Tetraspanin CD9 is Regulated by miR-518f-5p and Functions in Breast Cell Migration and In Vivo Tumor Growth
Abstract
:1. Introduction
2. Results
2.1. miR-518f-5p is Predicted to be Involved in Cancer-Associated Pathways
2.2. miR-518f-5p Expression Correlates with Poor Overall Survival in Breast Cancer and Its Expression is Increased in Breast Cancer Cell Lines
2.3. miR-518f-5p Increases Breast Epithelial Cell Migration and Adhesion
2.4. miR-518f-5p Decreases CD9 Protein Expression in Non-Tumorigenic Breast and Triple Negative Breast Cancer Cells
2.5. CD9 Expression is Decreased in Breast Cancer Cells and Endogenous Activity Towards the CD9 3′UTR Varies Across Breast Cell Lines
2.6. Deletion of Cd9 Impairs Tumor Growth in the MMTV/PyMT Mouse Model
3. Discussion
4. Materials and Methods
4.1. Cell Lines and Maintenance
4.2. Bioinformatic Analyses
4.3. CD9 3′UTR Dual Luciferase Reporter Assay
4.4. Transient Reverse Transfection of miRNA Mimics
4.5. qPCR
4.6. miRNA Microarray
4.7. Analysis of Protein Expression
4.8. Cell Proliferation Assay
4.9. Cell Migration Assay
4.10. Cell Adhesion Assay
4.11. Animal Breeding
4.12. Animal Monitoring and Tissue Collection
4.13. Whole Mount Analysis
4.14. Immunofluorescence Labeling
4.15. Lung Metastasis
4.16. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin. 2020, 70, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Zoller, M. Tetraspanins: Push and pull in suppressing and promoting metastasis. Nat. Rev. Cancer 2009, 9, 40–55. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.I.; Kohno, N.; Ogawa, E.; Adachi, M.; Taki, T.; Miyake, M. Correlation of reduction in MRP-1/CD9 and KAI1/CD82 expression with recurrences in breast cancer patients. Am. J. Pathol. 1998, 153, 973–983. [Google Scholar] [CrossRef] [Green Version]
- Mimori, K.; Kataoka, A.; Yoshinaga, K.; Ohta, M.; Sagara, Y.; Yoshikawa, Y.; Ohno, S.; Barnard, G.F.; Mori, M. Identification of molecular markers for metastasis-related genes in primary breast cancer cells. Clin. Exp. Metastasis 2005, 22, 59–67. [Google Scholar] [CrossRef]
- Miyake, M.; Nakano, K.; Itoi, S.I.; Koh, T.; Taki, T. Motility-related protein-1 (MRP-1/CD9) reduction as a factor of poor prognosis in breast cancer. Cancer Res. 1996, 56, 1244–1249. [Google Scholar]
- Seymour, L.; Bezwoda, W.R.; Meyer, K. Tumor factors predicting for prognosis in metastatic breast cancer. The presence of P24 predicts for response to treatment and duration of survival. Cancer 1990, 66, 2390–2394. [Google Scholar] [CrossRef]
- Huang, C.; Taki, T.; Adachi, M.; Yagita, M.; Sawada, S.; Takabayashi, A.; Inufusa, H.; Yoshie, O.; Miyake, M. MRP-1/CD9 and KAI1/CD82 expression in normal and various cancer tissues. Int. J. Oncol. 1997, 11, 1045–1051. [Google Scholar] [CrossRef]
- Miyake, M.; Nakano, K.; Ieki, Y.; Adachi, M.; Huang, C.L.; Itoi, S.; Koh, T.; Taki, T. Motility related protein 1 (MRP-1/CD9) expression: Inverse correlation with metastases in breast cancer. Cancer Res. 1995, 55, 4127–4131. [Google Scholar]
- Huang, H.; Groth, J.; Sossey-Alaoui, K.; Hawthorn, L.; Beall, S.; Geradts, J. Aberrant expression of novel and previously described cell membrane markers in human breast cancer cell lines and tumors. Clin. Cancer Res. 2005, 11, 4357–4364. [Google Scholar] [CrossRef] [Green Version]
