Prospects for Clinical Development of Stat5 Inhibitor IST5-002: High Transcriptomic Specificity in Prostate Cancer and Low Toxicity In Vivo
Abstract
:Simple Summary
Abstract
1. Introduction
2. Results
2.1. The Transcriptomes Regulated by Genetic Knockdown of Stat5 vs. the Stat5 Inhibitor IST5-002 (IST5) Overlap Extensively
2.2. IST5 and a Modified IST5 Have Similar Efficacies in Inhibiting Phosphorylation, Dimerization and Transcriptional Activity of Stat5
2.3. IST5 Does Not Have Any Significant Inhibitory Activity against a Set of 54 Kinases Including Jak1, Jak2, Jak3 and Tyk3
2.4. Post-Translational Modifications of the Wild-Type Native Stat5 Protein vs. Recombinant Stat5a Protein are Partly Different
2.5. IST5 Does Not Cause Significant Acute or Chronic Toxic Effects in Mice
3. Discussion
4. Materials and Methods
4.1. Cell Lines and Reagents
4.2. ShRNA and cDNA Constructs and Lentiviral Production of shRNA
4.3. RNA Extraction and Quantification
4.4. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)
4.5. RNA-seq Library Preparation and Data Analysis
4.6. Gene Set Enrichment Analyses
4.7. Protein Solubilization, Immunoprecipitation and Immunoblotting
4.8. Native-Gel-Based Stat5 Dimerization Assay
4.9. Coimmunoprecipitation-Based Stat5 Dimerization Assay
4.10. Cell-Free Kinase Assay
4.11. Mass Spectrometry Analysis
4.12. Acute Toxicity Study of IST5
4.13. Chronic Toxicity Study of IST5
4.14. Sub-Chronic Toxicity Study of IST5
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ahonen, T.J.; Xie, J.; LeBaron, M.J.; Zhu, J.; Nurmi, M.; Alanen, K.; Rui, H.; Nevalainen, M.T. Inhibition of Transcription Factor Stat5 Induces Cell Death of Human Prostate Cancer Cells. J. Biol. Chem. 2003, 278, 27287–27292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dagvadorj, A.; Kirken, R.A.; Leiby, B.; Karras, J.; Nevalainen, M.T. Transcription Factor Signal Transducer and Activator of Transcription 5 Promotes Growth of Human Prostate Cancer Cells In vivo. Clin. Cancer Res. 2008, 14, 1317–1324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, L.; Liao, Z.; Hoang, D.T.; Dagvadorj, A.; Gupta, S.; Blackmon, S.; Ellsworth, E.; Talati, P.; Leiby, B.; Zinda, M.; et al. Pharmacologic Inhibition of Jak2-Stat5 Signaling by Jak2 Inhibitor AZD1480 Potently Suppresses Growth of Both Primary and Castrate-Resistant Prostate Cancer. Clin. Cancer Res. 2013, 19, 5658–5674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Talati, P.G.; Gu, L.; Ellsworth, E.M.; Girondo, M.A.; Trerotola, M.; Hoang, D.T.; Leiby, B.E.; Dagvadorj, A.; McCue, P.A.; Lallas, C.D.; et al. Jak2-Stat5a/b Signaling Induces Epithelial-to-Mesenchymal Transition and Stem-Like Cell Properties in Prostate Cancer. Am. J. Pathol. 2015, 185, 2505–2522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoang, D.T.; Gu, L.; Liao, Z.; Shen, F.; Talati, P.G.; Koptyra, M.; Tan, S.-H.; Ellsworth, E.; Gupta, S.; Montie, H.; et al. Inhibition of Stat5a/b Enhances Proteasomal Degradation of Androgen Receptor Liganded by Antiandrogens in Prostate Cancer. Mol. Cancer Ther. 2015, 14, 713–726. [Google Scholar] [CrossRef] [Green Version]
- Gu, L.; Zhu, X.-H.; Visakorpi, T.; Alanen, K.; Mirtti, T.; Edmonston, T.B.; Nevalainen, M.T. Activating Mutation (V617F) in the Tyrosine Kinase JAK2 is Absent in Locally-Confined or Castration-Resistant Prostate Cancer. Anal. Cell. Pathol. 2010, 33, 55–59. [Google Scholar] [CrossRef]
