The Diagnostic and Therapeutic Role of Leptin and Its Receptor ObR in Glioblastoma Multiforme
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
3. Relevant Pathways for Leptin-Induced Glioma Genesis and Recurrence
4. Associations between Brain Tumor Entities and Treatment Outcome with the Metabolic State
5. Molecular Evidence Supporting Leptin as a Potential Diagnostic Factor in Glioma Patients
6. Current Therapeutic Concepts for Glioblastoma Multiforme Targeting the Leptin/ObR Axis
7. Conclusions and Future Targeted Research
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ObR | leptin receptor |
GBM | glioblastoma multiforme |
HGG | high-grade glioma |
LGG | low-grade glioma |
T2DM | type 2 diabetes mellitus |
TMZ | temozolomide (TMZ) |
POMC | pro-opiomelanocortin |
NPY/AgRP | neuropeptide Y/agouti-related protein |
ARC | arcuate nucleus |
BBB | blood-brain-barrier |
CSF | cerebrospinal fluid |
JAKs | Janus kinase family |
STATs | signal transducers and activators of transcription |
SOCS3 | suppressor of cytokine signaling-3 |
ERK | extracellular signal regulated kinase |
MAPK | mitogen activated protein kinase |
mTOR | mammalian target of Rapamycin |
SH-2 | Src- homology domain 2 |
SH2B1 | domain containing protein 1B |
(IRS) | insulin receptor substrate |
(PI3K) | phosphoinositide-3-kinase |
WAT | white adipose tissue |
RT-PCR | reverse transcriptase-polymerase chain reaction |
PDGF-BB | platelet-derived growth factor-BB |
PECAM-1 | platelet endothelial cell adhesion molecule-1 |
IL | interleukins |
TNF-α | tumor necrosis factor |
VEGF | vascular endothelial growth factor |
HGF | hepatocyte growth factor |
MABS | monoclonal antibodies |
CAR | chimeric antigen receptor |
D-2HG-D2 | hydroxy-glutamate |
CQ | chloroquine |
IDH | isocitrate dehydrogenase |
BDNF | brain-derived neurotrophic factor |
MFRMN | metformin hydrochloride |
MFLOQ | mefloquine |
MEMTN | memantine |
PI3K-(IRS) | phosphoinositide-3-kinase |
sPLA2-IIa | phospholipase A2-IIa) |
AMPK | adenosine monophosphate associated protein kinase |
Rb | retinoblastoma protein |
CCDN1 | cyclin D1 |
BIRC5 | survivin |
HSP90A | heat shock protein |
HIF1A | hypoxia inducible factor |
MMP-13 | matrix metalloproteinase-13 |
UPR | unfolded protein response |
GRP78 | chaperone molecule; 78 kDa glucose regulated protein |
DDR | DNS damage response |
NSCLC | non-small cell lung cancer |
RCT | randomized controlled trial |
EE | environmental enrichment |
OS | overall survival |
PFS | progression-free survival |
RT | radiotherapy |
EORTC-QLQ | European Organization for Research and Treatment of Cancer Quality of Life Questionnaire Brain Tumor Module (EORTC-QLQ-BN20). |
References
- Lawrence, J.E.; Cook, N.J.; Rovin, R.A.; Winn, R.J. Leptin Promotes Glioblastoma. Neurol. Res. Int. 2012, 2012, 870807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martín, R.; Cordova, C.; Gutiérrez, B.; Hernández, M.; Nieto, M.L. A dangerous liaison: Leptin and sPLA2-IIA join forces to induce proliferation and migration of astrocytoma cells. PLoS ONE 2017, 12, e0170675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, R.; Morash, B.; Ur, E.; Wilkinson, M. RNAi-mediated silencing of leptin gene expression increases cell death in C6 glioblastoma cells. Mol. Brain Res. 2005, 139, 357–360. [Google Scholar] [CrossRef]
