Intratumoral Genetic Heterogeneity in Papillary Thyroid Cancer: Occurrence and Clinical Significance
Abstract
:1. Introduction
2. Intratumoral Heterogeneity in Papillary Thyroid Cancer
3. Evidence in Favor of ITH in PTC
3.1. Heterogeneous Presence of a Mutation Documented by Genetic Analysis
3.2. ITH of BRAFV600E by Immunodetection
3.3. Presence of Concomitant Mutations
3.4. Discordant Mutational Status between Primary Site and Metastases
4. Evidence Limiting the Impact of ITH In PTC
5. Heterogeneity of Thyroid Cancer: Clinical and Therapeutic Implications
5.1. Spatial Heterogeneity
5.2. Temporal Heterogeneity
6. Conclusions
Funding
Conflicts of Interest
References
- Burrell, R.A.; McGranahan, N.; Bartek, J.; Swanton, C. The causes and consequences of genetic heterogeneity in cancer evolution. Nature 2013, 501, 338–345. [Google Scholar] [CrossRef]
- Andor, N.; Graham, T.A.; Jansen, M.; Xia, L.C.; Aktipis, C.A.; Petritsch, C.; Ji, H.P.; Maley, C.C. Pan-cancer analysis of the extent and consequences of intratumor heterogeneity. Nat. Med. 2016, 22, 105–113. [Google Scholar] [CrossRef]
- Raynaud, F.; Mina, M.; Tavernari, D.; Ciriello, G. Pan-cancer inference of intra-tumor heterogeneity reveals associations with different forms of genomic instability. PLoS Genet. 2018, 14, e1007669. [Google Scholar] [CrossRef] [Green Version]
- Bedard, P.L.; Hansen, A.R.; Ratain, M.J.; Siu, L.L. Tumour heterogeneity in the clinic. Nature 2013, 501, 355–364. [Google Scholar] [CrossRef] [Green Version]
- McGranahan, N.; Swanton, C. Clonal heterogeneity and tumor evolution: Past, present, and the future. Cell 2017, 168, 613–628. [Google Scholar] [CrossRef]
- Grellety, T.; Lucchesi, C.; Hostein, I.; Auzanneau, C.; Khalifa, E.; Soubeyran, I.; Italiano, A. High-depth sequencing of paired primary and metastatic tumours: Implications for personalised medicine. Eur. J. Cancer 2017, 84, 250–256. [Google Scholar] [CrossRef]
- Gandolfi, G.; Sancisi, V.; Torricelli, F.; Ragazzi, M.; Frasoldati, A.; Piana, S.; Ciarrocchi, A. Allele percentage of the BRAF V600E mutation in papillary thyroid carcinomas and corresponding lymph node metastases: No evidence for a role in tumor progression. J. Clin. Endocrinol. Metab. 2013, 98, 934–942. [Google Scholar] [CrossRef] [Green Version]
- Takano, T. Fetal cellcarcinogenesis of the thyroid: A modified theory based on recent evidence. Endocr. J. 2014, 61, 311–320. [Google Scholar] [CrossRef] [Green Version]
- Lin, R.Y. Thyroid cancer stem cells. Nat. Rev. Endocrinol. 2011, 7, 609–616. [Google Scholar] [CrossRef]
- Nagayama, Y.; Shimamura, M.; Mitsutake, N. Cancer Stem Cells in the Thyroid. Front. Endocrinol. (Lausanne) 2016, 7, 20. [Google Scholar] [CrossRef] [Green Version]
- Hardin, H.; Zhang, R.; Helein, H.; Buehler, D.; Guo, Z.; Lloyd, R.V. The evolving concept of cancer stem-like cells in thyroid cancer and other solid tumors. Lab. Investig. 2017, 97, 1142–1151. [Google Scholar] [CrossRef] [PubMed]
- Mirshahidi, S.; Simental, A.; Lee, S.C.; De Andrade Filho, P.A.; Peterson, N.R.; Cao, W.; Necochea-Campion, R.; Yang, H.; Duerksen-Hughes, P.; Yuan, X. Subpopulations of cancer stem cells found in papillary thyroid carcinoma. Exp. Cell. Res. 2018, 362, 515–524. [Google Scholar] [CrossRef]
- Nowell, P.C. The clonal evolution of tumor cell populations. Science 1976, 194, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Paulsson, J.O.; Backman, S.; Wang, N.; Stenman, A.; Crona, J.; Thutkawkorapin, J.; Ghaderi, M.; Tham, E.; Stalberg, P.; Zedenius, J.; et al. Whole-genome sequencing of synchronous thyroid carcinomas identifies aberrant DNA repair in thyroid cancer dedifferentiation. J. Pathol. 2020, 250, 183–194. [Google Scholar] [CrossRef] [PubMed]
