Impaired Anti-Tumor T cell Response in Hepatocellular Carcinoma
Abstract
:1. Introduction
2. Results
2.1. Lymphocyte Recruitment into HCC Tumor and Peritumor Site
2.2. CD56hi NK and NKT Cells Are Increased in the Tumor
2.3. Cytotoxic T Cells Are Reduced at Tumor Site, While Tregs Accumulate
2.4. Terminally Differentiated Effector T Cells Are Strongly Reduced at Tumor Site
2.5. Tumor- and Peritumor-Infiltrating T Cells Are Activated and Exhausted
3. Discussion
4. Materials and Methods
4.1. Patients
4.2. Isolation of Patients’ Peripheral Blood Mononuclear Cells (PBMC), Tumor-Infiltrating Lymphocytes (TILs) and Lymphocytes from the Peritumor Site
4.3. Flow Cytometry Analysis
4.4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Nordenstedt, H.; White, D.L. El-Serag HB: The changing pattern of epidemiology in hepatocellular carcinoma. Dig. Liver Dis. 2010, 42, S206–S214. [Google Scholar] [CrossRef] [Green Version]
- Raza, A.; Sood, G.K. Hepatocellular carcinoma review: Current treatment, and evidence-based medicine. World J. Gastroenterol. 2014, 20, 4115–4127. [Google Scholar] [CrossRef] [PubMed]
- Lang, L. FDA approves sorafenib for patients with inoperable liver cancer. Gastroenterology 2008, 134, 379. [Google Scholar] [CrossRef] [PubMed]
- Llovet, J.M.; Ricci, S.; Mazzaferro, V.; Hilgard, P.; Gane, E.; Blanc, J.F.; de Oliveira, A.C.; Santoro, A.; Raoul, J.L.; Forner, A.; et al. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med. 2008, 359, 378–390. [Google Scholar] [CrossRef] [PubMed]
- Granito, A.; Marinelli, S.; Negrini, G.; Menetti, S.; Benevento, F.; Bolondi, L. Prognostic significance of adverse events in patients with hepatocellular carcinoma treated with sorafenib. Ther. Adv. Gastroenterol. 2016, 9, 240–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iavarone, M.; Cabibbo, G.; Piscaglia, F.; Zavaglia, C.; Grieco, A.; Villa, E.; Camma, C.; Colombo, M.; Group, S.S. Field-practice study of sorafenib therapy for hepatocellular carcinoma: A prospective multicenter study in Italy. Hepatology 2011, 54, 2055–2063. [Google Scholar] [CrossRef]
- Lohitesh, K.; Chowdhury, R.; Mukherjee, S. Resistance a major hindrance to chemotherapy in hepatocellular carcinoma: An insight. Cancer Cell Int. 2018, 18, 44. [Google Scholar] [CrossRef]
- Wen, L.; Liang, C.; Chen, E.; Chen, W.; Liang, F.; Zhi, X.; Wei, T.; Xue, F.; Li, G.; Yang, Q.; et al. Regulation of Multi-drug Resistance in hepatocellular carcinoma cells is TRPC6/Calcium Dependent. Sci. Rep. 2016, 6, 23269. [Google Scholar] [CrossRef] [Green Version]
- Bremnes, R.M.; Busund, L.T.; Kilvaer, T.L.; Andersen, S.; Richardsen, E.; Paulsen, E.E.; Hald, S.; Khanehkenari, M.R.; Cooper, W.A.; Kao, S.C.; et al. The Role of Tumor-Infiltrating Lymphocytes in Development, Progression, and Prognosis of Non-Small Cell Lung Cancer. J. Thorac. Oncol. 2016, 11, 789–800. [Google Scholar] [CrossRef] [Green Version]