- Morash, B.; Johnstone, J.; Leopold, C.; Li, A.; Murphy, P.; Ur, E.; Wilkinson, M. The regulation of leptin gene expression in the C6 glioblastoma cell line. Mol. Cell. Endocrinol. 2000, 165, 97–105. [Google Scholar] [CrossRef]
- Raso, G.M.; Esposito, E.; Iacono, A.; Pacilio, M.; Coppola, A.; Bianco, G.; Diano, S.; Di Carlo, R.; Meli, R. Leptin induces nitric oxide synthase type II in C6 glioma cells. Neurosci. Lett. 2006, 396, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Li, A.W.; Morash, B.; Hollenberg, A.N.; Ur, E.; Wilkinson, M.; Murphy, P.R. Transcriptional regulation of the leptin gene promoter in rat GH3 pituitary and C6 glioma cells. Mol. Cell. Endocrinol. 2001, 176, 57–65. [Google Scholar] [CrossRef]
- Friedman, J.M. Leptin and the endocrine control of energy balance. Nat. Metab. 2019, 1, 754–764. [Google Scholar] [CrossRef] [PubMed]
- Brennan, A.M.; Mantzoros, C.S. Drug Insight: The role of leptin in human physiology and pathophysiology—Emerging clinical applications. Nat. Clin. Pract. Endocrinol. Metab. 2006, 2, 318–327. [Google Scholar] [CrossRef]
- Margetic, S.; Gazzola, C.; Pegg, G.G.; Hill, R.A. Leptin: A review of its peripheral actions and interactions. Int. J. Obes. 2002, 26, 1407–1433. [Google Scholar] [CrossRef] [Green Version]
- Mesaros, A.; Koralov, S.B.; Rother, E.; Wunderlich, F.T.; Ernst, M.B.; Barsh, G.S.; Rajewsky, K.; Brüning, J.C. Activation of Stat3 Signaling in AgRP Neurons Promotes Locomotor Activity. Cell Metab. 2008, 7, 236–248. [Google Scholar] [CrossRef] [Green Version]
- Luquet, S.; Perez, F.A.; Hnasko, T.S.; Palmiter, R.D. NPY/AgRP Neurons Are Essential for Feeding in Adult Mice but Can Be Ablated in Neonates. Science 2005, 310, 683–685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balthasar, N.; Coppari, R.; McMINN, J.; Liu, S.M.; Lee, C.E.; Tang, V.; Kenny, C.D.; McGovern, R.A.; Chua, S.C.; Elmquist, J.K.; et al. Leptin Receptor Signaling in POMC Neurons Is Required for Normal Body Weight Homeostasis. Neuron 2004, 42, 983–991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banks, W.A. The blood–brain barrier as an endocrine tissue. Nat. Rev. Endocrinol. 2019, 15, 444–455. [Google Scholar] [CrossRef] [PubMed]
- Balland, E.; Dam, J.; Langlet, F.; Caron, E.; Steculorum, S.; Messina, A.; Rasika, S.; Falluel-Morel, A.; Anouar, Y.; Dehouck, B.; et al. Hypothalamic Tanycytes Are an ERK-Gated Conduit for Leptin into the Brain. Cell Metab. 2014, 19, 293–301. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.; Gallet, S.; Klemm, P.; Scholl, P.; Folz-Donahue, K.; Altmüller, J.; Alber, J.; Heilinger, C.; Kukat, C.; Loyens, A.; et al. MCH Neurons Regulate Permeability of the Median Eminence Barrier. Neuron 2020, 107, 306–319.e9. [Google Scholar] [CrossRef]
- Morselli, L.L.; Claflin, K.E.; Cui, H.; Grobe, J.L. Control of Energy Expenditure by AgRP Neurons of the Arcuate Nucleus: Neurocircuitry, Signaling Pathways, and Angiotensin. Curr. Hypertens. Rep. 2018, 20, 25. [Google Scholar] [CrossRef]
- Kettner, N.M.; Mayo, S.A.; Hua, J.; Lee, C.; Moore, D.D.; Fu, L. Circadian Dysfunction Induces Leptin Resistance in Mice. Cell Metab. 2015, 22, 448–459. [Google Scholar] [CrossRef] [Green Version]