- Gu, L.; Vogiatzi, P.; Puhr, M.; Dagvadorj, A.; Lutz, J.; Ryder, A.; Addya, S.; Fortina, P.; Cooper, C.; Leiby, B.; et al. Stat5 promotes metastatic behavior of human prostate cancer cells in vitro and in vivo. Endocr. -Relat. Cancer 2010, 17, 481–493. [Google Scholar] [CrossRef] [Green Version]
- Hoang, D.T.; Iczkowski, K.A.; Kilari, D.; See, W.; Nevalainen, M.T. Androgen receptor-dependent and -independent mechanisms driving prostate cancer progression: Opportunities for therapeutic targeting from multiple angles. Oncotarget 2016, 8, 3724–3745. [Google Scholar] [CrossRef] [Green Version]
- Gu, L.; Dagvadorj, A.; Lutz, J.; Leiby, B.; Bonuccelli, G.; Lisanti, M.P.; Addya, S.; Fortina, P.; Dasgupta, A.; Hyslop, T.; et al. Transcription Factor Stat3 Stimulates Metastatic Behavior of Human Prostate Cancer Cells in Vivo, whereas Stat5b Has a Preferential Role in the Promotion of Prostate Cancer Cell Viability and Tumor Growth. Am. J. Pathol. 2010, 176, 1959–1972. [Google Scholar] [CrossRef]
- Liao, Z.; Gu, L.; Vergalli, J.; Mariani, S.A.; De Dominici, M.; Lokareddy, R.K.; Dagvadorj, A.; Purushottamachar, P.; McCue, P.A.; Trabulsi, E.J.; et al. Structure-Based Screen Identifies a Potent Small Molecule Inhibitor of Stat5a/b with Therapeutic Potential for Prostate Cancer and Chronic Myeloid Leukemia. Mol. Cancer Ther. 2015, 14, 1777–1793. [Google Scholar] [CrossRef] [Green Version]
- Haddad, B.R.; Gu, L.; Mirtti, T.; Dagvadorj, A.; Vogiatzi, P.; Hoang, D.T.; Bajaj, R.; Leiby, B.; Ellsworth, E.; Blackmon, S.; et al. STAT5A/B Gene Locus Undergoes Amplification during Human Prostate Cancer Progression. Am. J. Pathol. 2013, 182, 2264–2275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, S.-H.; Nevalainen, M.T. Signal transducer and activator of transcription 5A/B in prostate and breast cancers. Endocr. Relat. Cancer 2008, 15, 367–390. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.-H.; Dagvadorj, A.; Shen, F.; Gu, L.; Liao, Z.; Abdulghani, J.; Zhang, Y.; Gelmann, E.P.; Zellweger, T.; Culig, Z.; et al. Transcription Factor Stat5 Synergizes with Androgen Receptor in Prostate Cancer Cells. Cancer Res. 2008, 68, 236–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kazansky, A.V.; Spencer, D.M.; Greenberg, N.M. Activation of signal transducer and activator of transcription 5 is required for progression of autochthonous prostate cancer: Evidence from the transgenic adenocarcinoma of the mouse prostate system. Cancer Res. 2003, 63, 8757–8762. [Google Scholar] [PubMed]
- Thomas, C.; Zoubeidi, A.; Kuruma, H.; Fazli, L.; Lamoureux, F.; Beraldi, E.; Monia, B.P.; MacLeod, A.R.; Thüroff, J.W.; Gleave, M.E. Transcription Factor Stat5 Knockdown Enhances Androgen Receptor Degradation and Delays Castration-Resistant Prostate Cancer Progression In vivo. Mol. Cancer Ther. 2011, 10, 347–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sackmann-Sala, L.; Chiche, A.; Mosquera-Garrote, N.; Boutillon, F.; Cordier, C.; Pourmir, I.; Pascual-Mathey, L.; Kessal, K.; Pigat, N.; Camparo, P.; et al. Prolactin-Induced Prostate Tumorigenesis Links Sustained Stat5 Signaling with the Amplification of Basal/Stem Cells and Emergence of Putative Luminal Progenitors. Am. J. Pathol. 2014, 184, 3105–3119. [Google Scholar] [CrossRef]
- Reddy, A.; Huang, C.C.; Liu, H.; DeLisi, C.; Nevalainen, M.T.; Szalma, S.; Bhanot, G.; Akutsu, T.; Kanehisa, M.; Klipp, E.; et al. Robust Gene Network Analysis Reveals Alteration of the Stat5a Network as a Hallmark of Prostate Cancer. In Genome Informatics 2010; World Scientific Pub Co Pte Lt.: Singapore, 2010; Volume 24, pp. 139–153. [Google Scholar]