- Hiraoka, K.; Kimura, T.; Logg, C.R.; Kasahara, N. Tumor-selective gene expression in a hepatic metastasis model after locoregional delivery of a replication-competent retrovirus vector. Clin. Cancer Res. 2006, 12, 7108–7116. [Google Scholar] [CrossRef] [Green Version]
- Choi, H.S.; Ha, S.Y.; Kim, H.M.; Ahn, S.M.; Kang, M.S.; Kim, K.M.; Choi, M.G.; Lee, J.H.; Sohn, T.S.; Bae, J.M.; et al. The prognostic effects of tumor infiltrating regulatory T cells and myeloid derived suppressor cells assessed by multicolor flow cytometry in gastric cancer patients. Oncotarget 2016, 7, 7940–7951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Curiel, T.J.; Coukos, G.; Zou, L.; Alvarez, X.; Cheng, P.; Mottram, P.; Evdemon-Hogan, M.; Conejo-Garcia, J.R.; Zhang, L.; Burow, M.; et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat. Med. 2004, 10, 942–949. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Montero, C.M.; Salem, M.L.; Nishimura, M.I.; Garrett-Mayer, E.; Cole, D.J.; Montero, A.J. Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol. Immunother. 2009, 58, 49–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kobayashi, N.; Hiraoka, N.; Yamagami, W.; Ojima, H.; Kanai, Y.; Kosuge, T.; Nakajima, A.; Hirohashi, S. FOXP3+ regulatory T cells affect the development and progression of hepatocarcinogenesis. Clin. Cancer Res. 2007, 13, 902–911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petersen, R.P.; Campa, M.J.; Sperlazza, J.; Conlon, D.; Joshi, M.B.; Harpole, D.H., Jr.; Patz, E.F., Jr. Tumor infiltrating Foxp3+ regulatory T-cells are associated with recurrence in pathologic stage I NSCLC patients. Cancer 2006, 107, 2866–2872. [Google Scholar] [CrossRef]
- Schouppe, E.; Mommer, C.; Movahedi, K.; Laoui, D.; Morias, Y.; Gysemans, C.; Luyckx, A.; De Baetselier, P.; Van Ginderachter, J.A. Tumor-induced myeloid-derived suppressor cell subsets exert either inhibitory or stimulatory effects on distinct CD8+ T-cell activation events. Eur. J. Immunol. 2013, 43, 2930–2942. [Google Scholar] [CrossRef]
- Fu, J.; Xu, D.; Liu, Z.; Shi, M.; Zhao, P.; Fu, B.; Zhang, Z.; Yang, H.; Zhang, H.; Zhou, C.; et al. Increased regulatory T cells correlate with CD8 T-cell impairment and poor survival in hepatocellular carcinoma patients. Gastroenterology 2007, 132, 2328–2339. [Google Scholar] [CrossRef]
- Zahran, A.M.; Nafady-Hego, H.; Mansor, S.G.; Abbas, W.A.; Abdel-Malek, M.O.; Mekky, M.A.; Hetta, H.F. Increased frequency and FOXP3 expression of human CD8(+)CD25(High+) T lymphocytes and its relation to CD4 regulatory T cells in patients with hepatocellular carcinoma. Hum. Immunol. 2019, 80, 510–516. [Google Scholar] [CrossRef]
- Flecken, T.; Schmidt, N.; Hild, S.; Gostick, E.; Drognitz, O.; Zeiser, R.; Schemmer, P.; Bruns, H.; Eiermann, T.; Price, D.A.; et al. Immunodominance and functional alterations of tumor-associated antigen-specific CD8+ T-cell responses in hepatocellular carcinoma. Hepatology 2014, 59, 1415–1426. [Google Scholar] [CrossRef] [Green Version]
