Autocatalytic Tissue Polymerization Reaction Mechanism in Colorectal Cancer Development and Growth
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion
4.1. What Is Known About Autocatalysis and Autocatalytic Polymerization Reactions from Chemistry and Biology?
4.2. How Might Gene Mutations that Occur in Colonic Tumors Be Linked to an Autocatalytic Polymerization Reaction?
4.3. How Might Tissue Changes that Occur in Colonic Tumors Be Tied to an Autocatalytic Polymerization Reaction?
4.4. How Might an Autocatalytic Polymerization Mechanism Help Understand the Stem Cell (SC) Origin of Colon Cancer?
5. Conclusions
6. Future Directions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cancer Facts & Statistics, American Cancer Society. Available online: https://www.cancer.org (accessed on 4 January 2020).
- International Agency for Research on Cancer, Cancer Fact Sheets. Available online: http://globocan.iarc.fr (accessed on 4 January 2020).
- Morson, B. The polyp-cancer sequence in the large bowel. Proc. R. Soc. Med. 1974, 67, 451–457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leslie, A.; Carey, F.A.; Pratt, N.R.; Steele, R.J.C. The colorectal adenoma–carcinoma sequence. BJS 2002, 89, 845–860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 2010, 487, 330–337. [Google Scholar] [CrossRef] [Green Version]
- Levy, D.B.; Smith, K.J.; Beazer-Barclay, Y.; Hamilton, S.R.; Vogelstein, B.; Kinzler, K.W. Inactivation of both APC alleles in human and mouse tumors. Cancer Res. 1994, 54, 5953–5958. [Google Scholar]
- Ichii, S.; Horii, A.; Nakatsuru, S.; Furuyama, J.; Utsunomiya, J.; Nakamura, Y. Inactivation of both APC alleles in an early stage of colon adenomas in a patient with familial adenomatous polyposis (FAP). Hum. Mol. Genet. 1992, 1, 387–390. [Google Scholar] [CrossRef]
- Spirio, L.N.; Samowitz, W.; Robertson, J.; Robertson, M.; Burt, R.W.; Leppert, M.; White, R. Alleles of APC modulate the frequency and classes of mutations that lead to colon polyps. Nat. Genet. 1998, 20, 385–388. [Google Scholar] [CrossRef]
- Su, L.K.; Barnes, C.J.; Yao, W.; Qi, Y.; Lynch, P.M.; Steinbach, G. Inactivation of germline mutant APC alleles by attenuated somatic mutations: A molecular genetic mechanism for attenuated familial adenomatous polyposis. Am. J. Hum. Genet. 2000, 67, 582–590. [Google Scholar] [CrossRef] [Green Version]
- Sieber, O.M.; Segditsas, S.; Knudsen, A.L.; Zhang, J.; Luz, J.; Rowan, A.J.; Spain, S.L.; Thirlwell, C.; Howarth, K.M.; Jaeger, E.E.; et al. Disease severity and genetic pathways in attenuated familial adenomatous polyposis vary greatly but depend on the site of the germline mutation. Gut 2006, 55, 1440–1448. [Google Scholar] [CrossRef] [Green Version]
- Powell, S.M.; Zilz, N.; Beazer-Barclay, Y.; Bryan, T.M.; Hamilton, S.R.; Thibodeau, S.N.; Vogelstein, B.; Kinzler, K.W. APC mutations occur early during colorectal tumorigenesis. Nature 1992, 359, 235–237. [Google Scholar] [CrossRef]
- Segditsas, S.; Rowan, A.; Howarth, K.; Jones, A.; Leedham, S.; Wright, N.A.; Gorman, P.; Chambers, W.; Domingo, E.; Roylance, R.R.; et al. APC and the three-hit hypothesis. Oncogene 2009, 28, 146–155. [Google Scholar] [CrossRef] [Green Version]
- Fearon, E.R.; Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell 1990, 61, 759–767. [Google Scholar] [CrossRef]
- Bülow, S. Results of national registration of familial adenomatous polyposis. Gut 2003, 52, 742–746. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Fedewa, S.A.; Ahnen, D.J.; Meester, R.G.S.; Barzi, A.; Jemal, A. Colorectal cancer statistics, 2017. CA Cancer J. Clin. 2017, 67, 177–193. [Google Scholar] [CrossRef] [PubMed]
- Hornsby, C.; Page, K.M.; Tomlinson, I. The in vivo rate of somatic adenomatous polyposis coli mutation. Am. J. Pathol. 2008, 172, 1062–1068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bussey, H.J.R. Familial Polyposis Coli. Family studies, Histopathology, Differential diagnosis, and Results of Treatment; The Johns Hopkins University Press: Baltimore, MD, USA, 1975; pp. 1–104. ISBN 0-8018-1686-6. [Google Scholar]
- Winawer, S.J.; Zauber, A.G.; Gerdes, H.; O’Brien, M.J.; Gottlieb, L.S.; Sternberg, S.S.; Bond, J.H.; Waye, J.D.; Schapiro, M.; Panish, J.F. Risk of colorectal cancer in the families of patients with adenomatous polyps. National Polyp Study Workgroup. N. Engl. J. Med. 1996, 334, 82–87. [Google Scholar] [CrossRef]
- SEER Cancer Incidence Public-Use Database, 1973–1999, National Cancer Institute, U.S. Department of Health and Human Services, Issued April 2002. Available online: http://seer.cancer.gov (accessed on 4 January 2020).