- Abella, V.; Scotece, M.; Conde, J.; Pino, J.; Gonzalez-Gay, M.A.; Gómez-Reino, J.J.; Mera, J.J.G.-R.A.; Lago, F.; Gomez, R.; Gualillo, O. Leptin in the interplay of inflammation, metabolism and immune system disorders. Nat. Rev. Rheumatol. 2017, 13, 100–109. [Google Scholar] [CrossRef]
- Cui, H.; López, M.; Rahmouni, H.C.K. The cellular and molecular bases of leptin and ghrelin resistance in obesity. Nat. Rev. Endocrinol. 2017, 13, 338–351. [Google Scholar] [CrossRef]
- Pan, W.W.; Myers, M.G. Leptin and the maintenance of elevated body weight. Nat. Rev. Neurosci. 2018, 19, 95–105. [Google Scholar] [CrossRef]
- Han, G.; Wang, L.; Zhao, W.; Yue, Z.; Zhao, R.; Li, Y.; Zhou, X.; Hu, X.; Liu, J. High expression of leptin receptor leads to temozolomide resistance with exhibiting stem/progenitor cell features in gliobalastoma. Cell Cycle 2013, 12, 3833–3840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferla, R.; Haspinger, E.; Surmacz, E. Metformin inhibits leptin-induced growth and migration of glioblastoma cells. Oncol. Lett. 2012, 4, 1077–1081. [Google Scholar] [CrossRef] [PubMed]
- Ferla, R.; Bonomi, M.; Otvos, L.; Surmacz, E. Glioblastoma-derived Leptin Induces Tube Formation and Growth of Endothelial Cells: Comparison with VEGF Effects. BMC Cancer 2011, 11, 303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panza, S.; Russo, U.; Giordano, F.; Leggio, A.; Barone, I.; Bonofiglio, D.; Gelsomino, L.; Malivindi, R.; Conforti, F.L.; Naimo, G.D.; et al. Leptin and Notch Signaling Cooperate in Sustaining Glioblastoma Multiforme Progression. Biomolecules 2020, 10, 886. [Google Scholar] [CrossRef] [PubMed]
- Yeh, W.-L.; Lu, D.-Y.; Lee, M.-J.; Fu, W.-M. Leptin induces migration and invasion of glioma cells through MMP-13 production. Glia 2009, 57, 454–464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, G.; Li, Y.; Cao, Y.; Yue, Z.; Zhang, Y.; Wang, L.; Liu, J. Overexpression of leptin receptor in human glioblastoma: Correlation with vasculogenic mimicry and poor prognosis. Oncotarget 2017, 8, 58163–58171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thon, M.; Hosoi, T.; Yoshii, M.; Ozawa, K. Leptin induced GRP78 expression through the PI3K-mTOR pathway in neuronal cells. Sci. Rep. 2014, 4, 7096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Modzelewska, P.; Chludzińska, S.; Lewko, J.; Reszeć, J. The influence of leptin on the process of carcinogenesis. Contemp. Oncol. 2019, 23, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Sergentanis, T.N.; Tsivgoulis, G.; Perlepe, C.; Ntanasis-Stathopoulos, I.; Tzanninis, I.-G.; Sergentanis, I.N.; Psaltopoulou, T. Obesity and Risk for Brain/CNS Tumors, Gliomas and Meningiomas: A Meta-Analysis. PLoS ONE 2015, 10, e0136974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chambless, L.B.; Parker, S.L.; Hassam-Malani, L.; McGirt, M.J.; Thompson, R.C.; Mohammad, L.M. Type 2 diabetes mellitus and obesity are independent risk factors for poor outcome in patients with high-grade glioma. J. Neuro-Oncol. 2012, 106, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Sims, E.D.; Jennings, W.J.; Empringham, B.; Fleming, A.; Portwine, C.; Johnston, D.L.; Zelcer, S.M.; Rassekh, S.R.; Burrow, S.; Thabane, L.; et al. Circulating leptin levels are associated with adiposity in survivors of childhood brain tumors. Sci. Rep. 2020, 10, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siegel, E.M.; Nabors, L.B.; Thompson, R.C.; Olson, J.J.; Browning, J.E.; Madden, M.H.; Han, G.; Egan, K.M. Prediagnostic body weight and survival in high grade glioma. J. Neuro-Oncol. 2013, 114, 79–84. [Google Scholar] [CrossRef]
