Radiomics-Based Outcome Prediction for Pancreatic Cancer Following Stereotactic Body Radiotherapy
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Patient Selection and Treatment Information
4.2. Assessment of Patient Outcomes
4.3. Tumor Segmentation and Feature Extraction
4.4. Data Analysis
4.4.1. Overall Survival Prediction
4.4.2. Local-Regional Recurrence Prediction
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- American Cancer Society. Survival Rates for Pancreatic Cancer. Available online: https://www.cancer.org/content/cancer/en/cancer/pancreatic-cancer/detection-diagnosis-staging/survival-rates.html (accessed on 11 May 2019).
- Van Tienhoven, G.; Versteijne, E.; Suker, M.; Groothuis, K.B.; Busch, O.R.; Bonsing, B.A.; de Hingh, I.H.; Festen, S.; Patijn, G.A.; de Vos-Geelen, J.; et al. Preoperative chemoradiotherapy versus immediate surgery for resectable and borderline resectable pancreatic cancer (PREOPANC-1): A randomized, controlled, multicenter phase III trial (abstract). J. Clin. Oncol. 2018, 36. [Google Scholar] [CrossRef]
- Kim, S.K.; Wu, C.-C.; Horowitz, D.P. Stereotactic body radiotherapy for the pancreas: A critical review for the medical oncologist. J. Gastrointest. Oncol. 2016, 7, 479–486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhong, J.; Patel, K.; Switchenko, J.; Cassidy, R.; Hall, W.A.; Gillespie, T.; Patel, P.R.; Kooby, D.; Landry, J. Outcomes for patients with locally advanced pancreatic adenocarcinoma treated with stereotactic body radiation therapy versus conventionally fractionated radiation. Cancer 2017, 123, 3486–3493. [Google Scholar] [CrossRef]
- Aerts, H.J.; Velazquez, E.R.; Leijenaar, R.T.; Parmar, C.; Grossmann, P.; Carvalho, S.; Bussink, J.; Monshouwer, R.; Haibe-Kains, B.; Rietveld, D.; et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. Commun. 2014, 5, 4006. [Google Scholar] [CrossRef]
- Gillies, R.; Kinahan, P.; Hricak, H. Radiomics: Images Are More than Pictures, They Are Data. Radiology 2016, 278, 563–577. [Google Scholar] [CrossRef] [Green Version]
- Lambin, P.; Leijenaar, R.T.; Deist, T.M.; Peerlings, J.; De Jong, E.E.; Van Timmeren, J.E.; Sanduleanu, S.; LaRue, R.; Even, A.J.; Jochems, A.; et al. Radiomics: The bridge between medical imaging and personalized medicine. Nat. Rev. Clin. Oncol. 2017, 14, 749–762. [Google Scholar] [CrossRef] [PubMed]
- Cozzi, L.; Comito, T.; Fogliata, A.; Franzese, C.; Franceschini, D.; Bonifacio, C.; Tozzi, A.; Di Brina, L.; Clerici, E.; Tomatis, S.; et al. Computed tomography based radiomic signature as predictive of survival and local control after stereotactic body radiation therapy in pancreatic carcinoma. PLoS ONE 2019, 14, e0210758. [Google Scholar] [CrossRef] [PubMed]
- Yun, G.; Kim, Y.H.; Lee, Y.J.; Kim, B.; Hwang, J.-H.; Choi, D.J. Tumor heterogeneity of pancreas head cancer assessed by CT texture analysis: Association with survival outcomes after curative resection. Sci. Rep. 2018, 8, 7226. [Google Scholar] [CrossRef] [PubMed]
- Chu, L.C.; Park, S.; Kawamoto, S.; Fouladi, D.F.; Shayesteh, S.; Zinreich, E.S.; Graves, J.S.; Horton, K.M.; Hruban, R.H.; Yuille, A.L.; et al. Utility of CT Radiomics Features in Differentiation of Pancreatic Ductal Adenocarcinoma from Normal Pancreatic Tissue. Am. J. Roentgenol. 2019, 213, 349–357. [Google Scholar] [CrossRef] [PubMed]
- Liang, M.; Tang, W.; Xu, D.M.; Jirapatnakul, A.; Reeves, A.P.; Henschke, C.I.; Yankelevitz, D.F. Low-Dose CT Screening for Lung Cancer: Computer-aided Detection of Missed Lung Cancers. Radiology 2016, 281, 279–288. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin. 2019, 69, 7–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fave, X.; Zhang, L.; Yang, J.; Mackin, D.; Balter, P.; Gomez, D.; Followill, D.; Jones, A.K.; Stingo, F.C.; Liao, Z.; et al. Delta-radiomics features for the prediction of patient outcomes in non-small cell lung cancer. Sci. Rep. 2017, 7, 588. [Google Scholar] [CrossRef] [PubMed]
- Nasief, H.; Hall, W.; Zheng, C.; Tsai, S.; Wang, L.; Erickson, B.; Li, X.A. Improving Treatment Response Prediction for Chemoradiation Therapy of Pancreatic Cancer Using a Combination of Delta-Radiomics and the Clinical Biomarker CA19-9. Front. Oncol. 2020, 9, 1464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nardone, V.; Reginelli, A.; Guida, C.; Belfiore, M.P.; Biondi, M.; Mormile, M.; Buonamici, F.B.; Di Giorgio, E.; Spadafora, M.; Tini, P.; et al. Delta-radiomics increases multicentre reproducibility: A phantom study. Med. Oncol. 2020, 37, 38. [Google Scholar] [CrossRef] [PubMed]