- Dudley, M.E.; Wunderlich, J.R.; Yang, J.C.; Sherry, R.M.; Topalian, S.L.; Restifo, N.P.; Royal, R.E.; Kammula, U.; White, D.E.; Mavroukakis, S.A.; et al. Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J. Clin. Oncol. 2005, 23, 2346–2357. [Google Scholar] [CrossRef]
- Mackensen, A.; Meidenbauer, N.; Vogl, S.; Laumer, M.; Berger, J.; Andreesen, R. Phase I study of adoptive T-cell therapy using antigen-specific CD8+ T cells for the treatment of patients with metastatic melanoma. J. Clin. Oncol. 2006, 24, 5060–5069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenberg, S.A.; Dudley, M.E. Adoptive cell therapy for the treatment of patients with metastatic melanoma. Curr. Opin. Immunol. 2009, 21, 233–240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hahn, A.W.; Gill, D.M.; Pal, S.K.; Agarwal, N. The future of immune checkpoint cancer therapy after PD-1 and CTLA-4. Immunotherapy 2017, 9, 681–692. [Google Scholar] [CrossRef] [PubMed]
- Quezada, S.A.; Peggs, K.S. Exploiting CTLA-4, PD-1 and PD-L1 to reactivate the host immune response against cancer. Br. J. Cancer 2013, 108, 1560–1565. [Google Scholar] [CrossRef]
- Gardiner, D.; Lalezari, J.; Lawitz, E.; DiMicco, M.; Ghalib, R.; Reddy, K.R.; Chang, K.M.; Sulkowski, M.; Marro, S.O.; Anderson, J.; et al. A randomized, double-blind, placebo-controlled assessment of BMS-936558, a fully human monoclonal antibody to programmed death-1 (PD-1), in patients with chronic hepatitis C virus infection. PLoS ONE 2013, 8, e63818. [Google Scholar] [CrossRef]
- Sangro, B.; Gomez-Martin, C.; de la Mata, M.; Inarrairaegui, M.; Garralda, E.; Barrera, P.; Riezu-Boj, J.I.; Larrea, E.; Alfaro, C.; Sarobe, P.; et al. A clinical trial of CTLA-4 blockade with tremelimumab in patients with hepatocellular carcinoma and chronic hepatitis C. J. Hepatol. 2013, 59, 81–88. [Google Scholar] [CrossRef]
- Hernandez-Gea, V.; Toffanin, S.; Friedman, S.L.; Llovet, J.M. Role of the microenvironment in the pathogenesis and treatment of hepatocellular carcinoma. Gastroenterology 2013, 144, 512–527. [Google Scholar] [CrossRef] [Green Version]
- Mossanen, J.C.; Tacke, F. Role of lymphocytes in liver cancer. Oncoimmunology 2013, 2, e26468. [Google Scholar] [CrossRef] [Green Version]
- Bindea, G.; Mlecnik, B.; Tosolini, M.; Kirilovsky, A.; Waldner, M.; Obenauf, A.C.; Angell, H.; Fredriksen, T.; Lafontaine, L.; Berger, A.; et al. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity 2013, 39, 782–795. [Google Scholar] [CrossRef] [Green Version]
- Poli, A.; Michel, T.; Theresine, M.; Andres, E.; Hentges, F.; Zimmer, J. CD56bright natural killer (NK) cells: An important NK cell subset. Immunology 2009, 126, 458–465. [Google Scholar] [CrossRef]