- Landa, I.; Knauf, J.A. Mouse models as a tool for understanding progression in brafv600e-driven thyroid cancers. Endocrinol. Metab. (Seoul) 2019, 34, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Capdevila, J.; Mayor, R.; Mancuso, F.M.; Iglesias, C.; Caratú, G.; Matos, I.; Zafón, C.; Hernando, J.; Petit, A.; Nuciforo, P.; et al. Early evolutionary divergence between papillary and anaplastic thyroid cancers. Ann. Oncol. 2019, 30, 1843. [Google Scholar] [CrossRef]
- Dong, W.; Nicolson, N.G.; Choi, J.; Barbieri, A.L.; Kunstman, J.W.; Abou Azar, S.; Knight, J.; Bilguvar, K.; Mane, S.M.; Lifton, R.P.; et al. Clonal evolution analysis of paired anaplastic and well-differentiated thyroid carcinomas reveals shared common ancestor. Genes Chromosomes Cancer 2018, 57, 645–652. [Google Scholar] [CrossRef]
- Wen, D.; Hu, J.Q.; Wei, W.J.; Ma, B.; Lu, Z.W.; Wang, Y.L.; Wang, Y.; Ji, Q.H. Dedifferentiation patterns in DTC: Is PDTC an intermediate state between DTC and ATC? Clin. Cancer Res. 2018, 24, 3059–3068. [Google Scholar]
- Pozdeyev, N.; Gay, L.M.; Sokol, E.S.; Hartmaier, R.; Deaver, K.E.; Davis, S.; French, J.D.; Borre, P.V.; LaBarbera, D.V.; Tan, A.C.; et al. Genetic Analysis of 779 Advanced Differentiated and Anaplastic Thyroid Cancers. Int. J. Clin. Exp. Pathol. 2019, 12, 267–274. [Google Scholar] [CrossRef] [Green Version]
- Colombo, C.; Muzza, M.; Proverbio, M.C.; Tosi, D.; Soranna, D.; Pesenti, C.; Rossi, S.; Cirello, V.; De Leo, S.; Fusco, N.; et al. Impact of mutation density and heterogeneity on papillary thyroid cancer clinical features and remission probability. Thyroid 2019, 29, 237–251. [Google Scholar] [CrossRef] [PubMed]
- Fugazzola, L.; Elisei, R.; Fuhrer, D.; Jarzab, B.; Leboulleux, S.; Newbold, K.; Smit, J. 2019 European thyroid association guidelines for the treatment and follow-up of advanced radioiodine-refractory thyroid cancer. Eur. Thyroid J. 2019, 8, 227–245. [Google Scholar] [CrossRef] [PubMed]
- Cancer Genome Atlas Network. Integrated genomic characterization of papillary thyroid carcinoma. Cell 2014, 159, 676–690. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Goto, Y.; Murata, H.; Sakaizawa, K.; Uchiyama, A.; Saida, T.; Takata, M. Polyclonality of BRAF mutations in primary melanoma and the selection of mutant alleles during progression. Br. J. Cancer 2011, 104, 464–468. [Google Scholar] [CrossRef] [PubMed]
- Wilmott, J.S.; Menzies, A.M.; Haydu, L.E.; Capper, D.; Preusser, M.; Zhang, Y.E.; Thompson, J.F.; Kefford, R.F.; Von Deimling, A.; Scolyer, R.A.; et al. BRAF V600E protein expression and outcome from BRAF inhibitor treatment in BRAF V600E metastatic melanoma. Br. J. Cancer 2013, 108, 924–931. [Google Scholar] [CrossRef] [Green Version]
- Sakaizawa, K.; Goto, Y.; Kiniwa, Y.; Uchiyama, A.; Harada, K.; Shimada, S.; Saida, T.; Ferrone, S.; Takata, M.; Uhara, H.; et al. Mutation analysis of BRAF and KIT in circulating melanoma cells at the single cell level. Br. J. Cancer 2012, 106, 939–946. [Google Scholar] [CrossRef] [PubMed]
- Sensi, M.; Nicolini, G.; Petti, C.; Bersani, I.; Lozupone, F.; Molla, A.; Vegetti, C.; Nonaka, D.; Mortarini, R.; Parmiani, G.; et al. Mutually exclusive NRASQ61R and BRAFV600E mutations at the single-cell level in the same human melanoma. Oncogene 2006, 25, 3357–3364. [Google Scholar] [CrossRef] [Green Version]