- Knerr, I.; Schuster, S.; Nomikos, P.; Buchfelder, M.; Dötsch, J.; Schoof, E.; Fahlbusch, R.; Rascher, W. Gene expression of adrenomedullin, leptin, their receptors and neuropeptide Y in hormone-secreting and non-functioning pituitary adenomas, meningiomas and malignant intracranial tumours in humans. Neuropathol. Appl. Neurobiol. 2001, 27, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Morash, B.; Li, A.; Murphy, P.R.; Wilkinson, M.; Ur, E. Leptin Gene Expression in the Brain and Pituitary Gland. Endocrinology 1999, 140, 5995–5998. [Google Scholar] [CrossRef] [PubMed]
- Riolfi, M.; Ferla, R.; Del Valle, L.; Piña-Oviedo, S.; Scolaro, L.; Micciolo, R.; Guidi, M.; Terrasi, M.; Cetto, G.L.; Surmacz, E. Leptin and Its Receptor are Overexpressed in Brain Tumors and Correlate with the Degree of Malignancy. Brain Pathol. 2010, 20, 481–489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vokuda, R.S.; Srinivas, B.H.; Madhugiri, V.S.; Velusamy, S.K.; Verma, S.K.; Srinivas, B.H.; Madhugiri, V.S. The Expression of Leptin and Its Receptor During Tumorigenesis of Diffuse Gliomas such as Astrocytoma and Oligodendroglioma—Grade II, III and IV (NOS). Asian Pac. J. Cancer Prev. 2019, 20, 479–485. [Google Scholar] [CrossRef]
- Hands, J.R.; Abel, P.; Ashton, K.; Dawson, T.; Davis, C.; Lea, R.W.; McIntosh, A.J.S.; Baker, M.J. Investigating the rapid diagnosis of gliomas from serum samples using infrared spectroscopy and cytokine and angiogenesis factors. Anal. Bioanal. Chem. 2013, 405, 7347–7355. [Google Scholar] [CrossRef]
- Hands, J.R.; Dorling, K.M.; Abel, P.; Ashton, K.M.; Brodbelt, A.; Davis, C.; Dawson, T.; Jenkinson, M.D.; Lea, R.W.; Walker, C.; et al. Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR) spectral discrimination of brain tumour severity from serum samples. J. Biophotonics 2014, 7, 189–199. [Google Scholar] [CrossRef]
- Hands, J.R.; Clemens, G.; Stables, R.; Ashton, K.; Brodbelt, A.; Davis, C.; Dawson, T.P.; Jenkinson, M.D.; Lea, R.W.; Walker, C.; et al. Brain tumour differentiation: Rapid stratified serum diagnostics via attenuated total reflection Fourier-transform infrared spectroscopy. J. Neuro-Oncol. 2016, 127, 463–472. [Google Scholar] [CrossRef] [Green Version]
- Mohtashami, E.; Shafaei-Bajestani, N.; Mollazadeh, H.; Mousavi, S.H.; Jalili-Nik, M.; Sahebkar, A.; Afshari, A.R. The Current State of Potential Therapeutic Modalities for Glioblastoma Multiforme: A Clinical Review. Curr. Drug Metab. 2020, 21, 564–578. [Google Scholar] [CrossRef]
- Bikis, C.; Tzanavari, T.; Alexandraki, K.I.; Theocharis, S. Leptin Involvement in Primary Brain and Pituitary Tumors: Therapeutic Potential, Prognostic Value, and Proposed Diagnostic Application. Horm. Cancer 2018, 9, 144–155. [Google Scholar] [CrossRef] [PubMed]
