Estrogen Receptors Alpha and Beta in Acute Myeloid Leukemia
Abstract
:1. Introduction
2. ERs in Hematopoiesis
3. Estrogen Receptor-α in AML
4. Estrogen Receptor-β in AML
5. AML and Selective Estrogen Receptor Modulators (SERMs)
5.1. Tamoxifen
5.2. Diosmetin
5.3. Genistein
5.4. Quercetin
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AML | Acute myeloid leukemia |
APAF1 | Apoptotic peptidase activating factor |
BAX | Bcl-2-associated X protein |
BCL2 | B-cell lymphoma 2 |
BNIP | BCL2 Interacting Protein |
c-IAP | Cellular inhibitor of apoptosis |
DAPK1 | Death-associated protein kinase 1 |
DR | Death receptor |
E2 | Estradiol |
ER | Estrogen receptor |
ERK | Extracellular signal-regulated kinase |
ERM | Estrogen receptor alpha methylation |
GATA-1 | GATA-binding factor 1 |
HDAC | Histone deacetylase |
hPSC | Human pluripotent stem cell |
HSC | Hematopoietic stem cell |
IRF4 | Interferon regulatory factor 4 |
JAK2 | Janus kinase 2 |
LSC | Leukemia stem cell |
LT-HSC | Long term hematopoietic stem cell |
MPN | Myeloproliferative neoplasm |
MPP | Multipotent progenitor |
mTOR | Mammalian target of rapamycin |
NFκB | Nuclear factor kappa B |
PARP | Poly (ADP-ribose) polymerase |
PBMC | Peripheral blood mononuclear cell |
ROS | Reactive oxygen species |
SERM | Selective estrogen receptor modulator |
SMAC | Second mitochondria-derived activator of caspase |
TCGA | The Cancer Genome Atlas |
TRAIL | TNF-related apoptosis-inducing ligand |
UCB | Umbilical cord blood cells |
XIAP | X-linked inhibitor of apoptosis protein |
References
- O’Donnell, M.R.; Tallman, M.S.; Abboud, C.N.; Altman, J.K.; Appelbaum, F.R.; Arber, D.A.; Attar, E.; Borate, U.; Coutre, S.E.; Damon, L.E.; et al. Acute myeloid leukemia, version 2.2013. J. Natl. Compr. Cancer Netw. 2013, 11, 1047–1055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dohner, H.; Weisdorf, D.J.; Bloomfield, C.D. Acute Myeloid Leukemia. N. Engl. J. Med. 2015, 373, 1136–1152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Notta, F.; Zandi, S.; Takayama, N.; Dobson, S.; Gan, O.I.; Wilson, G.; Kaufmann, K.B.; McLeod, J.; Laurenti, E.; Dunant, C.F.; et al. Distinct routes of lineage development reshape the human blood hierarchy across ontogeny. Science 2016, 351, aab2116. [Google Scholar] [CrossRef] [Green Version]
- Bonnet, D.; Dick, J.E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat. Med. 1997, 3, 730–737. [Google Scholar] [CrossRef] [PubMed]
- Patel, J.P.; Gönen, M.; Figueroa, M.E.; Fernandez, H.; Sun, Z.; Racevskis, J.; Van Vlierberghe, P.; Dolgalev, I.; Thomas, S.; Aminova, O.; et al. Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. N. Engl. J. Med. 2012, 366, 1079–1089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lichtman, M.A. A historical perspective on the development of the cytarabine (7days) and daunorubicin (3days) treatment regimen for acute myelogenous leukemia: 2013 the 40th anniversary of 7+3. Blood Cells Mol. Dis. 2013, 50, 119–130. [Google Scholar] [CrossRef]
- Yanada, M.; Naoe, T. Acute myeloid leukemia in older adults. Int. J. Hematol. 2012, 96, 186–193. [Google Scholar] [CrossRef]
