Outcome of Targeted Therapy Recommendations for Metastatic and Recurrent Head and Neck Cancers
Abstract
:Simple Summary
Abstract
1. Introduction
2. Results
3. Discussion
4. Methods
4.1. Patients and Design of the Precision Medicine Platform
4.2. Tissue Samples
4.3. Cancer Gene Panel Sequencing
4.4. Immunohistochemistry
4.5. Fluorescence In Situ Hybridization (FISH)
4.6. Multidisciplinary Team for Precision Medicine
4.7. Study Design and Statistics
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bray, F.; Me, J.F.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lambert, R.; Sauvaget, C.; Cancela, M.D.C.; Sankaranarayanan, R. Epidemiology of cancer from the oral cavity and oropharynx. Eur. J. Gastroenterol. Hepatol. 2011, 23, 633–641. [Google Scholar] [CrossRef] [PubMed]
- Shaw, R.; Beasley, N. Aetiology and risk factors for head and neck cancer: United Kingdom National Multidisciplinary Guidelines. J. Laryngol. Otol. 2016, 130, S9–S12. [Google Scholar] [CrossRef] [PubMed]
- Dhull, A.K.; Atri, R.; Dhankhar, R.; Chauhan, A.K.; Kaushal, V. Major Risk Factors in Head and Neck Cancer: A Retrospective Analysis of 12-Year Experiences. World J. Oncol. 2018, 9, 80–84. [Google Scholar] [CrossRef] [Green Version]
- Maier, H.; Dietz, A.; Gewelke, U.; Heller, W.D.; Weidauer, H. Tobacco and alcohol and the risk of head and neck cancer. J. Mol. Med. 1992, 70, 320–327. [Google Scholar] [CrossRef]
- Burtness, B.; Harrington, K.J.; Greil, R.; Soulières, D.; Tahara, M.; De Castro, G.; Psyrri, A.; Basté, N.; Neupane, P.; Bratland, Å.; et al. Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048): A randomised, open-label, phase 3 study. Lancet 2019, 394, 1915–1928. [Google Scholar] [CrossRef]
- Bang, Y.-J.; Van Cutsem, E.; Feyereislova, A.; Chung, H.C.; Shen, L.; Sawaki, A.; Lordick, F.; Ohtsu, A.; Omuro, Y.; Satoh, T.; et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): A phase 3, open-label, randomised controlled trial. Lancet 2010, 376, 687–697. [Google Scholar] [CrossRef]
- Slamon, D.; Eiermann, W.; Robert, N.; Pienkowski, T.; Martin, M.; Press, M.; Mackey, J.; Glaspy, J.; Chan, A.; Pawlicki, M.; et al. Adjuvant Trastuzumab in HER2-Positive Breast Cancer. New Engl. J. Med. 2011, 365, 1273–1283. [Google Scholar] [CrossRef] [Green Version]
- Blanke, C.D.; Rankin, C.; Demetri, G.D.; Ryan, C.W.; Von Mehren, M.; Benjamin, R.S.; Raymond, A.K.; Bramwell, V.H.; Baker, L.H.; Maki, R.G.; et al. Phase III Randomized, Intergroup Trial Assessing Imatinib Mesylate At Two Dose Levels in Patients with Unresectable or Metastatic Gastrointestinal Stromal Tumors Expressing the Kit Receptor Tyrosine Kinase: S0033. J. Clin. Oncol. 2008, 26, 626–632. [Google Scholar] [CrossRef]
- Hauschild, A.; Grob, J.-J.; Demidov, L.V.; Jouary, T.; Gutzmer, R.; Millward, M.; Rutkowski, P.; Blank, C.U.; Miller, W.H.; Kaempgen, E.; et al. Dabrafenib in BRAF-mutated metastatic melanoma: A multicentre, open-label, phase 3 randomised controlled trial. Lancet 2012, 380, 358–365. [Google Scholar] [CrossRef]