- Ricarte-Filho, J.C.; Ryder, M.; Chitale, D.A.; Rivera, M.; Heguy, A.; Ladanyi, M.; Janakiraman, M.; Solit, D.; Knauf, J.A.; Tuttle, R.M.; et al. Mutational profile of advanced primary and metastatic radioactive iodine-refractory thyroid cancers reveals distinct pathogenetic roles for BRAF, PIK3CA, and AKT1. Cancer Res. 2009, 69, 4885–4893. [Google Scholar] [CrossRef] [Green Version]
- Jarza̧b, B.; Wiench, M.; Fujarewicz, K.; Simek, K.; Jarza̧b, M.; Oczko-Wojciechowska, M.; Włoch, J.; Czarniecka, A.; Chmielik, E.; Lange, D.; et al. Gene expression profile of papillary thyroid cancer: Sources of variability and diagnostic implications. Cancer Res. 2005, 65, 1587–1597. [Google Scholar] [CrossRef] [Green Version]
- De Biase, D.; Cesari, V.; Visani, M.; Casadei, G.P.; Cremonini, N.; Gandolfi, G.; Sancisi, V.; Ragazzi, M.; Pession, A.; Ciarrocchi, A.; et al. High-sensitivity BRAF mutation analysis: BRAF V600E is acquired early during tumor development but is heterogeneously distributed in a subset of papillary thyroid carcinomas. J. Clin. Endocrinol. Metab. 2014, 99, 1530–1538. [Google Scholar] [CrossRef] [Green Version]
- Unger, K.; Zitzelsberger, H.; Salvatore, G.; Santoro, M.; Bogdanova, T.; Braselmann, H.; Kastner, P.; Zurnadzhy, L.; Tronko, N.; Hutzler, P.; et al. Heterogeneity in the distribution of RET/PTC rearrangements within individual post-chernobyl papillary thyroid carcinomas. J. Clin. Endocrinol. Metab. 2004, 89, 4272–4279. [Google Scholar] [CrossRef] [Green Version]
- Unger, K.; Zurnadzhy, L.; Walch, A.; Mall, M.; Bogdanova, T.; Braselmann, H.; Hieber, L.; Tronko, N.; Hutzler, P.; Jeremiah, S.; et al. RET rearrangements in post-chernobyl papillary thyroid carcinomas with a short latency analysed by interphase FISH. Br. J. Cancer 2006, 94, 1472–1477. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Ciampi, R.; Nikiforova, M.N.; Gandhi, M.; Nikiforov, Y.E. Prevalence of RET/PTC rearrangements in thyroid papillary carcinomas: Effects of the detection methods and genetic heterogeneity. J. Clin. Endocrinol. Metab. 2006, 91, 3603–3610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rhoden, K.J.; Unger, K.; Salvatore, G.; Yilmaz, Y.; Vovk, V.; Chiappetta, G.; Qumsiyeh, M.B.; Rothstein, J.L.; Fusco, A.; Santoro, M.; et al. RET/papillary thyroid cancer rearrangement in nonneoplastic thyrocytes: Follicular cells of hashimoto’s thyroiditis share low-level recombination events with a subset of papillary carcinoma. J. Clin. Endocrinol. Metab. 2006, 91, 2414–2423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fusco, A.; Chiappetta, G.; Hui, P.; Garcia-Rostan, G.; Golden, L.; Kinder, B.K.; Dillon, D.A.; Giuliano, A.; Cirafici, A.M.; Santoro, M.; et al. Assessment of RET/PTC oncogene activation and clonality in thyroid nodules with incomplete morphological evidence of papillary carcinoma: A search for the early precursors of papillary cancer. Am. J. Pathol. 2002, 160, 2157–2167. [Google Scholar] [CrossRef]
- Hieber, L.; Huber, R.; Bauer, V.; Schäffner, Q.; Braselmann, H.; Thomas, G.; Bogdanova, T.; Zitzelsberger, H. Chromosomal rearrangements in post-chernobyl papillary thyroid carcinomas: Evaluation by spectral karyotyping and automated interphase FISH. J. Biomed. Biotechnol. 2011, 2011, 693691. [Google Scholar] [CrossRef] [PubMed]