- Gustafsson, J.Å. What pharmacologists can learn from recent advances in estrogen signalling. Trends Pharmacol. Sci. 2003, 24, 479–485. [Google Scholar] [CrossRef]
- Mosselman, S.; Polman, J.; Dijkema, R. ERβ: Identification and characterization of a novel human estrogen receptor. FEBS Lett. 1996, 392, 49–53. [Google Scholar] [CrossRef] [Green Version]
- Heldring, N.; Pike, A.; Andersson, S.; Matthews, J.; Cheng, G.; Treuter, E.; Warner, M.; Hartman, J.; Tujague, M.; Stro, A. Estrogen Receptors : How Do They Signal and What Are Their Targets. Physiol. Rev. 2007, 87, 905–931. [Google Scholar] [CrossRef] [Green Version]
- Hillisch, A.; Peters, O.; Kosemund, D.; Müller, G.; Walter, A.; Schneider, B.; Reddersen, G.; Elger, W.; Fritzemeier, K.-H. Dissecting physiological roles of estrogen receptor alpha and beta with potent selective ligands from structure-based design. Mol. Endocrinol. 2004, 18, 1599–1609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hewitt, S.C.; Harrell, J.C.; Korach, K.S. Lessons in Estrogen Biology from Knockout and Transgenic Animals. Annu. Rev. Physiol. 2005, 67, 285–308. [Google Scholar] [CrossRef] [Green Version]
- Morani, A.; Barros, R.P.A.; Imamov, O.; Hultenby, K.; Arner, A.; Warner, M.; Gustafsson, J.-A. Lung dysfunction causes systemic hypoxia in estrogen receptor beta knockout (ERbeta-/-) mice. Proc. Natl. Acad. Sci. USA 2006, 103, 7165–7169. [Google Scholar] [CrossRef] [Green Version]
- Imamov, O.; Morani, A.; Shim, G.-J.; Omoto, Y.; Thulin-Andersson, C.; Warner, M.; Gustafsson, J.-A. Estrogen receptor beta regulates epithelial cellular differentiation in the mouse ventral prostate. Proc. Natl. Acad. Sci. USA 2004, 101, 9375–9380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wada-Hiraike, O.; Imamov, O.; Hiraike, H.; Hultenby, K.; Schwend, T.; Omoto, Y.; Warner, M.; Gustafsson, J.-A. Role of estrogen receptor beta in colonic epithelium. Proc. Natl. Acad. Sci. USA 2006, 103, 2959–2964. [Google Scholar] [CrossRef] [Green Version]
- Cheng, G.; Li, Y.; Omoto, Y.; Wang, Y.; Berg, T.; Nord, M.; Vihko, P.; Warner, M.; Piao, Y.-S.; Gustafsson, J.-A. Differential regulation of estrogen receptor (ER)alpha and ERbeta in primate mammary gland. J. Clin. Endocrinol. Metab. 2005, 90, 435–444. [Google Scholar] [CrossRef] [Green Version]
- Shim, G.-J.; Wang, L.; Andersson, S.; Nagy, N.; Kis, L.L.; Zhang, Q.; Mäkelä, S.; Warner, M.; Gustafsson, J.-A. Disruption of the estrogen receptor beta gene in mice causes myeloproliferative disease resembling chronic myeloid leukemia with lymphoid blast crisis. Proc. Natl. Acad. Sci. USA 2003, 100, 6694–6699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, M.; Gustafsson, J.Å. Estrogen receptor alpha and beta in health and disease. Best Pract. Res. Clin. Endocrinol. Metab. 2015, 29, 557–568. [Google Scholar] [CrossRef]
- Nassa, G.; Tarallo, R.; Guzzi, P.H.; Ferraro, L.; Cirillo, F.; Ravo, M.; Nola, E.; Baumann, M.; Weisz, A. Comparative analysis of nuclear estrogen receptor alpha and beta interactomes in breast cancer cells. Mol. Biosyst. 2011, 7, 667–676. [Google Scholar] [CrossRef] [PubMed]