- Gao, Q.; Qiu, S.J.; Fan, J.; Zhou, J.; Wang, X.Y.; Xiao, Y.S.; Xu, Y.; Li, Y.W.; Tang, Z.Y. Intratumoral balance of regulatory and cytotoxic T cells is associated with prognosis of hepatocellular carcinoma after resection. J. Clin. Oncol. 2007, 25, 2586–2593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menetrier-Caux, C.; Gobert, M.; Caux, C. Differences in tumor regulatory T-cell localization and activation status impact patient outcome. Cancer Res. 2009, 69, 7895–7898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tzankov, A.; Meier, C.; Hirschmann, P.; Went, P.; Pileri, S.A.; Dirnhofer, S. Correlation of high numbers of intratumoral FOXP3+ regulatory T cells with improved survival in germinal center-like diffuse large B-cell lymphoma, follicular lymphoma and classical Hodgkin’s lymphoma. Haematologica 2008, 93, 193–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desai, J.R.; Ochoa, S.; Prins, P.A.; He, A.R. Systemic therapy for advanced hepatocellular carcinoma: An update. J. Gastrointest. Oncol. 2017, 8, 243–255. [Google Scholar] [CrossRef] [Green Version]
- Phan, G.Q.; Yang, J.C.; Sherry, R.M.; Hwu, P.; Topalian, S.L.; Schwartzentruber, D.J.; Restifo, N.P.; Haworth, L.R.; Seipp, C.A.; Freezer, L.J.; et al. Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc. Natl. Acad. Sci. USA 2003, 100, 8372–8377. [Google Scholar] [CrossRef] [Green Version]
- Topalian, S.L.; Hodi, F.S.; Brahmer, J.R.; Gettinger, S.N.; Smith, D.C.; McDermott, D.F.; Powderly, J.D.; Carvajal, R.D.; Sosman, J.A.; Atkins, M.B.; et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 2012, 366, 2443–2454. [Google Scholar] [CrossRef]
- Byun, D.J.; Wolchok, J.D.; Rosenberg, L.M.; Girotra, M. Cancer immunotherapy—Immune checkpoint blockade and associated endocrinopathies. Nat. Rev. Endocrinol. 2017, 13, 195–207. [Google Scholar] [CrossRef] [Green Version]
- Friedman, C.F.; Snyder, A. Atypical autoimmune adverse effects with checkpoint blockade therapies. Ann. Oncol. 2017, 28, 206–207. [Google Scholar] [CrossRef]
- Woo, S.R.; Turnis, M.E.; Goldberg, M.V.; Bankoti, J.; Selby, M.; Nirschl, C.J.; Bettini, M.L.; Gravano, D.M.; Vogel, P.; Liu, C.L.; et al. Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res. 2012, 72, 917–927. [Google Scholar] [CrossRef] [Green Version]
- Chiu, D.K.; Tse, A.P.; Xu, I.M.; Di Cui, J.; Lai, R.K.; Li, L.L.; Koh, H.Y.; Tsang, F.H.; Wei, L.L.; Wong, C.M.; et al. Hypoxia inducible factor HIF-1 promotes myeloid-derived suppressor cells accumulation through ENTPD2/CD39L1 in hepatocellular carcinoma. Nat. Commun. 2017, 8, 517. [Google Scholar] [CrossRef] [Green Version]