- Galot, R.; Le Tourneau, C.; Guigay, J.; Licitra, L.; Tinhofer, I.; Kong, A.; Caballero, C.; Fortpied, C.; Bogaerts, J.; Govaerts, A.-S.; et al. Personalized biomarker-based treatment strategy for patients with squamous cell carcinoma of the head and neck: EORTC position and approach. Ann. Oncol. 2018, 29, 2313–2327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sindhu, S.K.; Bauman, J.E. Current Concepts in Chemotherapy for Head and Neck Cancer. Oral Maxillofac. Surg. Clin. N. Am. 2019, 31, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Ferris, R.L.; Licitra, L.; Fayette, J.; Even, C.; Blumenschein, G.; Harrington, K.J.; Guigay, J.; Vokes, E.E.; Saba, N.F.; Haddad, R.; et al. Nivolumab in Patients with Recurrent or Metastatic Squamous Cell Carcinoma of the Head and Neck: Efficacy and Safety in CheckMate 141 by Prior Cetuximab Use. Clin. Cancer Res. 2019, 25, 5221–5230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spector, M.E.; Farlow, J.L.; Haring, C.T.; Brenner, J.C.; Birkeland, A.C. The potential for liquid biopsies in head and neck cancer. Discov. Med. 2018, 25, 251–257. [Google Scholar]
- Nonaka, T.; Wong, D.T.W. Liquid Biopsy in Head and Neck Cancer: Promises and Challenges. J. Dent. Res. 2018, 97, 701–708. [Google Scholar] [CrossRef]
- Prichard, J.W. Overview of Automated Immunohistochemistry. Arch. Pathol. Lab. Med. 2014, 138, 1578–1582. [Google Scholar] [CrossRef] [Green Version]
- Slatko, B.E.; Gardner, A.F.; Ausubel, F.M. Overview of Next-Generation Sequencing Technologies. Curr. Protoc. Mol. Biol. 2018, 122, e59. [Google Scholar] [CrossRef]
- Hunt, J.L. An update on molecular diagnostics of squamous and salivary gland tumors of the head and neck. Arch. Pathol. Lab. Med. 2011, 135, 602–609. [Google Scholar]
- Gargano, S.M.; Senarathne, W.; Feldman, R.; Florento, E.; Stafford, P.; Swensen, J.; Vranic, S.; Gatalica, Z. Novel therapeutic targets in salivary duct carcinoma uncovered by comprehensive molecular profiling. Cancer Med. 2019, 8, 7322–7329. [Google Scholar] [CrossRef] [Green Version]
- Alsahafi, E.; Begg, K.; Amelio, I.; Raulf, N.; Lucarelli, P.; Sauter, T.; Tavassoli, M. Clinical update on head and neck cancer: Molecular biology and ongoing challenges. Cell Death Dis. 2019, 10, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.; Ye, J.; Dong, Z.; Hu, S.; Xiao, M. Novel genetic alterations and their impact on target therapy response in head and neck squamous cell carcinoma. Cancer Manag. Res. 2019, 11, 1321–1336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canning, M.; Guo, G.; Yu, M.; Myint, C.; Groves, M.W.; Byrd, J.K.; Cui, Y. Heterogeneity of the Head and Neck Squamous Cell Carcinoma Immune Landscape and Its Impact on Immunotherapy. Front. Cell Dev. Biol. 2019, 7, 52. [Google Scholar] [CrossRef] [PubMed]
- Mroz, E.A.; Rocco, J.W. Intra-tumor heterogeneity in head and neck cancer and its clinical implications. World J. Otorhinolaryngol. - Head Neck Surg. 2016, 2, 60–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, P.; Mirani, N.; Baisre, A.; Fernandes, H. Molecular Heterogeneity of Head and Neck Squamous Cell Carcinoma Defined by Next-Generation Sequencing. Am. J. Pathol. 2014, 184, 1323–1330. [Google Scholar] [CrossRef]
- Horton, J.D.; Knochelmann, H.M.; Day, T.A.; Paulos, C.M.; Neskey, D.M. Immune Evasion by Head and Neck Cancer: Foundations for Combination Therapy. Trends Cancer 2019, 5, 208–232. [Google Scholar] [CrossRef]
- Koeppen, H.; Yu, W.; Zha, J.; Pandita, A.; Penuel, E.; Rangell, L.; Raja, R.; Mohan, S.; Patel, R.; Desai, R.; et al. Biomarker Analyses from a Placebo-Controlled Phase II Study Evaluating Erlotinib Onartuzumab in Advanced Non-Small Cell Lung Cancer: MET Expression Levels Are Predictive of Patient Benefit. Clin. Cancer Res. 2014, 20, 4488–4498. [Google Scholar] [CrossRef] [Green Version]