- Chang, E.C.; Charn, T.H.; Park, S.; Helferich, W.G.; Komm, B.; Katzenellenbogen, J.A.; Katzenellenbogen, B.S. Estrogen receptors α and β as determinants of gene expression: Influence of ligand, dose, and chromatin binding. Mol. Endocrinol. 2008, 22, 1032–1043. [Google Scholar] [CrossRef] [Green Version]
- Forsythe, A.; Breland, T.; Majumdar, S.; Elkin, T.D.; Johnson, D.; Megason, G. Gender differences in incidence rates of childhood B-precursor acute lymphocytic leukemia in Mississippi. J. Pediatr. Oncol. Nurs. 2010, 27, 164–167. [Google Scholar] [CrossRef] [PubMed]
- Morton, L.M.; Wang, S.S.; Devesa, S.S.; Hartge, P.; Weisenburger, D.D.; Linet, M.S. Lymphoma incidence patterns by WHO subtype in the United States, 1992-2001. Blood 2006, 107, 265–276. [Google Scholar] [CrossRef] [PubMed]
- Qiu, X.; Yuan, X.; Jin, X.; He, X.; Zhu, L.; Zhao, X. Oestrogen-deficiency inducing haematopoiesis dysfunction via reduction in haematopoietic stem cells and haematopoietic growth factors in rats. Int. J. Exp. Pathol. 2012, 93, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Nakada, D.; Oguro, H.; Levi, B.P.; Ryan, N.; Kitano, A.; Saitoh, Y.; Takeichi, M.; Wendt, G.R.; Morrison, S.J. Oestrogen increases haematopoietic stem-cell self-renewal in females and during pregnancy. Nature 2014, 505, 555–558. [Google Scholar] [CrossRef]
- Illing, A.; Liu, P.; Ostermay, S.; Schilling, A.; De Haan, G.; Krust, A.; Amling, M.; Chambon, P.; Schinke, T.; Tuckermann, J.P. Estradiol increases hematopoietic stem and progenitor cells independent of its actions on bone. Haematologica 2012, 97, 1131–1135. [Google Scholar] [CrossRef] [Green Version]
- Edling, C.E.; Hallberg, B. c-Kit—A hematopoietic cell essential receptor tyrosine kinase. Int. J. Biochem. Cell Biol. 2007, 39, 1995–1998. [Google Scholar] [CrossRef]
- Wilson, A.; Murphy, M.J.; Oskarsson, T.; Kaloulis, K.; Bettess, M.D.; Oser, G.M.; Pasche, A.-C.; Knabenhans, C.; Macdonald, H.R.; Trumpp, A. c-Myc controls the balance between hematopoietic stem cell self-renewal and differentiation. Genes Dev. 2004, 18, 2747–2763. [Google Scholar] [CrossRef] [Green Version]
- Shin, J.Y.; Hu, W.; Naramura, M.; Park, C.Y. High c-Kit expression identifies hematopoietic stem cells with impaired self-renewal and megakaryocytic bias. J. Exp. Med. 2014, 211, 217–231. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Aguilera, A.; Arranz, L.; Martín-Pérez, D.; García-García, A.; Stavropoulou, V.; Kubovcakova, L.; Isern, J.; Martín-Salamanca, S.; Langa, X.; Skoda, R.C.; et al. Estrogen signaling selectively induces apoptosis of hematopoietic progenitors and myeloid neoplasms without harming steady-state hematopoiesis. Cell Stem Cell 2014, 15, 791–804. [Google Scholar] [CrossRef] [Green Version]
- Gavali, S.; Gupta, M.K.; Daswani, B.; Wani, M.R.; Sirdeshmukh, R.; Khatkhatay, M.I. Estrogen enhances human osteoblast survival and function via promotion of autophagy. Biochim. Biophys. Acta. Mol. Cell Res. 2019, 1866, 1498–1507. [Google Scholar] [CrossRef]