- Chiu, D.K.; Xu, I.M.; Lai, R.K.; Tse, A.P.; Wei, L.L.; Koh, H.Y.; Li, L.L.; Lee, D.; Lo, R.C.; Wong, C.M.; et al. Hypoxia induces myeloid-derived suppressor cell recruitment to hepatocellular carcinoma through chemokine (C-C motif) ligand 26. Hepatology 2016, 64, 797–813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Groth, C.; Hu, X.; Weber, R.; Fleming, V.; Altevogt, P.; Utikal, J.; Umansky, V. Immunosuppression mediated by myeloid-derived suppressor cells (MDSCs) during tumour progression. Br. J. Cancer 2019, 120, 16–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koch, M.A.; Tucker-Heard, G.; Perdue, N.R.; Killebrew, J.R.; Urdahl, K.B.; Campbell, D.J. The transcription factor T-bet controls regulatory T cell homeostasis and function during type 1 inflammation. Nat. Immunol. 2009, 10, 595–602. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.; Sharma, S.; Edwards, J.; Feigenbaum, L.; Zhu, J. Dynamic expression of transcription factors T-bet and GATA-3 by regulatory T cells maintains immunotolerance. Nat. Immunol. 2015, 16, 197–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fabregat, I.; Moreno-Caceres, J.; Sanchez, A.; Dooley, S.; Dewidar, B.; Giannelli, G.; Ten Dijke, P.; Consortium, I.-L. TGF-beta signalling and liver disease. FEBS. J. 2016, 283, 2219–2232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giannelli, G.; Mikulits, W.; Dooley, S.; Fabregat, I.; Moustakas, A.; ten Dijke, P.; Portincasa, P.; Winter, P.; Janssen, R.; Leporatti, S.; et al. The rationale for targeting TGF-beta in chronic liver diseases. Eur. J. Clin. Investig. 2016, 46, 349–361. [Google Scholar] [CrossRef] [Green Version]
- Zheng, C.; Zheng, L.; Yoo, J.K.; Guo, H.; Zhang, Y.; Guo, X.; Kang, B.; Hu, R.; Huang, J.Y.; Zhang, Q.; et al. Landscape of Infiltrating T Cells in Liver Cancer Revealed by Single-Cell Sequencing. Cell 2017, 169, 1342–1356. [Google Scholar] [CrossRef] [Green Version]
- Matzinger, P.; Kamala, T. Tissue-based class control: The other side of tolerance. Nat. Rev. Immunol. 2011, 11, 221–230. [Google Scholar] [CrossRef]
- Angelin, A.; Gil-de-Gomez, L.; Dahiya, S.; Jiao, J.; Guo, L.; Levine, M.H.; Wang, Z.; Quinn, W.J.; Kopinski, P.K.; Wang, L.; et al. Foxp3 Reprograms T Cell Metabolism to Function in Low-Glucose, High-Lactate Environments. Cell Metab. 2017, 25, 1282–1293. [Google Scholar] [CrossRef] [Green Version]
- Galon, J.; Angell, H.K.; Bedognetti, D.; Marincola, F.M. The continuum of cancer immunosurveillance: Prognostic, predictive, and mechanistic signatures. Immunity 2013, 39, 11–26. [Google Scholar] [CrossRef] [Green Version]
% Within CD45+ Cells | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean ± SEM | ||||||||||
PBMC Ctrl | PBMC HCC | p Value 1 | Peritumor Lymphocytes | p Value 1 | p Value 2 | TILs HCC | p Value 1 | p Value 2 | p Value 3 | |
T cells | 61.52 ± 5.16 | 37.89 ± 4.59 | 0.0071 | 49.79 ± 5.76 | 0.22 | 0.11 | 42.29 ± 7.12 | 0.09 | 0.38 | 0.51 |
NKT cells | 5.94 ± 1.64 | 10.32 ± 2.48 | 0.36 | 7.001 ± 2.45 | 0.95 | 0.47 | 6.53 ± 2.34 | 0.97 | 0.31 | 0.70 |
NK cells | 9.28 ± 1.15 | 15.72 ± 3.41 | 0.60 | 8.133 ± 1.76 | 0.68 | 0.15 | 9.80 ± 2.97 | 0.40 | 0.41 | 0.76 |