- Song, C.; Kim, Y.; Min, G.E.; Ahn, H. Dihydrotestosterone enhances castration-resistant prostate cancer cell proliferation through STAT5 activation via glucocorticoid receptor pathway. Prostate 2014, 74, 1240–1248. [Google Scholar] [CrossRef]
- Røe, K.; Bratland, Å.; Vlatkovic, L.; Ragnum, H.B.; Saelen, M.G.; Olsen, D.R.; Marignol, L.; Ree, A.H. Hypoxic Tumor Kinase Signaling Mediated by STAT5A in Development of Castration-Resistant Prostate Cancer. PLoS ONE 2013, 8, e63723. [Google Scholar] [CrossRef]
- Feldman, L.; Wang, Y.; Rhim, J.S.; Bhattacharya, N.; Loda, M.; Sytkowski, A.J. Erythropoietin stimulates growth and STAT5 phosphorylation in human prostate epithelial and prostate cancer cells. Prostate 2006, 66, 135–145. [Google Scholar] [CrossRef]
- Li, H.; Ahonen, T.J.; Alanen, K.; Xie, J.; LeBaron, M.J.; Pretlow, T.G.; Ealley, E.L.; Zhang, Y.; Nurmi, M.; Singh, B.; et al. Activation of Signal Transducer and Activator of Transcription 5 in Human Prostate Cancer Is Associated with High Histological Grade. Cancer Res. 2004, 64, 4774–4782. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Zhang, Y.; Glass, A.; Zellweger, T.; Gehan, E.; Bubendorf, L.; Gelmann, E.P.; Nevalainen, M.T. Activation of Signal Transducer and Activator of Transcription-5 in Prostate Cancer Predicts Early Recurrence. Clin. Cancer Res. 2005, 11, 5863–5868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mirtti, T.; Leiby, B.E.; Stattin, P.; Bergh, A.; Nevalainen, M.T.; Abdulghani, J.; Pavela, M.; Aaltonen, E.; Mamtani, A.; Alanen, K.A.; et al. Abstract C41: Nuclear Stat5a/b predicts early recurrence and prostate cancer-specific death in patients treated by radical prostatectomy. Cancer Res. 2012, 72. [Google Scholar] [CrossRef]
- Maranto, C.; Udhane, V.; Hoang, D.T.; Gu, L.; Alexeev, V.; Malas, K.; Cardenas, K.; Brody, J.R.; Rodeck, U.; Bergom, C.; et al. STAT5A/B Blockade Sensitizes Prostate Cancer to Radiation through Inhibition of RAD51 and DNA Repair. Clin. Cancer Res. 2018, 24, 1917–1931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haddad, B.R.; Erickson, A.; Udhane, V.; LaViolette, P.S.; Rone, J.D.; Kallajoki, M.A.; See, W.A.; Rannikko, A.; Mirtti, T.; Nevalainen, M.T. Positive STAT5 Protein and Locus Amplification Status Predicts Recurrence after Radical Prostatectomy to Assist Clinical Precision Management of Prostate Cancer. Cancer Epidemiol. Biomark. Prev. 2019, 28, 1642–1651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casetti, L.; Martin-Lanneree, S.; Najjar, I.; Plo, I.; Auge, S.; Roy, L.; Chomel, J.C.; Lauret, E.; Turhan, A.G. Dusanter-Fourt I: Differential contributions of STAT5A and STAT5B to stress protection and tyrosine kinase inhibitor resistance of chronic myeloid leukemia stem/progenitor cells. Cancer Res. 2013, 73, 2052–2058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Groot, R.P.; Raaijmakers, J.A.; Lammers, J.-W.J.; Jove, R.; Koenderman, L. STAT5 Activation by BCR-Abl Contributes to Transformation of K562 Leukemia Cells. Blood 1999, 94, 1108–1112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoelbl, A.; Schuster, C.; Kovacic, B.; Zhu, B.; Wickre, M.; Hoelzl, M.A.; Fajmann, S.; Grebien, F.; Warsch, W.; Stengl, G.; et al. Stat5 is indispensable for the maintenance of bcr/abl -positive leukaemia. Embo Mol. Med. 2010, 2, 98–110. [Google Scholar] [CrossRef]
- Horita, M.; Andreu, E.J.; Benito, A.; Arbona, C.; Sanz, C.; Benet, I.; Prosper, F.; Fernandez-Luna, J.L. Blockade of the Bcr-Abl Kinase Activity Induces Apoptosis of Chronic Myelogenous Leukemia Cells by Suppressing Signal Transducer and Activator of Transcription 5–Dependent Expression of Bcl-XL. J. Exp. Med. 2000, 191, 977–984. [Google Scholar] [CrossRef]
