Development of Innovative Formulations for Breast Cancer Chemotherapy
Funding
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics. CA Cancer J. Clin. 2020, 70, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Waks, A.G.; Winer, E.P. Breast Cancer Treatment: A Review. JAMA 2019, 321, 288–300. [Google Scholar] [CrossRef] [PubMed]
- Watkins, E.J. Overview of breast cancer. Jaapa 2019, 32, 13–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turk, A.A.; Wisinski, K.B. PARP inhibitors in breast cancer: Bringing synthetic lethality to the bedside. Cancer 2018, 124, 2498–2506. [Google Scholar] [CrossRef] [PubMed]
- Uifalean, A.; Ilies, M.; Nicoara, R.; Rus, L.; Heghes, C.; Iuga, C.A. Concepts and Challenges of Biosimilars in Breast Cancer: The Emergence of Trastuzumab Biosimilars. Pharmaceutics 2018, 10, 168. [Google Scholar] [CrossRef] [Green Version]
- Naito, Y.; Kai, Y.; Ishikawa, T.; Fujita, T.; Uehara, T.; Doihara, H.; Tokunaga, S.; Shimokawa, M.; Ito, Y.; Saeki, T. Chemotherapy-induced nausea and vomiting in patients with breast cancer: A prospective cohort study. Breast Cancer 2020, 27, 122–128. [Google Scholar] [CrossRef] [Green Version]
- De Melo, G.D.; Chavez-MacGregor, M. Delays in Adjuvant Chemotherapy Among Breast Cancer Patients: An Unintended Consequence of Breast Surgery? Ann. Surg. Oncol. 2018, 25, 1786–1787. [Google Scholar] [CrossRef] [PubMed]
- Martín-Sabroso, C.; Fraguas-Sánchez, A.I.; Raposo-González, R.; Torres-Suárez, A.I. Perspectives in breast and ovarian cancer chemotherapy by nanomedicine approach: Nanoformulations in clinical research. Curr. Med. Chem. 2020. [Google Scholar] [CrossRef]
- Nehate, C.; Jain, S.; Saneja, A.; Khare, V.; Alam, N.; Dubey, R.D.; Gupta, P.N. Paclitaxel formulations: Challenges and novel delivery options. Curr. Drug Deliv. 2014, 11, 666–686. [Google Scholar] [CrossRef] [PubMed]
- Fraguas-Sánchez, A.I.; Martín-Sabroso, C.; Fernández-Carballido, A.; Torres-Suárez, A. Current status of nanomedicine in the chemotherapy of breast cancer. Cancer Chemother. Pharmacol. 2019, 84, 689–706. [Google Scholar] [CrossRef]
- Golombek, S.K.; May, J.-N.; Theek, B.; Appold, L.; Drude, N.; Kiessling, F.; Lammers, T. Tumor targeting via EPR: Strategies to enhance patient responses. Adv. Drug Deliv. Rev. 2018, 130, 17–38. [Google Scholar] [CrossRef]
- Greish, K. Enhanced Permeability and Retention (EPR) Effect for Anticancer Nanomedicine Drug Targeting. Methods Mol. Biol. 2010, 624, 25–37. [Google Scholar] [CrossRef] [PubMed]
- Maeda, H.; Nakamura, H.; Fang, J. The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity and distinct tumor imaging in vivo. Adv. Drug Deliv. Rev. 2013, 65, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Bazak, R.; Houri, M.; El Achy, S.; Kamel, S.; Refaat, T. Cancer active targeting by nanoparticles: A comprehensive review of literature. J. Cancer Res. Clin. Oncol. 2015, 141, 769–784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kopeckova, K.; Eckschlagerb, T.; Sircc, J.; Hobzovac, R.; Plchb, J.; Hrabetab, J.; Michalekc, J. Nanodrugs used in cancer therapy. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 2019, 163, 122–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danhier, F. To exploit the tumor microenvironment: Since the EPR effect fails in the clinic, what is the future of nanomedicine? J. Control. Release 2016, 244, 108–121. [Google Scholar] [CrossRef] [PubMed]
- Gong, J.; Jaiswal, R.; Dalla, P.; Luk, F.; Bebawy, M. Microparticles in cancer: A review of recent developments and the potential for clinical application. Semin. Cell Dev. Biol. 2015, 40, 35–40. [Google Scholar] [CrossRef]
- Fraguas-Sánchez, A.; Fernández-Carballido, A.; Simancas-Herbada, R.; Martin-Sabroso, C.; Torres-Suárez, A. CBD loaded microparticles as a potential formulation to improve paclitaxel and doxorubicin-based chemotherapy in breast cancer. Int. J. Pharm. 2020, 574, 118916. [Google Scholar] [CrossRef]
- Hu, H.; Lin, Z.; He, B.; Dai, W.; Wang, X.; Wang, J.; Zhang, X.; Zhang, H.; Zhang, Q. A novel localized co-delivery system with lapatinib microparticles and paclitaxel nanoparticles in a peritumorally injectable in situ hydrogel. J. Control. Release 2015, 220, 189–200. [Google Scholar] [CrossRef]
- Franco, M.S.; Roque, M.C.; De Barros, A.L.B.; De Oliveira, S.J.; Cassali, G.D.; Oliveira, M.C. Investigation of the antitumor activity and toxicity of long-circulating and fusogenic lipo-somes co-encapsulating paclitaxel and doxorubicin in a murine breast cancer animal model. Biomed. Pharmacother. 2019, 109, 1728–1739. [Google Scholar] [CrossRef]
- Behrouz, H.; Esfandyari-Manesh, M.; Khoeeniha, M.K.; Amini, M.; Varnamkhasti, B.S.; Atyabi, F.; Dinarvand, R. Enhanced Cytotoxicity to Cancer Cells by Codelivery and Controlled Release of Paclitaxel-loaded Sirolimus-conjugated Albumin Nanoparticles. Chem. Biol. Drug Des. 2016, 88, 230–240. [Google Scholar] [CrossRef] [PubMed]
- Kang, X.; Zheng, Z.; Liu, Z.; Wang, H.; Zhao, Y.; Zhang, W.; Shi, M.; He, Y.; Cao, Y.; Xu, Q.; et al. Liposomal Codelivery of Doxorubicin and Andrographolide Inhibits Breast Cancer Growth and Metastasis. Mol. Pharm. 2018, 15, 1618–1626. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fraguas-Sánchez, A.I.; Torres-Suárez, A.I. Development of Innovative Formulations for Breast Cancer Chemotherapy. Cancers 2020, 12, 3281. https://doi.org/10.3390/cancers12113281
Fraguas-Sánchez AI, Torres-Suárez AI. Development of Innovative Formulations for Breast Cancer Chemotherapy. Cancers. 2020; 12(11):3281. https://doi.org/10.3390/cancers12113281
Chicago/Turabian StyleFraguas-Sánchez, Ana Isabel, and Ana Isabel Torres-Suárez. 2020. "Development of Innovative Formulations for Breast Cancer Chemotherapy" Cancers 12, no. 11: 3281. https://doi.org/10.3390/cancers12113281
APA StyleFraguas-Sánchez, A. I., & Torres-Suárez, A. I. (2020). Development of Innovative Formulations for Breast Cancer Chemotherapy. Cancers, 12(11), 3281. https://doi.org/10.3390/cancers12113281