- Kim, H.R.; Lee, J.H.; Heo, H.R.; Yang, S.R.; Ha, K.S.; Park, W.S. Improved hematopoietic differentiation of human pluripotent stem cells via estrogen receptor signaling pathway. Cell Biosci. 2016, 6, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phiel, K.L.; Henderson, R.A.; Adelman, S.J.; Elloso, M.M. Differential estrogen receptor gene expression in human peripheral blood mononuclear cell populations. Immunol. Lett. 2005, 97, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Laffont, S.; Rouquié, N.; Azar, P.; Seillet, C.; Plumas, J.; Aspord, C.; Guéry, J.-C. X-chromosome complement and estrogen receptor signaling independently contribute to the enhanced TLR7-mediated IFN-α production of plasmacytoid dendritic cells from women. J. Immunol. 2014, 193, 5444–5452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vona, R.; Gambardella, L.; Ortona, E.; Santulli, M.; Malorni, W.; Carè, A.; Pietraforte, D.; Straface, E. Functional Estrogen Receptors of Red Blood Cells. Do They Influence Intracellular Signaling? Cell. Physiol. Biochem. Int. J. Exp. Cell. Physiol. Biochem. Pharmacol. 2019, 53, 186–199. [Google Scholar]
- Seillet, C.; Rouquié, N.; Foulon, E.; Douin-Echinard, V.; Krust, A.; Chambon, P.; Arnal, J.-F.; Guéry, J.-C.; Laffont, S. Estradiol promotes functional responses in inflammatory and steady-state dendritic cells through differential requirement for activation function-1 of estrogen receptor α. J. Immunol. 2013, 190, 5459–5470. [Google Scholar] [CrossRef] [Green Version]
- Carreras, E.; Turner, S.; Frank, M.B.; Knowlton, N.; Osban, J.; Centola, M.; Park, C.G.; Simmons, A.; Alberola-Ila, J.; Kovats, S. Estrogen receptor signaling promotes dendritic cell differentiation by increasing expression of the transcription factor IRF4. Blood 2010, 115, 238–246. [Google Scholar] [CrossRef] [Green Version]
- Blobel, G.A.; Orkin, S.H. Estrogen-induced apoptosis by inhibition of the erythroid transcription factor GATA-1. Mol. Cell. Biol. 1996, 16, 1687–1694. [Google Scholar] [CrossRef] [Green Version]
- Du, C.; Xu, Y.; Yang, K.; Chen, S.; Wang, X.; Wang, S.; Wang, C.; Shen, M.; Chen, F.; Chen, M.; et al. Estrogen promotes megakaryocyte polyploidization via estrogen receptor beta-mediated transcription of GATA1. Leukemia 2017, 31, 945–956. [Google Scholar] [CrossRef]
- Larocca, L.M.; Piantelli, M.; Leone, G.; Sica, S.; Teofili, L.; Panici, P.B.; Scambia, G.; Mancuso, S.; Capelli, A.; Ranelletti, F.O. Type II oestrogen binding sites in acute lymphoid and myeloid leukaemias: Growth inhibitory effect of oestrogen and flavonoids. Br. J. Haematol. 1990, 75, 489–495. [Google Scholar] [CrossRef]
- Rota, S.G.; Roma, A.; Dude, I.; Ma, C.; Stevens, R.; MacEachern, J.; Graczyk, J.; Espiritu, S.M.G.; Rao, P.N.; Minden, M.D.; et al. Estrogen receptorbeta is a novel target in acute myeloid leukemia. Mol Cancer Ther. 2017, 16, 2618–2626. [Google Scholar] [CrossRef] [Green Version]
- Issa, J.; Zehnbauer, A.; Civin, I.; Sharkis, S.J.; Davidson, E.; Kaufmann, S.H.; Baylin, S.B. The Estrogen Receptor CpG Island Is Methylated in Most Hematopoietic Neoplasms. Cancer Res. 1996, 56, 973–977. [Google Scholar] [PubMed]