- Lin, T.S.; Mahajan, S.; Frank, D.A. STAT signaling in the pathogenesis and treatment of leukemias. Oncogene 2000, 19, 2496–2504. [Google Scholar] [CrossRef] [Green Version]
- Nelson, E.A.; Walker, S.R.; Weisberg, E.; Bar-Natan, M.; Barrett, R.; Gashin, L.B.; Terrell, S.; Klitgaard, J.L.; Santo, L.; Addorio, M.R.; et al. The STAT5 inhibitor pimozide decreases survival of chronic myelogenous leukemia cells resistant to kinase inhibitors. Blood 2011, 117, 3421–3429. [Google Scholar] [CrossRef]
- Nieborowska-Skorska, M.; Wasik, M.A.; Slupianek, A.; Salomoni, P.; Kitamura, T.; Calabretta, B.; Skorski, T. Signal Transducer and Activator of Transcription (STAT)5 Activation by BCR/ABL Is Dependent on Intact Src Homology (SH)3 and SH2 Domains of BCR/ABL and Is Required for Leukemogenesis. J. Exp. Med. 1999, 189, 1229–1242. [Google Scholar] [CrossRef] [PubMed]
- Soliera, A.R.; Mariani, S.A.; Audia, A.; Lidonnici, M.R.; Addya, S.; Ferrari-Amorotti, G.; Cattelani, S.; Manzotti, G.; Fragliasso, V.; Peterson, L.; et al. Gfi-1 inhibits proliferation and colony formation of p210BCR/ABL-expressing cells via transcriptional repression of STAT 5 and Mcl-1. Leukemia 2012, 26, 1555–1563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warsch, W.; Kollmann, K.; Eckelhart, E.; Fajmann, S.; Cerny-Reiterer, S.; Hölbl, A.; Gleixner, K.V.; Dworzak, M.; Mayerhofer, M.; Hoermann, G.; et al. High STAT5 levels mediate imatinib resistance and indicate disease progression in chronic myeloid leukemia. Blood 2011, 117, 3409–3420. [Google Scholar] [CrossRef] [PubMed]
- Ye, D.; Wolff, N.; Li, L.; Zhang, S.; Ilaria, R.L. STAT5 signaling is required for the efficient induction and maintenance of CML in mice. Blood 2006, 107, 4917–4925. [Google Scholar] [CrossRef] [PubMed]
- Levy, D.E.; Darnell, J.E. STATs: Transcriptional control and biological impact. Nat. Rev. Mol. Cell Biol. 2002, 3, 651–662. [Google Scholar] [CrossRef]
- Quintás-Cardama, A.; Verstovsek, S. Molecular Pathways: JAK/STAT Pathway: Mutations, Inhibitors, and Resistance. Clin. Cancer Res. 2013, 19, 1933–1940. [Google Scholar] [CrossRef] [Green Version]
- Ihle, J.N. The Stat family in cytokine signaling. Curr. Opin. Cell Biol. 2001, 13, 211–217. [Google Scholar] [CrossRef]
- Liu, X.; Robinson, G.W.; Gouilleux, F.; Groner, B.; Hennighausen, L. Cloning and expression of Stat5 and an additional homologue (Stat5b) involved in prolactin signal transduction in mouse mammary tissue. Proc. Natl. Acad. Sci. USA 1995, 92, 8831–8835. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Robinson, G.W.; Hennighausen, L. Activation of Stat5a and Stat5b by tyrosine phosphorylation is tightly linked to mammary gland differentiation. Mol. Endocrinol. 1996, 10, 1496–1506. [Google Scholar]
- Neculai, D.; Neculai, A.M.; Verrier, S.; Straub, K.; Klumpp, K.; Pfitzner, E.; Becker, S. Structure of the Unphosphorylated STAT5a Dimer. J. Biol. Chem. 2005, 280, 40782–40787. [Google Scholar] [CrossRef] [Green Version]
- Smit, L.S.; Meyer, D.J.; Billestrup, N.; Norstedt, G.; Schwartz, J.; Carter-Su, C. The role of the growth hormone (GH) receptor and JAK1 and JAK2 kinases in the activation of Stats 1, 3, and 5 by GH. Mol. Endocrinol. 1996, 10, 519–533. [Google Scholar] [PubMed]
- Gobert, S.; Chretien, S.; Gouilleux, F.; Muller, O.; Pallard, C.; Dusanter-Fourt, I.; Groner, B.; Lacombe, C.; Gisselbrecht, S.; Mayeux, P. Identification of tyrosine residues within the intracellular domain of the erythropoietin receptor crucial for STAT5 activation. EMBO J. 1996, 15, 2434–2441. [Google Scholar] [CrossRef] [PubMed]