- Guerra, A.; Fugazzola, L.; Marotta, V.; Cirillo, M.; Rossi, S.; Cirello, V.; Forno, I.; Moccia, T.; Budillon, A.; Vitale, M. A high percentage of BRAFV600E alleles in papillary thyroid carcinoma predicts a pooreroutcome. J. Clin. Endocrinol. Metab. 2012, 97, 2333–2340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, M.H.; Bae, J.S.; Lim, D.J.; Lee, H.; Jeon, S.R.; Park, G.S.; Jung, C.K. Quantification of BRAF V600E alleles predicts papillary thyroid cancer progression. Endocr. Relat. Cancer 2014, 21, 891–902. [Google Scholar] [CrossRef] [PubMed]
- Xing, M. BRAFV600E mutation and papillary thyroid cancer: Chicken or egg? J. Clin. Endocrinol. Metab. 2012, 97, 2295–2298. [Google Scholar] [CrossRef] [Green Version]
- Vasko, V.; Hu, S.; Wu, G.; Xing, J.C.; Larin, A.; Savchenko, V.; Trink, B.; Xing, M. High prevalence and possible de novo formation of BRAF mutation in metastasized papillary thyroid cancer in lymph nodes. J. Clin. Endocrinol. Metab. 2005, 90, 5265–5269. [Google Scholar] [CrossRef] [Green Version]
- Muzza, M.; Colombo, C.; Rossi, S.; Tosi, D.; Cirello, V.; Perrino, M.; De Leo, S.; Magnani, E.; Pignatti, E.; Vigo, B.; et al. Telomerase in differentiated thyroid cancer: Promoter mutations, expression and localization. Mol. Cell. Endocrinol. 2015, 399, 288–295. [Google Scholar] [CrossRef]
- Dvorak, K.; Aggeler, B.; Palting, J.; McKelvie, P.; Ruszkiewicz, A.; Waring, P. Immunohistochemistry with the anti-BRAF V600E (VE1) antibody: Impact of pre-analytical conditions and concordance with DNA sequencing in colorectal and papillary thyroid carcinoma. Pathology 2014, 46, 509–517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.L.; Wang, J.C.; Wu, Y.; Zhang, L.; Huang, C.P.; Shen, Q.; Zhu, Y.X.; Li, D.S.; Ji, Q.H. Incidentally simultaneous occurrence of RET/PTC, H4-PTEN and BRAF mutation in papillary thyroid carcinoma. Cancer Lett. 2008, 263, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Xing, M.; Liu, R.; Liu, X.; Murugan, A.K.; Zhu, G.; Zeiger, M.A.; Pai, S.; Bishop, J. BRAF V600E and TERT promoter mutations cooperatively identify the most aggressive papillary thyroid cancer with highest recurrence. J. Clin. Oncol. 2014, 32, 2718–2726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guerra, A.; Zeppa, P.; Bifulco, M.; Vitale, M. Concomitant BRAFV600E mutation and RET/PTC rearrangement is a frequent occurrence in papillary thyroid carcinoma. Thyroid 2014, 24, 254–259. [Google Scholar] [CrossRef] [PubMed]
- Henderson, Y.C.; Shellenberger, T.D.; Williams, M.D.; El-Naggar, A.K.; Fredrick, M.J.; Cieply, K.M.; Clayman, G.L. High rate of BRAF and RET/PTC dual mutations associated with recurrent papillary thyroid carcinoma. Clin. Cancer Res. 2009, 15, 485–491. [Google Scholar] [CrossRef] [Green Version]
- Landa, I.; Ganly, I.; Chan, T.A.; Mitsutake, N.; Matsuse, M.; Ibrahimpasic, T.; Ghossein, R.A.; Fagin, J.A. Frequent somatic TERT promoter mutations in thyroid cancer: Higher prevalence in advanced orms of the disease. J. Clin. Endocrinol. Metab. 2013, 98, 1562–1566. [Google Scholar] [CrossRef] [Green Version]
- Wang, N.; Liu, T.; Sofiadis, A.; Juhlin, C.C.; Zedenius, J.; Höög, A.; Larsson, C.; Xu, D. TERT promoter mutation as an early genetic event activating telomerase in Follicular Thyroid Adenoma (FTA) and atypical FTA. Cancer. 2014, 120, 2965–2979. [Google Scholar] [CrossRef]
- Shrestha, R.T.; Karunamurthy, A.; Amin, K.; Nikiforov, Y.E.; Caramori, M.L. Multiple mutations detected preoperatively may predict aggressive behavior of papillary thyroid cancer and guide management-a case report. Thyroid 2015, 25, 1375–1378. [Google Scholar] [CrossRef]