Patient Characteristics | Number |
---|---|
Median (range) age at first diagnosis | 53.4 (23.1–84.2) |
Median (range) age at molecular profiling | 59.5 (26.3–85.2) |
Male patients | 33 (66%) |
Female patients | 17 (34%) |
Caucasian | 50 (100%) |
Hypopharyngeal and laryngeal cancer | 4 (8%) |
Nasopharyngeal cancer | 4 (8%) |
Nasal cavity and paranasal sinus cancer | 8 (16%) |
Oropharyngeal and oral cancer | 18 (36%) |
Salivary gland cancer | 16 (32%) |
Relapsed disease | 43 (86%) |
Metastatic disease | 45 (90%) |
Systemic chemotherapy received | 50 (100%) |
Prior chemotherapy regimens | 1–6 |
Therapy recommendations for patients For male patients For female patients | 31 (62%) 24 (48%) 7 (14%) |
Histopathological subtypes Squamous cell carcinoma Adenocarcinoma Adenoid cystic carcinoma Mucoepidermoid carcinoma | 24 (48%) 14 (28%) 11 (22%) 1 (2%) |
Mutated Genes | Number of Mutations | Percentage of Occurrence in Patients (n = 50) | Percentage of all Mutations (97 Mutations in Total) |
---|---|---|---|
TP53 | 21 | 42.0% | 21.6% |
CDKN2A | 5 | 10.0% | 5.2% |
PIK3CA | 5 | 10.0% | 5.2% |
NOTCH1 | 4 | 8.0% | 4.1% |
PTEN | 4 | 8.0% | 4.1% |
ATM | 3 | 6.0% | 3.1% |
BRCA2 | 3 | 6.0% | 3.1% |
CREBBP | 3 | 6.0% | 3.1% |
EGFR | 3 | 6.0% | 3.1% |
MET | 3 | 6.0% | 3.1% |
APC | 2 | 4.0% | 2.1% |
RAD51D | 2 | 4.0% | 2.1% |
RET | 2 | 4.0% | 2.1% |
SMAD4 | 2 | 4.0% | 2.1% |
SMARCA4 | 2 | 4.0% | 2.1% |
TET2 | 2 | 4.0% | 2.1% |
AKT2 | 1 | 2.0% | 1.0% |
CDK2 | 1 | 2.0% | 1.0% |
CDK12 | 1 | 2.0% | 1.0% |
CDKN2B | 1 | 2.0% | 1.0% |
CTNNB1 | 1 | 2.0% | 1.0% |
ERBB2 | 1 | 2.0% | 1.0% |
FANCD2 | 1 | 2.0% | 1.0% |
FBXW7 | 1 | 2.0% | 1.0% |
FGFR1 | 1 | 2.0% | 1.0% |
FGFR2 | 1 | 2.0% | 1.0% |
HRAS | 1 | 2.0% | 1.0% |
KRAS | 1 | 2.0% | 1.0% |
MAX | 1 | 2.0% | 1.0% |
MDM2 | 1 | 2.0% | 1.0% |
MSH6 | 1 | 2.0% | 1.0% |
MYCN | 1 | 2.0% | 1.0% |
NF1 | 1 | 2.0% | 1.0% |
NFE2L2 | 1 | 2.0% | 1.0% |
NOTCH2 | 1 | 2.0% | 1.0% |
NOTCH3 | 1 | 2.0% | 1.0% |
NRAS | 1 | 2.0% | 1.0% |
PALB2 | 1 | 2.0% | 1.0% |
RAD50 | 1 | 2.0% | 1.0% |
RAD51B | 1 | 2.0% | 1.0% |
RHOA | 1 | 2.0% | 1.0% |
RNF43 | 1 | 2.0% | 1.0% |
SF3B1 | 1 | 2.0% | 1.0% |
SLX4 | 1 | 2.0% | 1.0% |
STK11 | 1 | 2.0% | 1.0% |
TSC1 | 1 | 2.0% | 1.0% |
TSC2 | 1 | 2.0% | 1.0% |
Patient | Mutations |
---|---|
Squamous cell carcinoma | |
1 | RB1: c.949C > G, missense mutation |
2 | CDKN2A: c.172C > T: nonsense mutation (stop-gain); TP53: c.481G > A: missense mutation |
3 | PIK3CA: c.3140A > G: missense mutation; TP53: c.848C > G: missense mutation |
4 | EGFR; FBXW7; NOTCH1; SMAD4; TP53 * |
5 | 0 |
6 | ATM: c.5185G > C: missense mutation; TP53: c.583A > T: missense mutation; TP53: c.467G > C: missense mutation |
7 | TP53: c.820G > T: missense mutation |
8 | CDKN2A: c.164delG: deletion; TP53: c.488A > G: missense mutation |
9 | TP53: c.833C > T: missense mutation |
10 | 0 |
11 | TP53: c.880G > T: nonsense mutation; TP53: c.1006G > T: missense mutation; NOTCH1: c.1127G > A: missense mutation; ATM: c.2899C > A: missense mutation |
12 | VHL: c.362G > A: missense mutation; PTEN: c.301C > T: nonsense mutation (stop-gain) |
13 | PIK3CA: c.162G > A: missense mutation; TP53: c.472delC: deletion |