- Li, Q.; Kopecky, K.J.; Mohan, A.; Willman, C.L.; Appelbaum, F.R.; Weick, J.K.; Issa, J.J. Estrogen Receptor Methylation Is Associated with Improved Survival in Adult Acute Myeloid Leukemia. Clin. Cancer Res. 1999, 5, 1077–1084. [Google Scholar] [PubMed]
- Siraj, A.K.; Ekmekci, C.G.; Gutie, M.I.; Ozbek, U.; Bhatia, K. Aberrant Methylation of Multiple Tumor Suppressor Genes in Acute Myeloid Leukemia. Am. J. Hematol. 2004, 240, 233–240. [Google Scholar]
- Agrawal, S.; Unterberg, M.; Koschmieder, S.; Stadt, U.; Brunnberg, U.; Verbeek, W.; Bu, T.; Berdel, W.E. DNA Methylation of Tumor Suppressor Genes in Clinical Remission Predicts the Relapse Risk in Acute Myeloid Leukemia. Cancer Res. 2007, 67, 1370–1378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Griffiths, E.A.; Gore, S.D.; Hooker, C.M.; Mohammad, H.P.; Mcdevitt, M.A.; Smith, B.D.; Karp, J.E.; Herman, J.G.; Carraway, H.E. Epigenetic differences in cytogenetically normal versus abnormal acute myeloid leukemia. Epigenetics 2010, 5, 1559–2308. [Google Scholar] [CrossRef] [Green Version]
- Hiller, J.K.; Schmoor, C.; Gaidzik, V.I.; Schmidt-salzmann, C.; Yalcin, A.; Abdelkarim, M.; Blagitko-dorfs, N.; Döhner, K.; Bullinger, L.; Duyster, J.; et al. Evaluating the impact of genetic and epigenetic aberrations on survival and response in acute myeloid leukemia patients receiving epigenetic therapy. Ann. Hematol. 2017, 96, 559–565. [Google Scholar] [CrossRef]
- Hess, C.J.; Errami, A.; Berkhof, J.; Denkers, F.; Ossenkoppele, G.J.; Nygren, A.O.H.; Schuurhuis, G.J.; Waisfisz, Q. Concurrent methylation of promoters from tumor associated genes predicts outcome in acute myeloid leukemia. Leuk. Lymphoma 2008, 49, 1132–1141. [Google Scholar] [CrossRef]
- Parl, F.F.; Crooke, P.S.; Plummer, W.D.; Dupont, W.D. Genomic-epidemiologic evidence that estrogens promote breast cancer development. Cancer Epidemiol. Prev. Biomarkers 2018, 27, 899–907. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Li, Y.; Lv, N.; Li, Y.; Wang, L.; Yu, L. Predictors of clinical responses to hypomethylating agents in acute myeloid leukemia or myelodysplastic syndromes. Ann. Hematol. 2018, 97, 2025–2038. [Google Scholar] [CrossRef]
- Mcpherson, S.J.; Hussain, S.; Balanathan, P.; Hedwards, S.L.; Niranjan, B.; Grant, M.; Chandrasiri, U.P.; Toivanen, R.; Wang, Y.; Taylor, R.A.; et al. Estrogen receptor–β activated apoptosis in benign hyperplasia and cancer of the prostate is androgen independent and TNFα mediated. Proc. Natl. Acad. Sci. USA 2014, 107, 3123–3128. [Google Scholar] [CrossRef] [Green Version]
- Treeck, O.; Diepolder, E.; Skrzypczak, M.; Schüler-Toprak, S.; Ortmann, O. Knockdown of estrogen receptor β increases proliferation and affects the transcriptome of endometrial adenocarcinoma cells. BMC Cancer 2019, 19, 745. [Google Scholar] [CrossRef] [PubMed]
- Yakimchuk, K.; Iravani, M.; Hasni, M.S.; Rho, P. Effect of ligand-activated estrogen receptor β on lymphoma growth in vitro and in vivo. Leukemia 2011, 25, 1103–1110. [Google Scholar] [CrossRef] [PubMed]