- Rossi, M.; Buratto, M.; Tagliati, F.; Rossi, R.; Lupo, S.; Trasforini, G.; Lanza, G.; Franceschetti, P.; Bruni, S.; Degli Uberti, E.; et al. Relevance of BRAFV600E mutation testing versus RAS point mutations and RET/PTC rearrangements evaluation in the diagnosis of thyroid cancer. Thyroid 2015, 25, 221–228. [Google Scholar] [CrossRef] [Green Version]
- Sugg, S.L.; Ezzat, S.; Zheng, L.; Freeman, J.L.; Rosen, I.B.; Asa, S.L. Oncogene profile of papillary thyroid carcinoma. Surgery 1999, 125, 46–52. [Google Scholar] [CrossRef]
- Walts, A.E.; Pao, A.; Sacks, W.; Bose, S. BRAF genetic heterogeneity in papillary thyroid carcinoma and its metastasis. Hum. Pathol. 2014, 45, 935–941. [Google Scholar] [CrossRef]
- Melo, M.; Da Rocha, A.G.; Batista, R.; Vinagre, J.; Martins, M.J.; Costa, G.; Ribeiro, C.; Carrilho, F.; Leite, V.; Lobo, C.; et al. TERT, BRAF, and NRAS in primary thyroid cancer and metastatic disease. J. Clin. Endocrinol. Metab. 2017, 102, 1898–1907. [Google Scholar] [CrossRef] [PubMed]
- Finkel, A.; Liba, L.; Simon, E.; Bick, T.; Prinz, E.; Sabo, E.; Ben-Izhak, O.; Hershkovitz, D. Subclonality for BRAF mutation in papillary thyroid carcinoma is associated with earlier disease stage. J. Clin. Endocrinol. Metab. 2016, 101, 1407–1413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landa, I.; Ibrahimpasic, T.; Boucai, L.; Sinha, R.; Knauf, J.A.; Shah, R.H.; Dogan, S.; Ricarte-Filho, J.C.; Krishnamoorthy, G.P.; Xu, B.; et al. Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers. J. Clin. Investig. 2016, 126, 1052–1066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Pennec, S.; Konopka, T.; Gacquer, D.; Fimereli, D.; Tarabichi, M.; Tomás, G.; Savagner, F.; Decaussin-Petrucci, M.; Trésallet, C.; Andry, G.; et al. Intratumor heterogeneity and clonal evolution in an aggressive papillary thyroid cancer and matched metastases. Endocr. Relat. Cancer 2015, 22, 205–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chmielik, E.; Rusinek, D.; Oczko-Wojciechowska, M.; Jarzab, M.; Krajewska, J.; Czarniecka, A.; Jarzab, B. Heterogeneity of Thyroid Cancer. Pathobiology 2018, 85, 117–129. [Google Scholar] [CrossRef] [PubMed]
- Guerra, A.; Sapio, M.R.; Marotta, V.; Campanile, E.; Rossi, S.; Forno, I.; Fugazzola, L.; Budillon, A.; Moccia, T.; Fenzi, G.; et al. The primary occurrence of brafv600e is a rare clonal event in papillary thyroid carcinoma. J. Clin. Endocrinol. Metab. 2012, 97, 517–524. [Google Scholar] [CrossRef] [Green Version]
- Masoodi, T.; Siraj, A.K.; Siraj, S.; Azam, S.; Qadri, Z.; Parvathareddy, S.K.; Al-Sobhi, S.S.; AlDawish, M.; Alkuraya, F.S.; Al-Kuraya, K.S. Evolution and Impact of Subclonal Mutations in Papillary Thyroid Cancer. Am. J. Hum. Genet. 2019, 105, 959–973. [Google Scholar] [CrossRef]
- Oler, G.; Ebina, K.N.; Michaluart, P., Jr.; Kimura, E.T.; Cerutti, J. Investigation of BRAF mutation in a series of papillary thyroid carcinoma and matched-lymph node metastasis reveals a new mutation in metastasis. Clin. Endocrinol. (Oxf.) 2005, 62, 509–511. [Google Scholar] [CrossRef]
- Sohn, S.Y.; Park, W.Y.; Shin, H.T.; Bae, J.S.; Ki, C.S.; Oh, Y.L.; Kim, S.W.; Chung, J.H. Highly Concordant Key Genetic Alterations in Primary Tumors and Matched Distant Metastases in Differentiated Thyroid Cancer. Thyroid 2016, 26, 672–682. [Google Scholar] [CrossRef]
- Cañadas-Garre, M.; Becerra-Massare, P.; Moreno Casares, A.; Calleja-Hernández, M.Á.; Llamas-Elvira, J.M. Relevance of BRAF and NRAS mutations in the primary tumor and metastases of papillary thyroid carcinomas. Head Neck 2016, 38, 1772–1779. [Google Scholar]