- Farmer, R.E.; Ford, D.; Forbes, H.J.; Chaturvedi, N.; Kaplan, R.; Smeeth, L.; Bhaskaran, K. Metformin and cancer in type 2 diabetes: A systematic review and comprehensive bias evaluation. Int. J. Epidemiol. 2017, 46, 745. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Xue, Y.; Xi, Y.-R.; Xie, K. Progress in the application and mechanism of metformin in treating non-small cell lung cancer. Oncol. Lett. 2017, 13, 2873–2880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rêgo, D.F.; Elias, S.T.; Amato, A.A.; Canto, G.D.L.; Guerra, E.N.S. Anti-tumor effects of metformin on head and neck carcinoma cell lines: A systematic review. Oncol. Lett. 2017, 13, 554–566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pollak, M.N. Investigating Metformin for Cancer Prevention and Treatment: The End of the Beginning. Cancer Discov. 2012, 2, 778–790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mayer, A.; Vaupel, M.P.; Struss, H.-G.; Giese, M.A.; Stockinger, M.M.; Schmidberger, M.H. Strong adverse prognostic impact of hyperglycemic episodes during adjuvant chemoradiotherapy of glioblastoma multiforme. Strahlenther. Onkol. 2014, 190, 933–938. [Google Scholar] [CrossRef] [PubMed]
- Adeberg, S.; Bernhardt, D.; Förster, R.; Bostel, T.; Koerber, S.A.; Mohr, A.; Koelsche, C.; Rieken, S.; Debus, J. The influence of hyperglycemia during radiotherapy on survival in patients with primary glioblastoma. Acta Oncol. 2016, 55, 201–207. [Google Scholar] [CrossRef] [Green Version]
- McGirt, M.J.; Chaichana, K.L.; Gathinji, M.; Attenello, F.; Than, K.; Ruiz, A.J.; Olivi, A.; Quiñones-Hinojosa, A. Persistent outpatient hyperglycemia is independently associated with decreased survival after primary resection of malignant brain astrocytomas. Neurosurgery 2008, 63, 286–291. [Google Scholar] [CrossRef] [Green Version]
- Seliger, C.; Meyer, A.-L.; Renner, K.; Leidgens, V.; Moeckel, S.; Jachnik, B.; Dettmer, K.; Tischler, U.; Gerthofer, V.; Rauer, L.; et al. Metformin inhibits proliferation and migration of glioblastoma cells independently of TGF-β2. Cell Cycle 2016, 15, 1755–1766. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.H.; Li, S.; Lu, G.; Xue, H.; Kim, D.H.; Zhu, J.-J.; Liu, Y. Metformin treatment reduces temozolomide resistance of glioblastoma cells. Oncotarget 2016, 7, 78787–78803. [Google Scholar] [CrossRef] [Green Version]
- Yunqian, L.; Zhao, G.; Li, P.; Li, Y.; Zhou, G.; Chen, Y.; Xie, G. Temozolomide in combination with metformin act synergistically to inhibit proliferation and expansion of glioma stem-like cells. Oncol. Lett. 2016, 11, 2792–2800. [Google Scholar] [CrossRef] [Green Version]
- Dietmaier, W.; Lorenz, J.; Riemenschneider, M.J. Molecular diagnostics in neuropathology. Pathologe 2015, 36, 171–180. [Google Scholar] [CrossRef]
- Yu, Z.; Zhao, G.; Xie, G.; Zhao, L.; Chen, Y.; Yu, H.; Zhang, Z.; Li, C.; Li, Y. Metformin and temozolomide act synergistically to inhibit growth of glioma cells and glioma stem cells in vitro and in vivo. Oncotarget 2015, 6, 32930–32943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sesen, J.; Dahan, P.; Sarry, J.-E.; Skuli, N.; Scotland, S.J.; Saland, E.; Dang, V.-T.; Lemarié, A.; Tyler, B.M.; Brem, H.; et al. Metformin Inhibits Growth of Human Glioblastoma Cells and Enhances Therapeutic Response. PLoS ONE 2015, 10, e0123721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gritti, M.; Wurth, R.; Angelini, M.; Barbieri, F.; Peretti, M.; Pizzi, E.; Pattarozzi, A.; Carra, E.; Sirito, R.; Daga, A.; et al. Metformin repositioning as antitumoral agent: Selective antiproliferative e_ects in human glioblastoma stem cells, via inhibition of CLIC1-mediated ion current. Oncotarget 2014, 5, 11252–11268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sato, A.; Sunayama, J.; Okada, M.; Watanabe, E.; Seino, S.; Shibuya, K.; Suzuki, K.; Narita, Y.; Shibui, S.; Kayama, T.; et al. Glioma-Initiating Cell Elimination by Metformin Activation of FOXO3 via AMPK. Stem Cells Transl. Med. 2012, 1, 811–824. [Google Scholar] [CrossRef]