- Pezet, A.; Ferrag, F.; Kelly, P.A.; Edery, M. Tyrosine Docking Sites of the Rat Prolactin Receptor Required for Association and Activation of Stat5. J. Biol. Chem. 1997, 272, 25043–25050. [Google Scholar] [CrossRef] [Green Version]
- Chin, H.; Nakamura, N.; Kamiyama, R.; Miyasaka, N.; Ihle, J.; Miura, O. Physical and functional interactions between Stat5 and the tyrosine- phosphorylated receptors for erythropoietin and interleukin-3. Blood 1996, 88, 4415–4425. [Google Scholar] [CrossRef] [PubMed]
- Barber, D.L.; Beattie, B.K.; Mason, J.M.; Nguyen, M.H.; Yoakim, M.; Neel, B.G.; D’Andrea, A.D.; Frank, D.A. A common epitope is shared by activated signal transducer and activator of transcription-5 (STAT5) and the phosphorylated erythropoietin receptor: Implications for the docking model of STAT activation. Blood 2001, 97, 2230–2237. [Google Scholar] [CrossRef] [Green Version]
- Udhane, V.; Maranto, C.; Hoang, D.T.; Gu, L.; Erickson, A.; Devi, S.; Talati, P.G.; Banerjee, A.; Iczkowski, K.A.; Jacobsohn, K.; et al. Enzalutamide-Induced Feed-Forward Signaling Loop Promotes Therapy-Resistant Prostate Cancer Growth Providing an Exploitable Molecular Target for Jak2 Inhibitors. Mol. Cancer Ther. 2019, 19, 231–246. [Google Scholar] [CrossRef] [Green Version]
- Nam, S.; Scuto, A.; Yang, F.; Chen, W.; Park, S.; Yoo, H.-S.; Konig, H.; Bhatia, R.; Cheng, X.; Merz, K.-H.; et al. Indirubin derivatives induce apoptosis of chronic myelogenous leukemia cells involving inhibition of Stat5 signaling. Mol. Oncol. 2012, 6, 276–283. [Google Scholar] [CrossRef] [Green Version]
- Müller, J.; Sperl, B.; Reindl, W.; Kiessling, A.; Berg, T. Discovery of Chromone-Based Inhibitors of the Transcription Factor STAT5. ChemBioChem 2008, 9, 723–727. [Google Scholar] [CrossRef]
- Elumalai, N.; Berg, A.; Natarajan, K.; Scharow, A.; Berg, T. Nanomolar Inhibitors of the Transcription Factor STAT5b with High Selectivity over STAT5a**. Angew. Chem. Int. Ed. 2015, 54, 4758–4763. [Google Scholar] [CrossRef] [Green Version]
- Page, B.D.G.; Khoury, H.; Laister, R.C.; Fletcher, S.; Vellozo, M.; Manzoli, A.; Yue, P.; Turkson, J.; Minden, M.D.; Gunning, P.T. Small Molecule STAT5-SH2 Domain Inhibitors Exhibit Potent Antileukemia Activity. J. Med. Chem. 2012, 55, 1047–1055. [Google Scholar] [CrossRef]
- Cumaraswamy, A.A.; Lewis, A.M.; Geletu, M.; Todic, A.; Diaz, D.B.; Cheng, X.R.; Brown, C.E.; Laister, R.C.; Muench, D.; Kerman, K.; et al. Nanomolar-Potency Small Molecule Inhibitor of STAT5 Protein. ACS Med. Chem. Lett. 2014, 5, 1202–1206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elumalai, N.; Berg, A.; Rubner, S.; Blechschmidt, L.; Song, C.; Natarajan, K.; Matysik, J.; Berg, T. Rational development of Stafib-2: A selective, nanomolar inhibitor of the transcription factor STAT5b. Sci. Rep. 2017, 7, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Wingelhofer, B.; Maurer, B.; Heyes, E.C.; Cumaraswamy, A.A.; Berger-Becvar, A.; De Araujo, E.D.; Orlova, A.; Freund, P.; Ruge, F.; Park, J.; et al. Pharmacologic inhibition of STAT5 in acute myeloid leukemia. Leukemia 2018, 32, 1135–1146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dagvadorj, A.; Tan, S.-H.; Liao, Z.; Cavalli, L.R.; Haddad, B.R.; Nevalainen, M.T. Androgen-regulated and highly tumorigenic human prostate cancer cell line established from a transplantable primary CWR22 tumor. Clin. Cancer Res. 2008, 14, 6062–6072. [Google Scholar] [CrossRef] [Green Version]