- Fakhruddin, N.; Jabbour, M.; Novy, M.; Tamim, H.; Bahmad, H.; Farhat, F.; Zaatari, G.; Aridi, T.; Kriegshauser, G.; Oberkanins, C.; et al. BRAF and NRAS Mutations in Papillary Thyroid Carcinoma and Concordance in BRAF Mutations Between Primary and Corresponding Lymph Node Metastases. Sci. Rep. 2017, 7, 4666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shifrin, A.L.; Fischer, M.; Paul, T.; Erler, B.; Gheysens, K.; Baodhankar, P.; Song-Yang, J.W.; Taylor, S.; Timmaraju, V.A.; Topilow, A.; et al. Mutational analysis of metastatic lymph nodes from papillary thyroid carcinoma in adult and pediatric patients. Surgery 2017, 161, 176–187. [Google Scholar] [CrossRef] [PubMed]
- Masoodi, T.; Siraj, A.K.; Siraj, S.; Azam, S.; Qadri, Z.; Albalawy, W.N.; Parvathareddy, S.K.; Al-Sobhi, S.S.; Al-Dayel, F.; Alkuraya, F.S.; et al. Whole-Exome Sequencing of Matched Primary and Metastatic Papillary Thyroid Cancer. Thyroid 2019, 30, 42–56. [Google Scholar] [CrossRef]
- Gawin, M.; Kurczyk, A.; Stobiecka, E.; Frątczak, K.; Polańska, J.; Pietrowska, M.; Widłak, P. Molecular Heterogeneity of Papillary Thyroid Cancer: Comparison of Primary Tumors and Synchronous Metastases in Regional Lymph Nodes by Mass Spectrometry Imaging. Endocr. Pathol. 2019, 30, 250–261. [Google Scholar] [CrossRef] [Green Version]
- Capper, D.; Preusser, M.; Habel, A.; Sahm, F.; Ackermann, U.; Schindler, G.; Pusch, S.; Mechtersheimer, G.; Zentgraf, H.; Von Deimling, A. Assessment of BRAF V600E mutation status by immunohistochemistry with a mutation-specific monoclonal antibody. Acta Neuropathol. 2011, 122, 11–19. [Google Scholar] [CrossRef]
- Ghossein, R.A.; Katabi, N.; Fagin, J.A. Immunohistochemical detection of mutated BRAF V600E supports the clonal origin of braf-induced thyroid cancers along the spectrum of disease progression. J. Clin. Endocrinol. Metab. 2013, 98, 1414–1421. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.; Wang, S.; Han, L.; Liu, P.; Li, H.; Ren, X.; Yu, J.; Hao, X. Concurrent somatic mutations in driver genes were significantly correlated with lymph node metastasis and pathological types in solid tumors. Oncotarget 2017, 8, 68746–68757. [Google Scholar] [CrossRef] [Green Version]
- Schildgen, V.; Schildgen, O. The lonely driver or the orchestra of mutations? how next generation sequencing datasets contradict the concept of single driver checkpoint mutations in solid tumours – NSCLC as a scholarly example. Semin. Cancer Biol. 2019, 58, 22–28. [Google Scholar] [CrossRef]
- Carter, S.L.; Cibulskis, K.; Helman, E.; McKenna, A.; Shen, H.; Zack, T.; Laird, P.W.; Onofrio, R.C.; Winckler, W.; Weir, B.A.; et al. Absolute quantification of somatic DNA alterations in human cancer. Nat. Biotechnol. 2012, 30, 413–421. [Google Scholar] [CrossRef]
- Lee, M.Y.; Ku, B.M.; Kim, H.S.; Lee, J.Y.; Lim, S.H.; Sun, J.M.; Lee, S.H.; Park, K.; Oh, Y.L.; Hong, M.; et al. Genetic alterations and their clinical implications in high-recurrence risk papillary thyroid cancer. Cancer Res. Treat. 2017, 49, 906–914. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.P.; Hsu, Y.C.; Liu, C.L.; Liu, T.P.; Chien, M.N.; Wang, T.Y.; Lee, J.J. Significance of allelic percentage of BRAF c.1799T > A (V600E) mutation in papillary thyroid carcinoma. Ann. Surg. Oncol. 2014, 21, 619–626. [Google Scholar] [CrossRef] [PubMed]
- Gerlinger, M.; Rowan, A.J.; Horswell, S.; Larkin, J.; Endesfelder, D.; Gronroos, E.; Martinez, P.; Matthews, N.; Stewart, A.; Tarpey, P.; et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 2012, 366, 883–892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Housman, G.; Byler, S.; Heerboth, S.; Lapinska, K.; Longacre, M.; Snyder, N.; Sarkar, S. Drug resistance in cancer: An overview. Cancers 2014, 6, 1769–1792. [Google Scholar] [CrossRef] [Green Version]