- Moore, J.W.; Pearson, R.G. Kinetics and Mechanism; John Wiley & Sons Inc.: New York, NY, USA, 1981; p. 26. ISBN 0-471-03558-0. [Google Scholar]
- Autocatalysis—Wikipedia. Available online: https://en.wikipedia.org/wiki/Autocatalysis (accessed on 4 January 2020).
- Hordijk, W.; Steel, M. Autocatalytic sets in polymer networks with variable catalysis distributions. J. Math. Chem. 2016, 54, 1997–2021. [Google Scholar] [CrossRef] [Green Version]
- Farmer, J.D.; Kauffman, S.A.; Packard, N.H. Autocatalytic replication of polymers. Phys. D Nonlinear Phenom. 1986, 22, 50–67. [Google Scholar] [CrossRef]
- Plasson, R.; Brandenburg, A.; Jullien, L.; Bersini, H. Autocatalysis: At the root of self-replication. Artif. Life 2011, 17, 219–236. [Google Scholar] [CrossRef]
- Potten, C.S.; Kellett, M.; Roberts, S.A.; Rew, D.A.; Wilson, G.D. Measurement of in vivo proliferation in human colorectal mucosa using bromodeoxyuridine. Gut 1992, 33, 71–78. [Google Scholar] [CrossRef] [Green Version]
- Potten, C.S.; Kellett, M.; Rew, D.A.; Roberts, S.A. Proliferation in human gastrointestinal epithelium using bromodeoxyuridine in vivo: Data for different sites, proximity to a tumor, and polyposis coli. Gut 1992, 33, 524–529. [Google Scholar] [CrossRef] [Green Version]
- Maskens, A.P. Histogenesis of colon glands during postnatal growth. Acta Anat. 1978, 100, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Wong, W.M.; Mandir, N.; Goodlad, R.A.; Wong, B.C.; Garcia, S.B.; Lam, S.K.; Wright, N.A. Histogenesis of human colorectal adenomas and hyperplastic polyps: The role of cell proliferation and crypt fission. Gut 2002, 50, 212–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Logistic Function—Wikipedia. Available online: https://en.wikipedia.org/wiki/Logistic_function (accessed on 4 January 2020).
- Cavallini, F. Fitting a logistic curve to data. Coll. Math. J. 1993, 24, 247–253. [Google Scholar] [CrossRef]
- Maskens, A.P. Histogenesis of adenomatous polyps in the human large intestine. Gastroenterology 1979, 77, 1245–1251. [Google Scholar] [CrossRef]
- Lightdale, C.; Lipkin, M.; Deschner, E. In vivo measurements in familial polyposis: Kinetics and location of proliferating cells in colonic adenomas. Cancer Res. 1982, 42, 4280–4283. [Google Scholar]
- Boman, B.M.; Fields, J.Z.; Bonham-Carter, O.; Runquist, O.A. Computer modeling implicates stem cell overproduction in colon cancer initiation. Cancer Res. 2001, 61, 8408–8411. [Google Scholar]
- Boman, B.M.; Fields, J.Z.; Cavanaugh, K.L.; Gujetter, A.; Runquist, O. How dysregulated colonic crypt dynamics cause stem cell overpopulation and initiate colon cancer. Cancer Res. 2008, 68, 3304–3313. [Google Scholar] [CrossRef] [Green Version]
- Mazac, R.; Roerig, J.; Runquist, O.A.; Boman, B.M. Latent time (quiescence) properties of human colonic crypt cells: Mechanistic relationships to colon cancer development. Biomed. J. Sci. Tech. Res. 2017, 1, 1156–1164. [Google Scholar] [CrossRef]
- Sambeth, R.; Baumgaertner, A. Autocatalytic polymerization generates persistent random walk of crawling cells. Phys. Rev. Lett. 2001, 86, 5196–5199. [Google Scholar] [CrossRef] [Green Version]
- Hannezo, E.; Scheele, C.L.G.J.; Moad, M.; Drogo, N.; Heer, R.; Sampogna, R.V.; van Rheenen, J.; Simons, B.D. A unifying theory of branching morphogenesis. Cell 2017, 171, 242–255.e27. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, F.; Cohen, C.; Ober, C.K.; Archer, L.A. Principles of Polymer Systems, 6th ed.; Hemisphere Publishing Co.: New York, NY, USA, 2015; ISBN 0-07-053382-2. [Google Scholar]