14 | CDKN2B: c.256G > A: missense mutation; BRCA2: c.2374T > C: missense mutation; RAD51B: c.520A > G: missense mutation; RNF43: c.319G > A: missense mutation; NOTCH3: c.3257A > C: missense mutation |
15 | 0 |
16 | PIK3CA: c.1633G > A: missense mutation; MET: c.1076A > G: missense mutation; TP53: c.722C > T: missense mutation |
17 | TET2: c.5103G > A: missense mutation; TSC1: c.3181A > C: missense mutation; TET2: c.3703G > A: missense mutation; BRCA2: c.3355G > C: missense mutation |
18 | MSH6: c.4001 + 10_4001 + 13delTAAC: deletion; CREBBP: c.1537C > A: missense mutation; ERBB2: c.2033G > A: missense mutation |
19 | CDKN2A: c.341C > T: missense mutation |
20 | EGFR * |
21 | TP53: c.472C > T: missense mutation; TP53: c.455C > T: missense mutation; MET: c.504G > T: missense mutation; FANCD2: c.4270A > G: missense mutation; NF1: c.3547C > G: missense mutation; SMARCA4: c.4105C > T: missense mutation |
22 | TP53: c.1024C > T: nonsense mutation; CDKN2A: c.83_100delTGCGGGCGCTGCTGGAGG: deletion; MYCN: c.849G > T: missense mutation; SLX4: c.2087A > G: missense mutation |
23 | RHOA: c.14G > A: missense mutation; PIK3CA: c.3140A > G: missense mutation; CDK2: c.391C > T: missense mutation; NFE2L2: c.80A > T: missense mutation |
24 | HRAS: c.38G > A: missense mutation; SMAD4: c.1558G > T: nonsense mutation (stop-gain) |
Non-squamous cell carcinoma | |
1 | 0 |
2 | 0 |
3 | 0 |
4 | TP53: c.742C > T: missense mutation |
5 | APC: c.3920T > A: missense mutation |
6 | BRCA2: c.6770C > G: missense mutation |
7 | FGFR2: c.755C > G: missense mutation; NOTCH1: c.7397delC: deletion; EGFR: c.2884C > T: missense mutation; CREBBP: c.4303G > A: missense mutation; RAD51D: c.26G > C: missense mutation |
8 | RET: c.2372A > T: missense mutation |
9 | PIK3CA: c.3140A > G: missense mutation; RAD51D: c.992T > A: missense mutation; CDK12: c.3052G > A: missense mutation |
10 | CTNNB1: c.110C > G: missense mutation; TP53: c.818G > A: missense mutation; NOTCH2: c.2543G > T: missense mutation; RET: c.2372A > T: missense mutation |
11 | RAD50: c.980G > A: missense mutation; PALB2: c.1001A > G: missense mutation |
12 | 0 |
13 | PTEN: c.633C > G: missense mutation |
14 | KRAS: c.34G > A: missense mutation; STK11: c.587G > T: missense mutation; TSC2: c.65G > A: missense mutation |
15 | TP53: c.637C > T: nonsense mutation |
16 | ATM: c.9142C > G: missense mutation |
17 | MAX: c.66delT: deletion; CREBBP: c.785G > T: missense mutation |
18 | 0 |
19 | 0 |
20 | APC: c.4298C > T: missense mutation |
21 | TP53: c.376T > G: missense mutation; MET: c.3029C > T: missense mutation |
22 | NRAS; TP53 * |
23 | PTEN; TP53 * |
24 | SF3B1: c.1874G > A: missense mutation; PTEN: c.1078A > G: missense mutation; SMARCA4: c.3484G > A: missense mutation |
25 | NOTCH1: c.5912C > A: missense mutation; MDM2: c.1242A > C: missense mutation; AKT2: c.1544C > T: missense mutation |
26 | CDKN2A: c.151_155delGTCAT: deletion; FGFR1: c.478_480delGAT: deletion |
Therapeutic Agent (trading name) | Targets | Overview of Current FDA Approval in Different Entities | Overview of Current EMA Approval in Different Entities | Number of Recommended and Received Cases, Responses |
---|---|---|---|---|