- Sosa Iglesias, V.S.; Giuranno, L.; Dubois, L.J.; Theys, J.; Vooijs, M. Drug resistance in non-small cell lung cancer: A potential for notch targeting? Front. Oncol. 2018, 8, 267. [Google Scholar] [CrossRef] [Green Version]
- Owen, D.H.; Konda, B.; Sipos, J.; Liu, T.; Webb, A.; Ringel, M.D.; Timmers, C.D.; Shah, M.H. KRAS G12V mutation in acquired resistance to combined BRAF and MEK inhibition in papillary thyroid cancer. JNCCN J. Natl. Compr. Cancer Netw. 2019, 17, 409–413. [Google Scholar] [CrossRef] [Green Version]
- Turner, N.C.; Reis-Filho, J.S. Genetic heterogeneity and cancer drug resistance. Lancet Oncol. 2012, 13, 178–185. [Google Scholar] [CrossRef]
- Antonello, Z.A.; Hsu, N.; Bhasin, M.; Roti, G.; Joshi, M.; Hummelen, P.V.; Ye, E.; Lo, A.S.; Ananth Karumanchi, S.; Bryke, C.R.; et al. Vemurafenib-resistance via de novo RBM genes mutations and chromosome 5 aberrations is overcome by combined therapy with palbociclib in thyroid carcinoma with BRAFV600E. Oncotarget 2017, 8, 84743–84760. [Google Scholar] [CrossRef] [Green Version]
Proofs of Extensive ITH | Ref. |
---|---|
(1) Heterogeneous presence of a mutation documented by genetic analysis | Fusco et al. 2002 [34], Unger et al. 2004 [30], Vasko et al. 2005 [39], Unger et al., 2006 [31], Zhu et al. 2006 [32], Rhoden et al. 2006 [33], Hieber et al. 2011 [35], Guerra et al. 2012 [36], Guerra et al. 2012 [57], Xing et al. 2012 [38], Gandolfi et al. 2013 [7], De Biase et al. 2014 [29], Kim et al. 2014 [37], Muzza et al. 2015 [40], Finkel et al. 2016 [53], Colombo et al. 2019 [20], Masoodi et al. 2019 [58] |
(2) Heterogeneous presence of BRAFV600E by immunodetection | Gandolfi et al. 2013 [7], De Biase et al. 2014 [29], Dvorak et al. 2014 [41] |
(3) Presence of concomitant mutations | Sugg et al. 1999 [50], Wang et al. 2008 [42], Henderson et al. 2009 [45], Guerra et al. 2012 [57], Landa et al. 2013 [46], Kim et al. 2014 [37], Xing et al. 2014 [43], Guerra et al. 2014 [44], Wang et al. 2014 [47], Muzza et al. 2015 [40], Shrestha et al. 2015 [48], Rossi et al. 2015 [49], Finkel et al. 2016 [53], Landa et al. 2016 [54], Colombo et al. 2019 [20], Masoodi et al. 2019 [58] |
(4) Discordant mutational status between primary site and metastases | Vasko et al. 2005 [39], Oler et al. 2005 [59], Ricarte-Filho et al. 2009 [27], Walts et al. 2014 [51], Muzza et al. 2015 [40], Le Pennec et al. 2015 [55], Sohn et al. 2016 [60], Caňadas-Garre et al. 2016 [61], Melo et al. 2017 [52], Fakhruddin et al. 2017 [62], Shifrin et al. 2017 [63], Masoodi et al. 2019 [58], Masoodi et al. 2019 [64], Gawin et al. 2019 [65] |
Cons of extensive ITH | |
(1) Heterogeneous presence of a mutation documented by genetic analysis only in a minority of cases | Cancer Genome Atlas Network 2014 [22], Colombo et al. 2019 [20], Masoodi et al. 2019 [58] |
Technique | BRAFV600E Clonal Status |
---|---|
VE1 Anti-BRAFV600E antibody | Stained and non-stained PTC cells clustered separately or intermingled in the primary and in the metastatic lymph nodes. Gandolfi et al. 2013, [7]. |
36% of PTCs displayed < 80% of BRAFV600E positive cells. De Biase et al. 2014, [29]. | |
Unspecified percentage of PTC displayed < 15% stained cells. Dvorak et al. 2014, [41] | |
Pyrosequencing | 66.5% of BRAFV600E PTCs presented an allelic frequency ranging 5.1%–25%. Guerra et al. 2012, [57] |
