florek, Juan P. Rodrigo, Alessandra Rinaldo, Antti A. Mäkitie, Primož Strojan, Robert P. Takes, Carlos Suárez, Nabil F. Saba, and et al. 2020. "Electronic Cigarettes and Head and Neck Cancer Risk—Current State of Art" Cancers 12, no. 11: 3274. https://doi.org/10.3390/cancers12113274
APA StyleSzukalska, M., Szyfter, K., Florek, E., Rodrigo, J. P., Rinaldo, A., Mäkitie, A. A., Strojan, P., Takes, R. P., Suárez, C., Saba, N. F., Braakhuis, B. J. M., & Ferlito, A. (2020). Electronic Cigarettes and Head and Neck Cancer Risk—Current State of Art. Cancers, 12(11), 3274. https://doi.org/10.3390/cancers12113274