- Sottoriva, A.; Kang, H.; Ma, Z.; Graham, T.A.; Salomon, M.P.; Zhao, J.; Marjoram, P.; Siegmund, K.; Press, M.F.; Shibata, D.; et al. A big bang model of human colorectal tumor growth. Nat. Genet. 2015, 47, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Bauer, B.; Siebert, R.; Traulsen, A. Cancer initiation with epistatic interactions between driver and passenger mutations. J. Theor. Biol. 2014, 358, 52–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lengauer, C.; Kinzler, K.; Vogelstein, B. Genetic instabilities in human cancers. Nature 1998, 396, 643–649. [Google Scholar] [CrossRef] [PubMed]
- Boman, B.M.; Fields, J.Z. An APC: WNT counter-current-like mechanism regulates cell division along the colonic crypt axis: A mechanism that explains how APC mutations induce proliferative abnormalities that drive colon cancer development. Front. Oncol. 2013, 3, 244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cummins, A.G.; Catto-Smith, A.G.; Cameron, D.J.; Couper, R.T.; Davidson, G.P.; Day, A.S.; Hammond, P.D.; Moore, D.J.; Thompson, F.M. Crypt fission peaks early during infancy and crypt hyperplasia broadly peaks during infancy and childhood in the small intestine of humans. J. Pediatr. Gastroenterol. Nutr. 2008, 47, 153–157. [Google Scholar] [CrossRef] [PubMed]
- Totafurno, J.; Bjerknes, M.; Cheng, H. The crypt cycle: Crypt and villous production in the adult intestinal epithelium. Biophys. J. 1987, 52, 279–294. [Google Scholar] [CrossRef] [Green Version]
- Bjerknes, M.; Cheng, H.; Hay, K.; Gallinger, S. APC mutation and the crypt cycle in murine and human intestine. Am. J. Pathol. 1997, 150, 833–839. [Google Scholar]
- Brittan, M.; Wright, N.A. Gastrointestinal stem cells. J. Pathol. 2002, 197, 492–509. [Google Scholar] [CrossRef]
- Wasan, H.S.; Park, H.S.; Liu, K.C.; Mandir, N.K.; Winnett, A.; Sasieni, P.; Bodmer, W.F.; Goodlad, R.A.; Wright, N.A. APC in the regulation of intestinal crypt fission. J. Pathol. 1998, 185, 246–255. [Google Scholar] [CrossRef]
- McDonald, S.A.; Preston, S.L.; Greaves, L.C.; Leedham, S.J.; Lovell, M.A.; Jankowski, J.A.; Turnbull, D.M.; Wright, N.A. Clonal expansion in the human gut: Mitochondrial DNA mutations show us the way. Cell Cycle 2006, 5, 808–811. [Google Scholar] [CrossRef]
- Huang, E.H.; Hynes, M.J.; Zhang, T.; Ginestier, C.; Dontu, G.; Appelman, H.; Fields, J.Z.; Wicha, M.S.; Boman, B.M. Aldehyde dehydrogenase 1 is a marker for normal and malignant human colonic stem cells (SC) and tracks SC overpopulation during colon tumorigenesis. Cancer Res. 2009, 69, 3382–3389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barker, N.; Ridgway, R.A.; van Es, J.H.; van de Wetering, M.; Begthel, H.; van den Born, M.; Danenberg, E.; Clarke, A.R.; Sansom, O.J.; Clevers, H. Crypt stem cells as the cells-of-origin of intestinal cancer. Nature 2009, 457, 608–611. [Google Scholar] [CrossRef] [PubMed]
- Ricci-Vitiani, L.; Lombardi, D.G.; Pilozzi, E.; Biffoni, M.; Todaro, M.; Peschle, C.; De Maria, R. Identification and expansion of human colon-cancer-initiating cells. Nature 2007, 445, 111–115. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, C.A.; Pollett, A.; Gallinger, S.; Dick, J.E. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 2007, 445, 106–110. [Google Scholar] [CrossRef] [PubMed]