- Valk, P.J.M.; Verhaak, R.G.W.; Beijen, M.A.; Erpelinck, C.A.; Doorn-Khosrovani, S.B.V.W.V.; Boer, J.M.; Beverloo, H.B.; Moorhouse, M.J.; Van Der Spek, P.J.; Löwenberg, B.; et al. Prognostically useful gene-expression profiles in acute myeloid leukemia. N. Engl. J. Med. 2004, 350, 1617–1628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klein, H.-U.; Ruckert, C.; Kohlmann, A.; Bullinger, L.; Thiede, C.; Haferlach, T.; Dugas, M. Quantitative comparison of microarray experiments with published leukemia related gene expression signatures. BMC Bioinform. 2009, 10, 422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Motylewska, E.; Stasikowska, O.; Mełeń-Mucha, G. The inhibitory effect of diarylpropionitrile, a selective agonist of estrogen receptor beta, on the growth of MC38 colon cancer line. Cancer Lett. 2009, 276, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Sareddy, G.R.; Li, X.; Liu, J.; Viswanadhapalli, S.; Garcia, L.; Gruslova, A.; Cavazos, D.; Garcia, M.; Strom, A.M.; Gustafsson, J.-A.; et al. Selective Estrogen Receptor β Agonist LY500307 as a Novel Therapeutic Agent for Glioblastoma. Sci. Rep. 2016, 6, 24185. [Google Scholar] [CrossRef]
- Liu, J.; Viswanadhapalli, S.; Garcia, L.; Zhou, M.; Nair, B.C.; Kost, E.; Rao Tekmal, R.; Li, R.; Rao, M.K.; Curiel, T.; et al. Therapeutic utility of natural estrogen receptor beta agonists on ovarian cancer. Oncotarget 2017, 8, 50002–50014. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Huang, S.; Mei, S.; Yang, Z.; Xu, L.; Zhou, N.; Yang, Q.; Shen, Q.; Wang, W.; Le, X.; et al. Pharmacological activation of estrogen receptor beta augments innate immunity to suppress cancer metastasis. Proc. Natl. Acad. Sci. USA 2018, 115, E3673–E3681. [Google Scholar] [CrossRef] [Green Version]
- Principi, M.; De Tullio, N.; Scavo, M.P.; Piscitelli, D.; Marzullo, A.; Russo, S.; Albano, F.; Lofano, K.; Papagni, S.; Barone, M.; et al. Estrogen receptors expression in long-lasting ulcerative pancolitis with and without dysplasia: A preliminary report. Scand. J. Gastroenterol. 2012, 47, 1253–1254. [Google Scholar] [CrossRef]
- Principi, M.; Scavo, M.P.; Piscitelli, D.; Villanacci, V.; Lovero, R.; Losurdo, G.; Girardi, B.; Ierardi, E.; Di Leo, A. The sharp decline of beta estrogen receptors expression in long-lasting ulcerative-associated carcinoma. Scand. J. Gastroenterol. 2015, 50, 1002–1010. [Google Scholar] [CrossRef]
- Qiu, Y.; Waters, C.E.; Lewis, A.E.; Langman, M.J.S.; Eggo, M.C. Oestrogen-induced apoptosis in colonocytes expressing oestrogen receptor beta. J. Endocrinol. 2002, 174, 369–377. [Google Scholar] [CrossRef] [Green Version]
- Hsu, H.-H.; Cheng, S.-F.; Wu, C.-C.; Chu, C.-H.; Weng, Y.-J.; Lin, C.-S.; Lee, S.-D.; Wu, H.-C.; Huang, C.-Y.; Kuo, W.-W. Apoptotic effects of over-expressed estrogen receptor-beta on LoVo colon cancer cell is mediated by p53 signalings in a ligand-dependent manner. Chin. J. Physiol. 2006, 49, 110–116. [Google Scholar]
- Edvardsson, K.; Ström, A.; Jonsson, P.; Gustafsson, J.-Å.; Williams, C. Estrogen receptor β induces antiinflammatory and antitumorigenic networks in colon cancer cells. Mol. Endocrinol. 2011, 25, 969–979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mak, P.; Li, J.; Samanta, S.; Mercurio, A.M. ERβ regulation of NF-kB activation in prostate cancer is mediated by HIF-1. Oncotarget 2015, 6, 40247–40254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kontos, S.; Kominea, A.; Melachrinou, M.; Balampani, E.; Sotiropoulou-Bonikou, G. Inverse expression of estrogen receptor-beta and nuclear factor-kappaB in urinary bladder carcinogenesis. Int. J. Urol. 2010, 17, 801–809. [Google Scholar] [CrossRef] [PubMed]