Pembrolizumab (Keytruda) | PD-1 and hypermutability | Melanoma, NSCLC, HNSCC, HL, urothelial carcinoma, microsatellite instability-high cancer, gastric cancer, and cervical cancer | Melanoma, NSCLC, HNSCC, HL, and urothelial carcinoma | Recommended for 7 patients with PD-L1 expression Applied in 2 patients: 1 patient died before restaging and 1 patient achieved SD for 3 months |
Cetuximab (Erbitux) | EGFR | CRC and HNSCC | CRC and HNSCC | -Recommended for 5 patients with EGFR expression and KRAS wildtype Applied in 2 patients: 1 patient achieved SD for 12 months and 1 patient died before restaging -Recommended in combination with temsirolimus for 4 patients with EGFR expression and KRAS wildtype, as well as loss of PTEN and mTOR expression Applied in 2 patients: 1 patient died before restaging and 1 patient experienced PD -Recommended in combination with paclitaxel for 1 patient with EGFR expression and KRAS wildtype Patient achieved SD for 3 months |
Palbociclib (Ibrance) | CDK4 and CDK6 | HER2-negative breast cancer | HER2-negative breast cancer | Recommended for 3 patients with CDKN2A mutation |
Bicalutamide (Casodex) | AR | Prostate cancer | Prostate cancer | Recommended in combination with leuprorelin for 3 patients with AR expression Applied in 2 patients who experienced PD |
Leuprorelin (Trenantone) | GNRHR | Prostate cancer | Prostate cancer | See bicalutamide |
Crizotinib (Xalkori) | ALK, ROS1, and MET | ROS1+ or ALK+ NSCLC | ROS1+ or ALK+ NSCLC | Recommended for 2 patients with MET expression Applied in 1 patient who died before restaging |
Erlotinib (Tarceva) | EGFR | NSCLC and PDAC | NSCLC and PDAC | Recommended for 1 patient with EGFR mutation |
Imatinib (Gleevec) | ABL1, BCR, KIT, and PDGFR | Ph+ CML, KIT+ GIST, MDS/MPD associated with PDGFR, and Ph+ALL | Ph+ CML, KIT+ GIST, MDS/MPD associated with PDGFR, and Ph+ALL | Recommended for and applied in 1 patient with KIT expression, who achieved SD for 13 months |
Ponatinib (Iclusig) | ABL1, BCR, FGFR, FLT3, KIT, and PDGFR | CML and Ph+ALL | CML and Ph+ ALL | Recommended for and applied in 1 patient with FGFR3 and FGFR19 gene amplification, who achieved SD for 4 months |
Poziotinib (No trading name yet) | EGFR and HER2 | Experimental application but no approval | Experimental application but no approval | Recommended for 1 patient with exon 20 insertion mutation Applied in 1 patient, who achieved SD for 3 months |
Sunitinib (Sutent) | PDGFR, KIT, VEGFR, RET, and FLT3 | RCC, PDAC, and GIST | RCC, PDAC, and GIST | Recommended for and applied in 1 patient with KIT expression, who experienced PD |
Temsirolimus (Torisel) | mTOR | RCC | RCC and MCL | Recommended in combination with carboplatin for 1 patient with mTOR expression and loss of PTEN Please see also cetuximab |
Number Gender Entity Histology | Detected Mutations | Immunohistochemistry | Applied Targeted Therapy | Age at Molecular Profiling | TTF in Months | Therapy Response | Cause of Therapy Termination |
---|---|---|---|---|---|---|---|
1 Male Salivary gland cancer Adenoid cystic carcinoma | APC | EGFR score = 115, PTEN score = 100, p-mTOR score = 35, KIT score = 125, MET score = 1, PDGFRA score = 80, and NTRK score = 100 | Imatinib | 46.43 | 14.2 | SD | PD |
2 Female Salivary gland cancer Adenoid cystic carcinoma | MAX and CREBBP | EGFR score = 300, PTEN score = 160, p-mTOR score = 30, PDGFRA score = 80, and NTRK score = 210 | Cetuximab alone | 80.02 | 12.2 | SD | PD |