B cells | 9.76 ± 2.30 | 3.00 ± 0.58 | 0.0046 | 4.569 ± 1.72 | 0.032 | 0.67 | 1.81 ± 0.45 | 0.002 | 0.28 | 0.39 |
% Within NK Cells | ||||||||||
Mean ± SEM | ||||||||||
PBMC Ctrl | PBMC HCC | p Value 1 | Peritumor Lymphocytes | p Value 1 | p Value 2 | TILs HCC | p Value 1 | p Value 2 | p Value 3 | |
CD56hi | 7.47 ± 2.21 | 5.71 ± 1.59 | 0.47 | 18.49 ± 6.51 | 0.55 | 0.13 | 19.60 ± 6.13 | 0.07 | 0.014 | 0.78 |
CD56low | 81.15 ± 10.16 | 82.73 ± 7.43 | 0.78 | 76.45 ± 6.36 | 0.25 | 0.21 | 70.76 ± 8.65 | 0.11 | 0.10 | 1.00 |
% Within NKT Cells | ||||||||||
Mean ± SEM | ||||||||||
PBMC Ctrl | PBMC HCC | p Value 1 | Peritumor Lymphocytes | p Value 1 | p Value 2 | TILs HCC | p Value 1 | p Value 2 | p Value 3 | |
CD56hi | 8.27 ± 3.87 | 8.83 ± 6.38 | 0.35 | 10.28 ± 3.56 | 0.93 | 0.29 | 26.49 ± 9.90 | 0.11 | 0.013 | 0.14 |
CD56low | 88.49 ± 3.98 | 88.99 ± 6.42 | 0.43 | 88.15 ± 3.49 | 1.00 | 0.28 | 69.19 ± 9.61 | 0.08 | 0.003 | 0.04 |
% Within CD3+ T Cells | ||||||||||
Mean ± SEM | ||||||||||
PBMC Ctrl | PBMC HCC | p Value 1 | Peritumor Lymphocytes | p Value 1 | p Value 2 | TILs HCC | p Value 1 | p Value 2 | p Value 3 | |
CD4+ T cells | 70.29 ± 2.94 | 54.45 ± 4.97 | 0.036 | 48.13 ± 6.03 | 0.0056 | 0.74 | 48.07 ± 5.22 | 0.006 | 0.74 | 0.78 |
CD8+ T cells | 19.20 ± 2.08 | 30.97 ± 4.06 | 0.0498 | 29.514 ± 4.94 | 0.25 | 0.81 | 31.95 ± 3.65 | 0.017 | 0.48 | 0.72 |
% Within CD4+ T Cells | ||||||||||
Mean ± SEM | ||||||||||
PBMC Ctrl | PBMC HCC | p Value 1 | Peritumor Lymphocytes | p Value 1 | p Value 2 | TILs HCC | p Value 1 | p Value 2 | p Value 3 | |
Tregs | 2.28 ± 0.44 | 4.88 ± 0.97 | 0.60 | 5.32 ± 2.50 | 0.833 | 0.596 | 5.63 ± 1.59 | 0.024 | 0.840 | 0.463 |
Th1 | 0.04 ± 0.02 | 2.41 ± 1.60 | 0.12 | 4.35 ± 1.49 | 0.017 | 0.120 | 12.97 ± 7.39 | 0.024 | 0.229 | 0.779 |
T-bet+ Tregs | 0.09 ± 0.01 | 0.40 ± 0.19 | 0.88 | 0.56 ± 0.28 | 0.617 | 0.410 | 3.90 ± 1.90 | 0.2788 | 0.16 | 0.462 |
% Within CD4+ T Cells | ||||||||||
Mean ± SEM | ||||||||||
PBMC Ctrl | PBMC HCC | p Value 1 | Peritumor Lymphocytes | p Value 1 | p Value 2 | TILs HCC | p Value 1 | p Value 2 | p Value 3 | |
TN | 14.24 ± 5.80 | 18.06 ± 5.21 | 0.65 | 2.02 ± 0.66 | 0.0096 | 0.005 | 5.55 ± 3.22 | 0.030 | 0.015 | 0.69 |
TCM | 15.36 ± 6.87 | 10.24 ± 1.84 | 0.65 | 8.99 ± 3.27 | 0.46 | 0.52 | 14.69 ± 4.14 | 0.84 | 0.69 | 0.35 |
TEM | 46.54 ± 5.58 | 44.41 ± 6.02 | 0.92 | 68.80 ± 8.11 | 0.012 | 0.012 | 69.75 ± 6.98 | 0.020 | 0.007 | 0.92 |
TEFF | 26.82 ± 6.79 | 26.22 ± 6.52 | 0.60 | 11.22 ± 2.80 | 0.10 | 0.015 | 9.95 ± 1.95 | 0.09 | 0.018 | 0.97 |
% Within CD8+ T Cells | ||||||||||
Mean ± SEM | ||||||||||
PBMC Ctrl | PBMC HCC | p Value 1 | Peritumor Lymphocytes | p Value 1 | p Value 2 | TILs HCC | p Value 1 | p Value 2 | p Value 3 | |
TN | 19.90 ± 8.58 | 19.47 ± 4.99 | 0.43 | 11.56 ± 4.20 | 0.90 | 0.15 | 10.45 ± 4.61 | 0.94 | 0.06 | 0.70 |