- Gao, L.-B.; Tian, S.; Gao, H.-H.; Xu, Y.-Y. Metformin inhibits glioma cell U251 invasion by downregulation of fibulin-3. Neuroreport 2013, 24, 504–508. [Google Scholar] [CrossRef]
- Wurth, R.; Pattarozzi, A.; Gatti, M.; Bajetto, A.; Corsaro, A.; Parodi, A.; Sirito, R.; Massollo, M.; Marini, C.; Zona, G.; et al. Metformin selectively acts human glioblastoma tumorinitiating cell viability: A role for metformin induced inhibition of Akt. Cell Cycle 2012, 12, 145–156. [Google Scholar] [CrossRef] [Green Version]
- Isakovic, A.; Harhaji, L.; Stevanovic, D.; Markovic, Z.; Sumarac-Dumanovic, M.; Starcevic, V.; Micic, D.; Trajkovic, V. Dual antiglioma action of metformin: Cell cycle arrest and mitochondria-dependent apoptosis. Cell. Mol. Life Sci. 2007, 64, 1290–1302. [Google Scholar] [CrossRef]
- Zakikhani, M.; Dowling, R.J.O.; Fantus, G.I.; Sonenberg, N.; Pollak, M. Metformin Is an AMP Kinase–Dependent Growth Inhibitor for Breast Cancer Cells. Cancer Res. 2006, 66, 10269–10273. [Google Scholar] [CrossRef] [Green Version]
- Mazurek, M.; Litak, J.; Kamieniak, P.; Kulesza, B.; Jonak, K.E.; Baj, J.; Grochowski, C. Metformin as Potential Therapy for High-Grade Glioma. Cancers 2020, 12, 210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molenaar, R.J.; Coelen, R.J.S.; Khurshed, M.; Roos, E.; Caan, M.W.A.; Van Linde, M.E.; Kouwenhoven, M.; Bramer, J.A.M.; Bovée, J.V.M.G.; Mathôt, R.A.; et al. Study protocol of a phase IB/II clinical trial of metformin and chloroquine in patients withIDH1-mutated orIDH2-mutated solid tumours. BMJ Open 2017, 7, e014961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seliger, C.; Genbrugge, E.; Gorlia, T.; Chinot, O.; Stupp, R.; Nabors, B.; Weller, M.; Hau, P.; EORTC Brain Tumor Group. Use of metformin and outcome of patients with newly diagnosed glioblastoma: Pooled analysis. Int. J. Cancer 2020, 146, 803–809. [Google Scholar] [CrossRef] [PubMed]
- Seliger, C.; Luber, C.; Gerken, M.; Schaertl, J.; Proescholdt, M.; Riemenschneider, M.J.; Meier, C.R.; Bogdahn, U.; Leitzmann, M.F.; Klinkhammer-Schalke, M.; et al. Use of metformin and survival of patients with high-grade glioma. Int. J. Cancer 2019, 144, 273–280. [Google Scholar] [CrossRef] [Green Version]
- Adeberg, S.; Bernhardt, D.; Ben Harrabi, S.; Bostel, T.; Mohr, A.; Koelsche, C.; Diehl, C.; Rieken, S.; Debus, J. Metformin influences progression in diabetic glioblastoma patients. Strahlenther. Onkol. 2015, 191, 928–935. [Google Scholar] [CrossRef]
- Welch, M.R.; Grommes, C. Retrospective analysis of the effects of steroid therapy and antidiabetic medication on survival in diabetic glioblastoma patients. CNS Oncol. 2013, 2, 237–246. [Google Scholar] [CrossRef]
- Khan, S.S.; Asif, M.; Basheer, M.K.A.; Kang, C.W.; Al-Suede, F.S.; Ein, O.C.; Tang, J.; Majid, A.S.A.; Majid, A.M.S.A. Treatment of novel IL17A inhibitor in glioblastoma implementing 3rd generation co-culture cell line and patient-derived tumor model. Eur. J. Pharmacol. 2017, 803, 24–38. [Google Scholar] [CrossRef]