3 Male Salivary gland cancer Adenocarcinoma | CTNNB1, NOTCH2, RET, SLX4, and TP53 | EGFR score = 210, PTEN score = 90, and NTRK score = 100 | Ponatinib | 54.95 | 4.2 | SD | PD |
4 Male Salivary gland cancer Adenocarcinoma | CDK12, PIK3CA, and RAD51D | EGFR score = 280, PTEN score = 190, and p-mTOR score = 100 | Cetuximab + paclitaxel | 47.94 | 3.6 | SD | n.a. * |
5 Male Paranasal sinus cancer Squamous cell carcinoma | EGFR and TP53 | Not performed | Poziotinib | 62.86 | 3.4 | SD | n.a. * |
6 Male Hypopharyngeal cancer Squamous cell carcinoma | TP53 | EGFR score = 300, PTEN score = 80, and p-mTOR = 260 | Pembrolizumab | 59.04 | 3.3 | SD | ECOG PS > 2 |
7 Male Salivary gland cancer Adenocarcinoma | CREBBP, EGFR, FGFR2, NOTCH1, and RAD51D | PDGFRA score = 20, EGFR score = 300, NTRK score = 110, PTEN score = 300, and AR score = 250 | Androgen deprivation therapy with bicalutamide and leuprorelin | 36.72 | 2.9 | PD | PD |
8 Male Oropharyngeal cancer Squamous cell carcinoma | PTEN | EGFR score = 210, MET score = 1, p-mTOR = 150, and loss of PTEN | Cetuximab + temsirolimus | 59.41 | 2.7 | PD | PD |
9 Male Salivary gland cancer Adenocarcinoma | 0 | EGFR score = 250, PTEN score = 90, p-mTOR = 50, and AR score = 200 | Androgen deprivation therapy with bicalutamide and leuprorelin | 47.87 | 1.9 | PD | PD |
10 Male Salivary gland cancer Adenocarcinoma | TP53 | EGFR score = 30, MET score = 1, PDGFRA score = 100, and p-mTOR = 70 | Sunitinib | 65.51 | 1.5 | PD | PD |
11 Male Oropharyngeal cancer Adenocarcinoma | TP53 | EGFR score = 300, PDGFRA score = 20, PTEN score = 130, p-mTOR score = 95, and NTRK score = 45 | Cetuximab alone | 73.61 | 1.5 | n.a. | Death |
12 Female Hypopharyngeal cancer Squamous cell carcinoma | FANCD2, MET, NF1, NOTCH1, and SMAD4 | PTEN score = 90 and PD-L1-positive (TPS = 5 and CPS = 10) | Pembrolizumab | 36.61 | 0.8 | n.a. | Death |
13 Male Salivary gland cancer Adenocarcinoma | 0 | EGFR score = 120, MET score = 1, p-mTOR = 230, and AR score = 200 | Androgen deprivation therapy with bicalutamide and leuprorelin | 82.55 | 0.7 | n.a. | Death |
14 Male Oropharyngeal cancer Squamous cell carcinoma | CDKN2A and TP53 | EGFR score = 240, MET score = 1, p-mTOR = 50, and loss of PTEN | Cetuximab + temsirolimus | 64.27 | 0.4 | n.a. | Death |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taghizadeh, H.; Mader, R.M.; Müllauer, L.; Fuereder, T.; Kautzky-Willer, A.; Prager, G.W. Outcome of Targeted Therapy Recommendations for Metastatic and Recurrent Head and Neck Cancers. Cancers 2020, 12, 3381. https://doi.org/10.3390/cancers12113381
Taghizadeh H, Mader RM, Müllauer L, Fuereder T, Kautzky-Willer A, Prager GW. Outcome of Targeted Therapy Recommendations for Metastatic and Recurrent Head and Neck Cancers. Cancers. 2020; 12(11):3381. https://doi.org/10.3390/cancers12113381
Chicago/Turabian StyleTaghizadeh, Hossein, Robert M. Mader, Leonhard Müllauer, Thorsten Fuereder, Alexandra Kautzky-Willer, and Gerald W. Prager. 2020. "Outcome of Targeted Therapy Recommendations for Metastatic and Recurrent Head and Neck Cancers" Cancers 12, no. 11: 3381. https://doi.org/10.3390/cancers12113381
APA StyleTaghizadeh, H., Mader, R. M., Müllauer, L., Fuereder, T., Kautzky-Willer, A., & Prager, G. W. (2020). Outcome of Targeted Therapy Recommendations for Metastatic and Recurrent Head and Neck Cancers. Cancers, 12(11), 3381. https://doi.org/10.3390/cancers12113381