54.9% mean of cells with BRAFV600E in mutation positive PTC. Gandolfi et al. 2013, [7] | |
20% median of cells with BRAFV600E in mutation positive PTC. Kim et al. 2014, [37] | |
19.4% PTCs had a dual mutation BRAFV600E and RET/PTC, with a BRAF allelic frequency ranging 6–37.5%. Guerra et al. 2014, [44] | |
Allele-specific locked nucleic acid PCR | 10.6% PTCs with < 30% of BRAFV600E neoplastic cells; 45.9% PTCs with 30%–80% of BRAFV600E |
neoplastic cells. De Biase et al. 2014, [29] | |
Next Generation Sequencing | 72.3% mean of cells with BRAFV600E in mutation positive PTC. De Biase et al. 2014, [29] |
24% of the BRAFV600E PTCs were subclonal. Finkel et al. 2016, [53] | |
BRAFV600E was subclonal in 30% primary non-relapse and in 44% primary relapse PTC. Masoodi et al. 2019, [58] | |
Sequenom MassArray | 12.6% of BRAFV600E PTCs had an allelic frequency lower than 50%. Colombo et al. 2019, [20] |
Genetic Analysis | Metastatic Site | Mutational Status with Respect to Primary Tumor | Ref. |
---|---|---|---|
BRAF exon 15 direct sequencing and single-strand conformational polymorphism | lymph node | 9 concordant/4 discordant | Oler et al. 2005 [59] |
BRAF exon 15 direct sequencing | lymph node | 26 concordant/7 discordant | Vasko et al. 2005 [39] |
BRAF exon 15 and TERT promoter mutation direct sequencing | lymph node | 9 concordant/3 discordant | Muzza et al. 2015 [40] |
BRAF exon 15 direct sequencing | lymph node | 23 concordant/2 discordant | Walts et al. 2014 [51] |
Target NGS, TERT promoter mutation direct sequencing, qRT-PCR of RET and PAX8 fusions | lung brain | 5 concordant/2 discordant 2 concordant | Sohn et al. 2016 [60] |
BRAF exon 15 and N-RAS exon 2 and 3 direct sequencing | lymph node and distant metastases | 14 concordant/15 discordant | Caňadas-Garre et al. 2016 [61] |
BRAF, K- and N-RAS mutations by reverse hybridization | lymph node | 38 concordant/5 discordant | Fakhruddinet et al. 2017 [62] |
Target NGS | lymph node | 13 concordant/8 discordant | Shifrin et al. 2017 [63] |
BRAF exon 15, N-RAS exon 2 and 3, TERT promoter mutation direct sequencing | lymph node and distant metastases | almost concordant discordant | Melo et al. 2017 [52] |
WES | bone lung brain kidney | 7 concordant/2 discordant * 2 concordant/1 discordant * 1 discordant * 1 discordant * | Masoodi et al. 2019 [64] |
WES | local relapse | 4 concordant/1 discordant | Masoodi et al. 2019 [58] |
Mass spectrometry imaging | lymph node | discordant | Gawin et al. 2019 [65] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fugazzola, L.; Muzza, M.; Pogliaghi, G.; Vitale, M. Intratumoral Genetic Heterogeneity in Papillary Thyroid Cancer: Occurrence and Clinical Significance. Cancers 2020, 12, 383. https://doi.org/10.3390/cancers12020383
Fugazzola L, Muzza M, Pogliaghi G, Vitale M. Intratumoral Genetic Heterogeneity in Papillary Thyroid Cancer: Occurrence and Clinical Significance. Cancers. 2020; 12(2):383. https://doi.org/10.3390/cancers12020383
Chicago/Turabian StyleFugazzola, Laura, Marina Muzza, Gabriele Pogliaghi, and Mario Vitale. 2020. "Intratumoral Genetic Heterogeneity in Papillary Thyroid Cancer: Occurrence and Clinical Significance" Cancers 12, no. 2: 383. https://doi.org/10.3390/cancers12020383
APA StyleFugazzola, L., Muzza, M., Pogliaghi, G., & Vitale, M. (2020). Intratumoral Genetic Heterogeneity in Papillary Thyroid Cancer: Occurrence and Clinical Significance. Cancers, 12(2), 383. https://doi.org/10.3390/cancers12020383