- Fahrenkamp, D.; Li, J.; Ernst, S.; De Leur, H.S.-V.; Chatain, N.; Küster, A.; Koschmieder, S.; Lüscher, B.; Rossetti, G.; Müller-Newen, G. Intramolecular hydrophobic interactions are critical mediators of STAT5 dimerization. Sci. Rep. 2016, 6, 35454. [Google Scholar] [CrossRef] [Green Version]
- Ni, J.; Xie, S.; Ramkissoon, S.H.; Luu, V.; Sun, Y.; Bandopadhayay, P.; Beroukhim, R.; Roberts, T.M.; Stiles, C.D.; Segal, R.A.; et al. Tyrosine receptor kinase B is a drug target in astrocytomas. Neuro-Oncol. 2016, 19, 22–30. [Google Scholar] [CrossRef] [Green Version]
- Scott, B.L.; Becker, P.S. JAK/STAT Pathway Inhibitors and Neurologic Toxicity. JAMA Oncol. 2015, 1, 651–652. [Google Scholar] [CrossRef]
- Buchert, M.; Burns, C.J.; Ernst, M. Targeting JAK kinase in solid tumors: Emerging opportunities and challenges. Oncogene 2015, 35, 939–951. [Google Scholar] [CrossRef]
- Simpkins, A.N.; Rudic, R.D.; Schreihofer, D.A.; Roy, S.; Manhiani, M.; Tsai, H.-J.; Hammock, B.D.; Imig, J.D. Soluble Epoxide Inhibition Is Protective Against Cerebral Ischemia via Vascular and Neural Protection. Am. J. Pathol. 2009, 174, 2086–2095. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Sanberg, P.R.; Li, Y.; Wang, L.; Lu, M.; Willing, A.E.; Sanchez-Ramos, J.; Chopp, M. Intravenous Administration of Human Umbilical Cord Blood Reduces Behavioral Deficits After Stroke in Rats. Stroke 2001, 32, 2682–2688. [Google Scholar] [CrossRef] [Green Version]
- Bederson, J.B.; Pitts, L.H.; Tsuji, M.; Nishimura, M.C.; Davis, R.L.; Bartkowski, H. Rat middle cerebral artery occlusion: Evaluation of the model and development of a neurologic examination. Stroke 1986, 17, 472–476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huber-Ruano, I.; Pastor-Anglada, M. Transport of Nucleoside Analogs Across the Plasma Membrane: A Clue to Understanding Drug-Induced Cytotoxicity. Curr. Drug Metab. 2009, 10, 347–358. [Google Scholar] [CrossRef] [PubMed]
- Patro, R.; Duggal, G.; Love, M.I.; Irizarry, R.A.; Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 2017, 14, 417–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frankish, A.; Diekhans, M.; Ferreira, A.-M.; Johnson, R.; Jungreis, I.; Loveland, J.; Mudge, J.M.; Sisu, C.; Wright, J.; Armstrong, J.; et al. GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res. 2019, 47, D766–D773. [Google Scholar] [CrossRef] [Green Version]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 2014, 15, 002832. [Google Scholar] [CrossRef] [Green Version]
- Yu, G.; Wang, L.-G.; Han, Y.; He, Q.-Y. clusterProfiler: An R Package for Comparing Biological Themes Among Gene Clusters. Omics A J. Integr. Biol. 2012, 16, 284–287. [Google Scholar] [CrossRef]
- Anastassiadis, T.; Deacon, S.W.; Devarajan, K.; Ma, H.; Peterson, J.R. Comprehensive assay of kinase catalytic activity reveals features of kinase inhibitor selectivity. Nat. Biotechnol. 2011, 29, 1039–1045. [Google Scholar] [CrossRef] [Green Version]
- McTigue, M.A.; Murray, B.W.; Chen, J.H.; Deng, Y.-L.; Solowiej, J.; Kania, R.S. Molecular conformations, interactions, and properties associated with drug efficiency and clinical performance among VEGFR TK inhibitors. Proc. Natl. Acad. Sci. USA 2012, 109, 18281–18289. [Google Scholar] [CrossRef] [Green Version]
- Hubbard, S.R. Juxtamembrane autoinhibition in receptor tyrosine kinases. Nat. Rev. Mol. Cell Biol. 2004, 5, 464–471. [Google Scholar] [CrossRef]