- Nardone, V.; Tini, P.; Pastina, P.; Botta, C.; Reginelli, A.; Carbone, S.F.; Giannicola, R.; Calabrese, G.; Tebala, C.; Guida, C.; et al. Radiomics predicts survival of patients with advanced non-small cell lung cancer undergoing PD-1 blockade using Nivolumab. Oncol. Lett. 2019, 19, 1559–1566. [Google Scholar] [CrossRef] [PubMed]
- Baine, M.J.; Sleightholm, R.; Lin, C. Incidence and Patterns of Locoregional Failure after Stereotactic Body Radiation Therapy for Pancreatic Adenocarcinoma. Pr. Radiat. Oncol. 2018, 9, e29–e37. [Google Scholar] [CrossRef] [PubMed]
- Van Griethuysen, J.J.; Fedorov, A.Y.; Parmar, C.; Hosny, A.; Aucoin, N.; Narayan, V.; Beets-Tan, R.G.; Fillion-Robin, J.-C.; Pieper, S.; Aerts, H.J.W.L. Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Res. 2017, 77, e104–e107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, L.; Jiang, H.; Yu, H.; Zhang, C.; McAllister, J.; Zheng, D. iVAR: Interactive visual analytics of radiomics features from large-scale medical images. In Proceedings of the 2017 IEEE International Conference on Big Data (Big Data), Boston, MA, USA, 11–14 December 2017; pp. 3916–3923. [Google Scholar]
- Zwanenburg, A.; Abdalah, M.; Apte, A.; Ashrafinia, S.; Beukinga, J.; Bogowicz, M.; Dinh, C.; Götz, M.; Hatt, M.; Leijenaar, R.; et al. PO-0981: Results from the Image Biomarker Standardisation Initiative. Radiother. Oncol. 2018, 127, S543–S544. [Google Scholar] [CrossRef]
- Harrell, F.E., Jr.; Califf, R.M.; Pryor, D.B.; Lee, K.L.; Rosati, R.A. Evaluating the yield of medical tests. JAMA 1982, 247, 2543–2546. [Google Scholar] [CrossRef] [PubMed]
- Bradley, A. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognit. 1997, 30, 1145–1159. [Google Scholar] [CrossRef] [Green Version]
- Anonymous. The R Project for Statistical Computing. Available online: http://www.r-project.org/ (accessed on 13 February 2012).
Characteristic | Number of Patients (Percentage) |
---|---|
Gender | |
Male | 45 (60.8%) |
Female | 29 (39.2%) |
Median age (range) Tumor site in pancreas | 62 (34–86) |
Head | 59 (79.7%) |
Neck | 3 (4.1%) |
Tail | 3 (4.1%) |
Body | 6 (8.1%) |
Uncinate | 3 (4.1%) |
N stage | |
0 | 41 (55.4%) |
1 | 33 (44.6%) |
T stage | |
2 | 5 (6.8%) |
3 | 44 (59.5%) |
4 | 25 (33.8%) |
Use of SBRT a | |
Definitive | 51 (68.9%) |
Neoadjuvant | 23 (31.1%) |
Concurrent chemotherapy | |
None | 13 (17.6%) |
Infusional 5-FU b | 4 (5.4%) |
Capecitabine | 11 (14.9%) |
Nelfinavir | 46 (62.2%) |
Survival | |
Alive | 5 (6.8%) |
Deceased | 69 (93.2%) |
Median overall survival (months (95% CI c)) | |
From diagnosis | 15 (14–17) |
From SBRT | 11 (10–14) |
Days since diagnosis (alive patients) | 116–1776 |
Median days to death (recorded deaths) | 452.5 |
Feature | FDR-Adjusted p Value |
---|---|
wavelet_HLH_glszm_SmallAreaEmphasis | 0.004 |
wavelet_HLL_firstorder_Kurtosis | 0.050 |
wavelet_HHH_gldm_DependenceNonUniformityNormalized | 0.098 |
wavelet_HHL_gldm_SmallDependenceHighGrayLevelEmphasis | 0.029 |
wavelet_HHH_firstorder_Skewness | 0.166 |
wavelet_LLL_glcm_Correlation | 0.152 |
wavelet_HHL_glrlm_ShortRunHighGrayLevelEmphasis | 0.028 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parr, E.; Du, Q.; Zhang, C.; Lin, C.; Kamal, A.; McAlister, J.; Liang, X.; Bavitz, K.; Rux, G.; Hollingsworth, M.; et al. Radiomics-Based Outcome Prediction for Pancreatic Cancer Following Stereotactic Body Radiotherapy. Cancers 2020, 12, 1051. https://doi.org/10.3390/cancers12041051
Parr E, Du Q, Zhang C, Lin C, Kamal A, McAlister J, Liang X, Bavitz K, Rux G, Hollingsworth M, et al. Radiomics-Based Outcome Prediction for Pancreatic Cancer Following Stereotactic Body Radiotherapy. Cancers. 2020; 12(4):1051. https://doi.org/10.3390/cancers12041051
Chicago/Turabian StyleParr, Elsa, Qian Du, Chi Zhang, Chi Lin, Ahsan Kamal, Josiah McAlister, Xiaoying Liang, Kyle Bavitz, Gerard Rux, Michael Hollingsworth, and et al. 2020. "Radiomics-Based Outcome Prediction for Pancreatic Cancer Following Stereotactic Body Radiotherapy" Cancers 12, no. 4: 1051. https://doi.org/10.3390/cancers12041051
APA StyleParr, E., Du, Q., Zhang, C., Lin, C., Kamal, A., McAlister, J., Liang, X., Bavitz, K., Rux, G., Hollingsworth, M., Baine, M., & Zheng, D. (2020). Radiomics-Based Outcome Prediction for Pancreatic Cancer Following Stereotactic Body Radiotherapy. Cancers, 12(4), 1051. https://doi.org/10.3390/cancers12041051