- Kwon, H.J.; Choi, J.E.; Kang, S.H.; Son, Y.; Bae, Y.K. Prognostic significance of CD9 expression differs between tumour cells and stromal immune cells, and depends on the molecular subtype of the invasive breast carcinoma. Histopathology 2017, 70, 1155–1165. [Google Scholar] [CrossRef]
- Kischel, P.; Bellahcene, A.; Deux, B.; Lamour, V.; Dobson, R.; De Pauw, E.; Clezardin, P.; Castronovo, V. Overexpression of CD9 in human breast cancer cells promotes the development of bone metastases. Anticancer Res. 2012, 32, 5211–5220. [Google Scholar] [PubMed]
- Rappa, G.; Green, T.M.; Karbanova, J.; Corbeil, D.; Lorico, A. Tetraspanin CD9 determines invasiveness and tumorigenicity of human breast cancer cells. Oncotarget 2015, 6, 7970–7991. [Google Scholar] [CrossRef] [PubMed]
- Remsik, J.; Fedr, R.; Navratil, J.; Bino, L.; Slabakova, E.; Fabian, P.; Svoboda, M.; Soucek, K. Plasticity and intratumoural heterogeneity of cell surface antigen expression in breast cancer. Br. J. Cancer 2018, 118, 813–819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Powner, D.; Kopp, P.M.; Monkley, S.J.; Critchley, D.R.; Berditchevski, F. Tetraspanin CD9 in cell migration. Biochem. Soc. Trans. 2011, 39, 563–567. [Google Scholar] [CrossRef]
- Gustafson-Wagner, E.; Stipp, C.S. The CD9/CD81 tetraspanin complex and tetraspanin CD151 regulate alpha3beta1 integrin-dependent tumor cell behaviors by overlapping but distinct mechanisms. PLoS ONE 2013, 8, e61834. [Google Scholar] [CrossRef] [Green Version]
- Pellinen, T.; Rantala, J.K.; Arjonen, A.; Mpindi, J.P.; Kallioniemi, O.; Ivaska, J. A functional genetic screen reveals new regulators of beta1-integrin activity. J. Cell Sci. 2012, 125, 649–661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castro-Sanchez, L.; Soto-Guzman, A.; Navarro-Tito, N.; Martinez-Orozco, R.; Salazar, E.P. Native type IV collagen induces cell migration through a CD9 and DDR1-dependent pathway in MDA-MB-231 breast cancer cells. Eur. J. Cell Biol. 2010, 89, 843–852. [Google Scholar] [CrossRef]
- Nana-Sinkam, S.P.; Croce, C.M. MicroRNA regulation of tumorigenesis, cancer progression and interpatient heterogeneity: Towards clinical use. Genome Biol. 2014, 15, 445. [Google Scholar] [CrossRef] [Green Version]
- Bond, D.R.; Naudin, C.; Carroll, A.P.; Goldie, B.J.; Brzozowski, J.S.; Jankowski, H.M.; Cairns, M.J.; Ashman, L.K.; Scarlett, C.J.; Weidenhofer, J. miR-518f-5p decreases tetraspanin CD9 protein levels and differentially affects non-tumourigenic prostate and prostate cancer cell migration and adhesion. Oncotarget 2018, 9, 1980–1991. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, V.; Bell, G.W.; Nam, J.W.; Bartel, D.P. Predicting effective microRNA target sites in mammalian mRNAs. eLife 2015, 4, e05005. [Google Scholar] [CrossRef]
- Mi, H.; Huang, X.; Muruganujan, A.; Tang, H.; Mills, C.; Kang, D.; Thomas, P.D. PANTHER version 11: Expanded annotation data from Gene Ontology and Reactome pathways, and data analysis tool enhancements. Nucleic Acids Res. 2017, 45, D183–D189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lanczky, A.; Nagy, A.; Bottai, G.; Munkacsy, G.; Szabo, A.; Santarpia, L.; Gyorffy, B. miRpower: A web-tool to validate survival-associated miRNAs utilizing expression data from 2178 breast cancer patients. Breast Cancer Res. Treat. 2016, 160, 439–446. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Muralimanoharan, S.; Wortman, A.C.; Mendelson, C.R. Primate-specific miR-515 family members inhibit key genes in human trophoblast differentiation and are upregulated in preeclampsia. Proc. Natl. Acad. Sci. USA 2016, 113, E7069–E7076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hromadnikova, I.; Kotlabova, K.; Ondrackova, M.; Pirkova, P.; Kestlerova, A.; Novotna, V.; Hympanova, L.; Krofta, L. Expression profile of C19MC microRNAs in placental tissue in pregnancy-related complications. DNA Cell Biol. 2015, 34, 437–457. [Google Scholar] [CrossRef]
- Zhan, T.; Rindtorff, N.; Boutros, M. Wnt signaling in cancer. Oncogene 2017, 36, 1461–1473. [Google Scholar] [CrossRef]
- Agnoli, C.; Grioni, S.; Pala, V.; Allione, A.; Matullo, G.; Gaetano, C.D.; Tagliabue, G.; Sieri, S.; Krogh, V. Biomarkers of inflammation and breast cancer risk: A case-control study nested in the EPIC-Varese cohort. Sci. Rep. 2017, 7, 12708. [Google Scholar] [CrossRef] [Green Version]
- Lambert, A.W.; Ozturk, S.; Thiagalingam, S. Integrin signaling in mammary epithelial cells and breast cancer. ISRN Oncol. 2012, 2012, 493283. [Google Scholar] [CrossRef] [Green Version]
- Castaneda-Gill, J.M.; Vishwanatha, J.K. Antiangiogenic mechanisms and factors in breast cancer treatment. J. Carcinog. 2016, 15, 1. [Google Scholar]
- Calaluce, R.; Gubin, M.M.; Davis, J.W.; Magee, J.D.; Chen, J.; Kuwano, Y.; Gorospe, M.; Atasoy, U. The RNA binding protein HuR differentially regulates unique subsets of mRNAs in estrogen receptor negative and estrogen receptor positive breast cancer. BMC Cancer 2010, 10, 126. [Google Scholar] [CrossRef] [Green Version]
- Copeland, B.T.; Bowman, M.J.; Boucheix, C.; Ashman, L.K. Knockout of the tetraspanin Cd9 in the TRAMP model of de novo prostate cancer increases spontaneous metastases in an organ-specific manner. Int. J. Cancer 2013, 133, 1803–1812. [Google Scholar] [CrossRef]
- Takeda, T.; Hattori, N.; Tokuhara, T.; Nishimura, Y.; Yokoyama, M.; Miyake, M. Adenoviral transduction of MRP-1/CD9 and KAI1/CD82 inhibits lymph node metastasis in orthotopic lung cancer model. Cancer Res. 2007, 67, 1744–1749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murayama, Y.; Oritani, K.; Tsutsui, S. Novel CD9-targeted therapies in gastric cancer. World J. Gastroenterol. 2015, 21, 3206–3213. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.R.; Jo, K.; Lee, Y.; Sung, B.J.; Park, Y.W.; Lee, J.H. Upregulation of CD9 in ovarian cancer is related to the induction of TNF-alpha gene expression and constitutive NF-kappaB activation. Carcinogenesis 2012, 33, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Malla, R.R.; Pandrangi, S.; Kumari, S.; Gavara, M.M.; Badana, A.K. Exosomal tetraspanins as regulators of cancer progression and metastasis and novel diagnostic markers. Asia Pac. J. Clin. Oncol. 2018, 14, 383–391. [Google Scholar] [CrossRef] [Green Version]
- Goldie, B.J.; Dun, M.D.; Lin, M.; Smith, N.D.; Verrills, N.M.; Dayas, C.V.; Cairns, M.J. Activity-associated miRNA are packaged in Map1b-enriched exosomes released from depolarized neurons. Nucleic Acids Res. 2014, 42, 9195. [Google Scholar] [CrossRef] [Green Version]
- Guy, C.T.; Cardiff, R.D.; Muller, W.J. Induction of mammary tumors by expression of polyomavirus middle T oncogene: A transgenic mouse model for metastatic disease. Mol. Cell. Biol. 1992, 12, 954–961. [Google Scholar] [CrossRef] [Green Version]