- Jester, B.W.; Cox, K.J.; Gaj, A.; Shomin, C.D.; Porter, J.R.; Ghosh, I. A Coiled-Coil Enabled Split-Luciferase Three-Hybrid System: Applied Toward Profiling Inhibitors of Protein Kinases. J. Am. Chem. Soc. 2010, 132, 11727–11735. [Google Scholar] [CrossRef] [Green Version]
Kinase | Activity (%) | Kinase | Activity (%) |
---|---|---|---|
JAK2 | 95.4 | AXL | 90.4 |
JAK1 | 96.2 | FYN | 95.8 |
JAK3 | 100.0 | LCK | 88.9 |
TYK2 | 100.0 | IGF1R | 100.0 |
ABL1 | 88.3 | IKKe | 84.8 |
ABL2 | 88.6 | INSR | 91.0 |
TRKB | 89.4 | ITK | 100.0 |
TRKC | 93.4 | LYN | 90.4 |
PIM1 | 93.9 | MET | 100.0 |
PIM2 | 91.8 | MLK1 | 100.0 |
SRC | 92.1 | MLK3 | 93.5 |
PAK1 | 98.8 | MSK2 | 90.0 |
AKT1 | 100.0 | MUSK | 100.0 |
AKT2 | 94.3 | p38g | 100.0 |
AKT3 | 95.8 | PDGFRA | 100.0 |
AURKA | 85.3 | PDGFRB | 78.4 |
AURKB | 96.0 | PLK4 | 85.8 |
BLK | 100.0 | PYK2 | 95.7 |
CAMKK1 | 94.2 | SLK | 92.6 |
CAMKK2 | 100.0 | SYK | 92.1 |
DDR1 | 89.3 | TBK1 | 92.8 |
DDR2 | 97.4 | TIE1 | 100.0 |
EPHA1 | 94.0 | TNK2 | 98.3 |
FAK | 99.0 | PYK1 | 93.4 |
FGFR2 | 85.7 | VEGFR2 | 89.1 |
FLT1 | 88.4 | YES1 | 100.0 |
FLT2/3 | 93.6 | CAMK1D | 92.0 |
Liver Function | Kidney Function | Other | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Parameters | AST | ALT | Alk.Ptase | TBIL | Bile Acid | Albumin | Globulin | A-G Ratio | BUN | Chol | BW | HCT |
Group | U/L | U/L | U/L | mg/dL | µmol/dL | g/dL | g/dL | mg/dL | g | L/L | ||
Normal range | 52–560 | 39–96 | 50–96 | 0.0–0.9 | N/A | 2.5–4.0 | 1.0–3.0 | N/A | 9.0–39 | mg/dL | 20–28 | L/L |
0 mg/kg | 370 ± 116 | 65.4 ± 13.5 | 47.4 ± 7.10 | 0.61 ± 0.16 | 1.98 ± 11.51 | 3.65 ± 0.35 | 1.35 ± 0.08 | 1.35 ± 0.08 | 29.6 ± 0.74 | 115 ± 40.7 | 24.0 ± 1.07 | 0.44 ± 0.02 |
10 mg/kg | 284 ± 78.7 | 62.1 ± 11.0 | 43.17 ± 3.5 | 0.51 ± 0.10 | 0.88 ± 0.40 | 3.25 ± 0.01 | 1.4 ± 0.01 | 2.36 ± 0.01 | 27.67 ± 1.4 | 67.80 ±5.0 | 22.8 ± 0.79 | 0.43 ± 0.02 |
30 mg/kg | 488 ± 168 | 100 ± 23.9 | 57.0 ± 6.82 | 1.16 ± 0.43 | 3.35 ± 2.87 | 4.16 ± 0.59 | 1.4 ± 0.08 | 2.82 ± 0.52 | 29.6 ± 1.79 | 182 ± 57.8 | 21.9 ± 089 | 0.43 ± 0.02 |
100 mg/kg | 377 ± 96.7 | 73.2 ± 15.4 | 55.8 ± 5.42 | 0.62 ± 0.09 | 2.52 ± 1.28 | 3.32 ± 0.15 | 1.28 ± 0.10 | 2.74 ± 0.35 | 28.6 ± 1.14 | 89.4 ± 5.91 | 22.0 ± 0.97 | 0.44 ± 0.01 |
Liver Function | Kidney Function | Other | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Parameters | AST | ALT | Alk.Ptase | TBIL | Bile Acid | Albumin | Globulin | A-G Ratio | BUN | Chol | BW | HCT |
Group | U/L | U/L | U/L | mg/dL | µmol/dL | g/dL | g/dL | mg/dL | gm | L/L | ||
Normal range | 52–560 | 39–96 | 50–96 | 0.0–0.9 | N/A | 2.5–4.0 | 1.0–3.0 | N/A | 9.0–39 | mg/dL | 20–28 | L/L |
0 mg/kg | 314 ± 56.8 | 45.6 ± 3.92 | 55 ± 2.21 | 0.24 ± 0.02 | 2.23 ± 0.41 | 2.73 ± 0.04 | 1.38 ± 0.04 | 1.99 ± 0.08 | 23.4 ± 0.85 | 61.8 ± 1.87 | 23.0 ± 0.4 | 0.44 ± 0.02 |
10 mg/kg | 329.9 ± 30.9 | 50.4 ± 3.71 | 51.3 ± 0.72 | 0.26 ± 0.02 | 21.0 ± 12.7 | 2.69 ± 0.05 | 1.41 ± 0.04 | 1.93 ± 0.08 | 20.5 ± 0.82 | 65.0 ± 2.09 | 22.5 ± 1.1 | 0.43 ± 0.02 |
30 mg/kg | 336 ± 57.1 | 45.2 ± 3.76 | 53.0 ± 1.93 | 0.21 ± 0.01 | 2.39 ± 0.32 | 2.74 ± 0.07 | 1.47 ± 0.07 | 1.90 ± 0.11 | 25 ± 1.32 | 70.3 ± 1.38 | 23.5 ± 0.6 | 0.45 ± 0.01 |
100 mg/kg | 327 ± 4.03 | 50.9 ± 3.83 | 53.3 ± 1.76 | 0.24v0.02 | 2.98 ± 0.29 | 2.74 ± 0.04 | 1.39 ± 0.03 | 1.39 ± 0.03 | 23.0 ± 0.07 | 75.9 ± 2.06 | 23.5 ± 0.9 | 0.43 ± 0.03 |
(A). Plasma biochemistry. Sub-chronic toxicity (C57BL/6j mice): plasma biochemistry. | ||||||||||||||||||||
Liver function | Kidney function | Other | ||||||||||||||||||
Parameters | AST | ALT | Alk.Ptase | TBIL | Bile Acid | Albumin | Globulin | A-G Ratio | BUN | Chol | BW | HCT | ||||||||