Year | Study Design | Patients | Treatment Protocol | Primary Endpoint | Secondary Endpoint | Outcome/Status quo | SAE/AE |
---|---|---|---|---|---|---|---|
2020 [61] | Phase 1 NCT01430351 RCT | 144 | TMZ+MFRMN TMZ+MFLOQ TMZ+MEMNT Newly GBM after SOC treatment | Safety/Tolerability | PFS (6,12,18 m) OS | Active/Not recruiting | --- |
2020 [62] | Phase 1b/2 NCT02496741 Open Label | 15 | MFRMN+CQ Newly GBM IDH1/2MT-pos | Efficacy/Toxicity (maximum dose) | Pharmacokinetic IDH1/2MT assays Tumor response | --- | --- |
2020 [61] | Phase 1 NCT02149459 Open Label | 18 | MFRMN+RT Recurrent GBM | Safety/Tolerability | Tumor response Energy Metabolism (glucose, insulin) | Recruiting | --- |
2020 [61] | Phase 2 NCT02780024 Open Label M-HARTT STUDY) | 50 | 1.TMZ+MFRMN 2.TMZ+RT 3.TMZ alone Recurrent GBM | OS | Toxicity/Tolerability | Recruiting | --- |
2020 [61] | Phase 2 NCT03243851 RCT | 108 | TMZ+MFRMN Versus TMZ+Placebo Recurrent/Refractory GBM | PFS | Tumor response/Tumor control probability PFS (6m) OS (6m) EORTC QLQ-C30 EORTC QLQ-BN20 | Recruiting | --- |
2020 [61] | Phase 1 NCT03151772 Open Label | 40 | Disulfiram MFRMN Newly/Recurrent GBM | Bioavailability at time of surgery | --- | Recruiting | --- |
2020 [63] | Retrospective Pooled Analysis (AVAglio, CENTRIC, CORE trials) | 1731 | MFRMN+TMZ/RT (with/without diabetes) Newly GBM | OS PFS | --- | No significant association between diabetes, metformin use/glucose levels with OS or PFS | --- |
2019 [64] | Retrospective Pooled Analysis | 1093 | Prognostic value of MFRMN (Grade III glioma/GBM) | OS PFS | --- | 1. Significant improved OS/PFS for III glioma 2. No OS/PFS improvement for IV glioma | --- |
2015 [65] | Retrospective Analysis | 276 | Prognostic value of diabetes/glucose level/MFRMN (Newly GMB) | OS PFS | --- | 1. Hyperglycemia and corticosteroid correlated with decreased OS/PFS 2. No correlation of OS/PFS with diabetes 3. MFRMN use associated with improved PFS | --- |
2013 [66] | Retrospective Analysis | 988 | Prognostic value of Corticosteroid/MFRMN (Newly GMB) | OS | 1.Improved OS in MFRMN use 2. Decreased OS in hyperglycemia (corticosteroid) | --- |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kinfe, T.M.; Stadlbauer, A.; Bozhkov, Y.; Kremenevski, N.; Brandner, S.; Buchfelder, M.; Chaudhry, S.R. The Diagnostic and Therapeutic Role of Leptin and Its Receptor ObR in Glioblastoma Multiforme. Cancers 2020, 12, 3691. https://doi.org/10.3390/cancers12123691
Kinfe TM, Stadlbauer A, Bozhkov Y, Kremenevski N, Brandner S, Buchfelder M, Chaudhry SR. The Diagnostic and Therapeutic Role of Leptin and Its Receptor ObR in Glioblastoma Multiforme. Cancers. 2020; 12(12):3691. https://doi.org/10.3390/cancers12123691
Chicago/Turabian StyleKinfe, Thomas M., Andreas Stadlbauer, Yavor Bozhkov, Natalia Kremenevski, Sebastian Brandner, Michael Buchfelder, and Shafqat R. Chaudhry. 2020. "The Diagnostic and Therapeutic Role of Leptin and Its Receptor ObR in Glioblastoma Multiforme" Cancers 12, no. 12: 3691. https://doi.org/10.3390/cancers12123691
APA StyleKinfe, T. M., Stadlbauer, A., Bozhkov, Y., Kremenevski, N., Brandner, S., Buchfelder, M., & Chaudhry, S. R. (2020). The Diagnostic and Therapeutic Role of Leptin and Its Receptor ObR in Glioblastoma Multiforme. Cancers, 12(12), 3691. https://doi.org/10.3390/cancers12123691