- Le Naour, F.; Rubinstein, E.; Jasmin, C.; Prenant, M.; Boucheix, C. Severely reduced female fertility in CD9-deficient mice. Science 2000, 287, 319–321. [Google Scholar] [CrossRef]
- Roselli, S.; Kahl, R.G.; Copeland, B.T.; Naylor, M.J.; Weidenhofer, J.; Muller, W.J.; Ashman, L.K. Deletion of Cd151 reduces mammary tumorigenesis in the MMTV/PyMT mouse model. BMC Cancer 2014, 14, 509. [Google Scholar] [CrossRef] [Green Version]
- Davie, S.A.; Maglione, J.E.; Manner, C.K.; Young, D.; Cardiff, R.D.; MacLeod, C.L.; Ellies, L.G. Effects of FVB/NJ and C57Bl/6J strain backgrounds on mammary tumor phenotype in inducible nitric oxide synthase deficient mice. Transgenic Res. 2007, 16, 193–201. [Google Scholar] [CrossRef] [Green Version]
Pathway | Number of Genes |
---|---|
Gonadotropin-releasing hormone receptor | 51 |
Wnt signaling | 48 |
Inflammation mediated by chemokine and cytokine signaling | 44 |
Heterotrimeric G protein signaling (Gi and Gs alpha) | 32 |
CCKR signaling | 31 |
Integrin signaling | 27 |
PDGF signaling | 27 |
Angiogenesis | 25 |
Apoptosis | 25 |
Cadherin signaling | 25 |
Heterotrimeric G protein signaling (Gq and Go alpha) | 23 |
Huntington Disease | 23 |
TGF-beta signaling | 21 |
EGF receptor signaling | 19 |
Cytoskeletal regulation by Rho GTPase | 18 |
PI3 Kinase pathway | 18 |
T cell activation | 18 |
FGF signaling | 17 |
p53 pathway | 17 |
Endothelin signaling | 16 |
B cell activation | 15 |
Interleukin signaling | 15 |
Ras pathway | 15 |
Metabotropic glutamate receptor group III pathway | 14 |
Insulin/IGF pathway—protein kinase B signaling cascade | 13 |
Parkinson’s disease | 13 |
Synaptic vesicle trafficking | 11 |
Transcription regulation by bZIP transcription factor | 11 |
Ubiquitin proteasome pathway | 11 |
P53 pathway feedback loops 2 pathway | 11 |
Toll receptor signaling | 10 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bond, D.R.; Kahl, R.; Brzozowski, J.S.; Jankowski, H.; Naudin, C.; Pariyar, M.; Avery-Kiejda, K.A.; Scarlett, C.J.; Boucheix, C.; Muller, W.J.; et al. Tetraspanin CD9 is Regulated by miR-518f-5p and Functions in Breast Cell Migration and In Vivo Tumor Growth. Cancers 2020, 12, 795. https://doi.org/10.3390/cancers12040795
Bond DR, Kahl R, Brzozowski JS, Jankowski H, Naudin C, Pariyar M, Avery-Kiejda KA, Scarlett CJ, Boucheix C, Muller WJ, et al. Tetraspanin CD9 is Regulated by miR-518f-5p and Functions in Breast Cell Migration and In Vivo Tumor Growth. Cancers. 2020; 12(4):795. https://doi.org/10.3390/cancers12040795
Chicago/Turabian StyleBond, Danielle R., Richard Kahl, Joshua S. Brzozowski, Helen Jankowski, Crystal Naudin, Mamta Pariyar, Kelly A. Avery-Kiejda, Christopher J. Scarlett, Claude Boucheix, William J. Muller, and et al. 2020. "Tetraspanin CD9 is Regulated by miR-518f-5p and Functions in Breast Cell Migration and In Vivo Tumor Growth" Cancers 12, no. 4: 795. https://doi.org/10.3390/cancers12040795
APA StyleBond, D. R., Kahl, R., Brzozowski, J. S., Jankowski, H., Naudin, C., Pariyar, M., Avery-Kiejda, K. A., Scarlett, C. J., Boucheix, C., Muller, W. J., Ashman, L. K., Cairns, M. J., Roselli, S., & Weidenhofer, J. (2020). Tetraspanin CD9 is Regulated by miR-518f-5p and Functions in Breast Cell Migration and In Vivo Tumor Growth. Cancers, 12(4), 795. https://doi.org/10.3390/cancers12040795