Group | U/L | U/L | U/L | mg/dL | µmol/dL | g/dL | g/dL | mg/dL | gm | L/L | ||||||||||
Normal range | 52–560 | 39–96 | 50–96 | 0.0–0.9 | N/A | 2.5–4.0 | 1.0–3.0 | N/A | 9.0–39 | mg/dL | 20–28 | L/L | ||||||||
0 mg/kg | 314 ± 56.8 | 45.6 ± 3.92 | 55 ± 2.21 | 0.24 ± 0.02 | 2.23 ± 0.41 | 2.73 ± 0.04 | 1.38 ± 0.04 | 1.99 ± 0.08 | 23.4 ± 0.85 | 61.8 ± 1.87 | 23.0 ± 0.4 | 0.44 ± 0.02 | ||||||||
10 mg/kg | 329.9 ± 30.9 | 50.4 ± 3.71 | 51.3 ± 0.72 | 0.26 ± 0.02 | 21.0 ± 12.7 | 2.69 ± 0.05 | 1.41 ± 0.04 | 1.93 ± 0.08 | 20.5 ± 0.82 | 65.0 ± 2.09 | 22.5 ± 1.1 | 0.43 ± 0.02 | ||||||||
30 mg/kg | 336 ± 57.1 | 45.2 ± 3.76 | 53.0 ± 1.93 | 0.21 ± 0.01 | 2.39 ± 0.32 | 2.74 ± 0.07 | 1.47 ± 0.07 | 1.90 ± 0.11 | 25 ± 1.32 | 70.3 ± 1.38 | 23.5 ± 0.6 | 0.45 ± 0.01 | ||||||||
Aspartate Aminotransferase (AST); Alanine Aminotransferase (ALT); Alkaline Phosphatase (ALP); Total Bilirubin (TBIL); Albumin-Globulin (A/G) Ratio; Blood Urea Nitrogen (BUN); Cholesterol (Chol); Body Weight (BW); Hematocrit (HCT) | ||||||||||||||||||||
(B). Hematology data. Sub-chronic toxicity (C57BL/6j mice): plasma hematology. | ||||||||||||||||||||
Parameters | ||||||||||||||||||||
WBC | RBC | HGB | PLT | LYM | MON | EOS | GRA | |||||||||||||
Group | K/uL | M/uL | g/dL | M/uL | % | % | % | % | ||||||||||||
Normal range | 3.9–13.96 | 7.14–12.2 | 10.8–19.2 | 565–2159 | 61.2–87.8 | 2.18–11.0 | 0.02–4.51 | N/A | ||||||||||||
0 mg/kg | 4.35 ± 0.85 | 9.78 ± 1.4 | 16.0 ± 1.95 | 543 ± 77.5 | 62.5 ± 4.85 | 8.53 ± 1.3 | 3.59 ± 0.85 | 28.9 ± 4.45 | ||||||||||||
10 mg/kg | 4.18 ± 0.65 | 10.59 ± 0.2 | 19.8 ± 1.4 | 614 ± 119 | 67.8 ± 2.0 | 6.29 ± 0.75 | 3.88 ± 1.0 | 25.9 ± 2.3 | ||||||||||||
30 mg/kg | 3.76 ± 0.55 | 9.61 ± 0.31 | 18.2 ± 2.5 | 553 ± 154 | 63.23 ± 6.7 | 7.06 ± 0.5 | 5.29 ± 1.35 | 29.7 ± 6.7 | ||||||||||||
White Blood Cells (WBC); Red Blood Cells (RBC); Hemoglobin (HGB); Platelets (PLT); Lymphocytes (LYM); Monocytes (MON); Eosinophils (EOS); Granulocytes (GRA). |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maranto, C.; Udhane, V.; Jia, J.; Verma, R.; Müller-Newen, G.; LaViolette, P.S.; Pereckas, M.; Sabharwal, L.; Terhune, S.; Pattabiraman, N.; et al. Prospects for Clinical Development of Stat5 Inhibitor IST5-002: High Transcriptomic Specificity in Prostate Cancer and Low Toxicity In Vivo. Cancers 2020, 12, 3412. https://doi.org/10.3390/cancers12113412
Maranto C, Udhane V, Jia J, Verma R, Müller-Newen G, LaViolette PS, Pereckas M, Sabharwal L, Terhune S, Pattabiraman N, et al. Prospects for Clinical Development of Stat5 Inhibitor IST5-002: High Transcriptomic Specificity in Prostate Cancer and Low Toxicity In Vivo. Cancers. 2020; 12(11):3412. https://doi.org/10.3390/cancers12113412
Chicago/Turabian StyleMaranto, Cristina, Vindhya Udhane, Jing Jia, Ranjit Verma, Gerhard Müller-Newen, Peter S. LaViolette, Michael Pereckas, Lavannya Sabharwal, Scott Terhune, Nagarajan Pattabiraman, and et al. 2020. "Prospects for Clinical Development of Stat5 Inhibitor IST5-002: High Transcriptomic Specificity in Prostate Cancer and Low Toxicity In Vivo" Cancers 12, no. 11: 3412. https://doi.org/10.3390/cancers12113412
APA StyleMaranto, C., Udhane, V., Jia, J., Verma, R., Müller-Newen, G., LaViolette, P. S., Pereckas, M., Sabharwal, L., Terhune, S., Pattabiraman, N., Njar, V. C. O., Imig, J. D., Wang, L., & Nevalainen, M. T. (2020). Prospects for Clinical Development of Stat5 Inhibitor IST5-002: High Transcriptomic Specificity in Prostate Cancer and Low Toxicity In Vivo. Cancers, 12(11), 3412. https://doi.org/10.3390/cancers12113412