TCM | 9.36 ± 4.39 | 4.62 ± 2.10 | 0.19 | 9.86 ± 3.99 | 0.50 | 0.05 | 14.30 ± 5.88 | 0.90 | 0.31 | 0.76 |
TEM | 40.31 ± 9.17 | 28.98 ± 4.64 | 0.32 | 51.91 ± 9.23 | 0.36 | 0.049 | 49.77 ± 8.16 | 0.36 | 0.10 | 0.85 |
TEFF | 30.43 ± 6.32 | 46.93 ± 5.90 | 0.09 | 26.68 ± 5.78 | 0.72 | 0.021 | 25.49 ± 7.26 | 0.41 | 0.023 | 0.70 |
% of CD69+ Cells | ||||||||||
Mean ± SEM | ||||||||||
PBMC Ctrl | PBMC HCC | p Value 1 | Peritumor Lymphocytes | p Value 1 | p Value 2 | TILs HCC | p Value 1 | p Value 2 | p Value 3 | |
CD4+ T cells | 8.31 ± 4.83 | 4.01 ± 0.96 | 0.64 | 15.25 ± 3.38 | 0.0057 | 0.014 | 25.26 ± 4.55 | 0.0039 | 0.010 | 0.65 |
CD8+ T cells | 6.79 ± 2.30 | 3.60 ± 0.92 | 0.38 | 14.30 ± 3.74 | 0.0006 | 0.026 | 31.87 ± 5.34 | 0.037 | 0.12 | 0.55 |
gMFI of CD69+ Cells | ||||||||||
Mean ± SEM | ||||||||||
PBMC Ctrl | PBMC HCC | p Value 1 | Peritumor Lymphocytes | p Value 1 | p Value 2 | TILs HCC | p Value 1 | p Value 2 | p Value 3 | |
CD4+ T cells | 6.31 ± 1.18 | 5.19 ± 0.65 | 0.55 | 7.20 ± 0.82 | 0.70 | 0.10 | 7.65 ± 0.90 | 0.36 | 0.054 | 0.74 |
CD8+ T cells | 5.50 ± 0.87 | 5.04 ± 0.50 | 0.59 | 7.52 ± 1.10 | 0.16 | 0.05 | 7.19 ± 0.90 | 0.18 | 0.099 | 1.00 |
% of PD1+ Cells | ||||||||||
Mean ± SEM | ||||||||||
PBMC Ctrl | PBMC HCC | p Value 1 | Peritumor Lymphocytes | p Value 1 | p Value 2 | TILs HCC | p Value 1 | p Value 2 | p Value 3 | |
CD4+ T cells | 1.12 ± 0.39 | 3.97 ± 1.95 | 0.92 | 14.98 ± 4.14 | 0.058 | 0.0045 | 18.30 ± 5.20 | 0.0033 | <0.0001 | 0.20 |
CD8+ T cells | 1.83 ± 0.67 | 5.04 ± 1.76 | 0.26 | 14.24 ± 4.82 | 0.09 | 0.017 | 17.07 ± 6.59 | 0.0004 | 0.0001 | 0.035 |
gMFI of PD1+ Cells | ||||||||||
Mean ± SEM | ||||||||||
PBMC Ctrl | PBMC HCC | p Value 1 | Peritumor Lymphocytes | p Value 1 | p Value 2 | TILs HCC | p Value 1 | p Value 2 | p Value 3 | |
CD4+ T cells | 4.58 ± 0.65 | 3.85 ± 0.51 | 0.30 | 6.12 ± 1.08 | 0.15 | 0.11 | 6.97 ± 0.67 | 0.0016 | 0.005 | 0.23 |
CD8+ T cells | 7.69 ± 3.56 | 4.28 ± 0.75 | 0.19 | 7.48 ± 1.63 | 0.21 | 0.05 | 9.97 ± 1.76 | 0.010 | 0.001 | 0.17 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaoul, N.; Mancarella, S.; Lupo, L.; Giannelli, G.; Dituri, F. Impaired Anti-Tumor T cell Response in Hepatocellular Carcinoma. Cancers 2020, 12, 627. https://doi.org/10.3390/cancers12030627
Chaoul N, Mancarella S, Lupo L, Giannelli G, Dituri F. Impaired Anti-Tumor T cell Response in Hepatocellular Carcinoma. Cancers. 2020; 12(3):627. https://doi.org/10.3390/cancers12030627
Chicago/Turabian StyleChaoul, Nada, Serena Mancarella, Luigi Lupo, Gianluigi Giannelli, and Francesco Dituri. 2020. "Impaired Anti-Tumor T cell Response in Hepatocellular Carcinoma" Cancers 12, no. 3: 627. https://doi.org/10.3390/cancers12030627
APA StyleChaoul, N., Mancarella, S., Lupo, L., Giannelli, G., & Dituri, F. (2020). Impaired Anti-Tumor T cell Response in Hepatocellular Carcinoma. Cancers, 12(3), 627. https://doi.org/10.3390/cancers12030627