- Dalerba, P.; Dylla, S.J.; Park, I.K.; Liu, R.; Wang, X.; Cho, R.W.; Hoey, T.; Gurney, A.; Huang, E.H.; Simeone, D.M.; et al. Phenotypic characterization of human colorectal cancer stem cells. Proc. Natl. Acad. Sci. USA 2007, 104, 10158–10163. [Google Scholar] [CrossRef] [Green Version]
- Boman, B.M.; Huang, E. Human colon cancer stem cells: A new paradigm in gastrointestinal oncology. J. Clin. Oncol. 2008, 26, 2828–2838. [Google Scholar] [CrossRef]
- Boman, B.M.; Wicha, M.S. Cancer stem cells: A step toward the cure. J. Clin. Oncol. 2008, 26, 2795–2799. [Google Scholar] [CrossRef]
- Boman, B.M.; Wicha, M.; Fields, J.Z.; Runquist, O. Symmetric division of cancer stem cells—A key mechanism in tumor growth that should be targeted in future therapeutic approaches. J. Clin. Pharmacol. Ther. 2007, 81, 893–898. [Google Scholar] [CrossRef] [Green Version]
- DeSantis, C.E.; Miller, K.D.; Dale, W.; Mohile, S.G.; Cohen, H.J.; Leach, C.R.; Goding Sauer, A.; Jemal, A.; Siegel, R.L. Cancer statistics for adults aged 85 years and older, 2019. CA Cancer J. Clin. 2019, 69, 452–467. [Google Scholar] [CrossRef] [Green Version]
- Loomans-Kropp, H.A.; Umar, A. Increasing incidence of colorectal cancer in young adults. J. Cancer Epidemiol. 2019, 2019, 9841295. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, M.; Aretz, S. Familial Adenomatous Polyposis or APC-Associated Polyposis in Hereditary Colorectal Cancer: Genetic Basis and Clinical Implications; Springer: Cham, Switzerland, 2019; pp. 99–111. ISBN 978-3-319-74259-5. [Google Scholar]
- Ahadova, A.; Gallon, R.; Gebert, J.; Ballhausen, A.; Endris, V.; Kirchner, M.; Kloor, M. Three molecular pathways model colorectal carcinogenesis in Lynch syndrome. Int. J. Cancer 2018, 143, 139–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, L.H.; Goel, A.; Chung, D.C. Pathways of colorectal carcinogenesis. Gastroenterology 2020, 158, 291–302. [Google Scholar] [CrossRef] [PubMed]
- Kinzler, K.W.; Vogelstein, B. Lessons from hereditary colorectal cancer. Cell 1996, 87, 159–170. [Google Scholar] [CrossRef] [Green Version]
Tumor | Value | k Value | Inflection Point (Age) |
---|---|---|---|
FAP Adenoma | 132 | 0.29 | 17.5 |
FAP CRC | 205 | 0.16 | 34 |
Sporadic Adenoma | 10656 | 0.15 | 62 |
Sporadic CRC | 3335 | 0.11 | 68 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boman, B.M.; Guetter, A.; Boman, R.M.; Runquist, O.A. Autocatalytic Tissue Polymerization Reaction Mechanism in Colorectal Cancer Development and Growth. Cancers 2020, 12, 460. https://doi.org/10.3390/cancers12020460
Boman BM, Guetter A, Boman RM, Runquist OA. Autocatalytic Tissue Polymerization Reaction Mechanism in Colorectal Cancer Development and Growth. Cancers. 2020; 12(2):460. https://doi.org/10.3390/cancers12020460
Chicago/Turabian StyleBoman, Bruce M., Arthur Guetter, Ryan M. Boman, and Olaf A. Runquist. 2020. "Autocatalytic Tissue Polymerization Reaction Mechanism in Colorectal Cancer Development and Growth" Cancers 12, no. 2: 460. https://doi.org/10.3390/cancers12020460
APA StyleBoman, B. M., Guetter, A., Boman, R. M., & Runquist, O. A. (2020). Autocatalytic Tissue Polymerization Reaction Mechanism in Colorectal Cancer Development and Growth. Cancers, 12(2), 460. https://doi.org/10.3390/cancers12020460