- Delgado, M.D.; Albajar, M.; Gomez-Casares, M.T.; Batlle, A.; León, J. MYC oncogene in myeloid neoplasias. Clin. Transl. Oncol. 2013, 15, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Guzman, M.L.; Neering, S.J.; Upchurch, D.; Grimes, B.; Howard, D.S.; Rizzieri, D.A.; Luger, S.M.; Jordan, C.T. Nuclear factor-kB is constitutively activated in primitive human acute myelogenous leukemia cells. Blood 2015, 98, 2301–2308. [Google Scholar] [CrossRef]
- Kushner, P.J.; Agard, D.A.; Greene, G.L.; Scanlan, T.S.; Shiau, A.K.; Uht, R.M.; Webb, P. Estrogen receptor pathways to AP-1. J. Steroid Biochem. Mol. Biol. 2000, 74, 311–317. [Google Scholar] [CrossRef]
- Huang, B.; Warner, M.; Gustafsson, J.-Å. Estrogen receptors in breast carcinogenesis and endocrine therapy. Mol. Cell. Endocrinol. 2015, 418, 240–244. [Google Scholar] [CrossRef]
- Sánchez-Aguilera, A.; Méndez-Ferrer, S. Regulation of hematopoietic progenitors by estrogens as a basis for new antileukemic strategies. Mol. Cell. Oncol. 2015, 3556, e1009728. [Google Scholar] [CrossRef]
- Škrtić, M.; Sriskanthadevan, S.; Jhas, B.; Gebbia, M.; Wang, X.; Wang, Z.; Hurren, R.; Jitkova, Y.; Gronda, M.; Maclean, N. Inhibition of mitochondrial translation as a therapeutic strategy for human acute myeloid leukemia. Cancer Cell 2011, 20, 674–688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sriskanthadevan, S.; Jeyaraju, D.V.; Chung, T.E.; Prabha, S.; Xu, W.; Skrtic, M.; Jhas, B.; Hurren, R.; Gronda, M.; Wang, X.; et al. AML cells have low spare reserve capacity in their respiratory chain that renders them susceptible to oxidative metabolic stress. Blood 2015, 125, 2120–2130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morad, S.A.F.; Ryan, T.E.; Neufer, P.D.; Zeczycki, T.N.; Davis, T.S.; Macdougall, M.R.; Fox, T.E.; Tan, S.; Feith, D.J.; Loughran, T.P.; et al. Ceramide-tamoxifen regimen targets bioenergetic elements in acute myelogenous leukemia. J. Lipid Res. 2016, 57, 1231–1242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cabot, M.C.; Giuliano, A.E.; Volner, A.; Han, T.Y. Tamoxifen retards glycosphingolipid metabolism in human cancer cells. FEBS Lett. 1996, 394, 129–131. [Google Scholar] [CrossRef] [Green Version]
- Adachi, K.; Honma, Y.; Miyake, T.; Kawakami, K.; Takahashi, T.; Suzumiya, J. Tamoxifen enhances the differentiation-inducing and growth-inhibitory effects of all-trans retinoic acid in acute promyelocytic leukemia cells. Int. J. Oncol. 2016, 48, 1095–1102. [Google Scholar] [CrossRef] [Green Version]
- Kauss, M.A.; Reiterer, G.; Bunaciu, R.P.; Yen, A. Human myeloblastic leukemia cells (HL-60) express a membrane receptor for estrogen that signals and modulates retinoic. Exp. Cell Res. 2008, 314, 2999–3006. [Google Scholar] [CrossRef] [Green Version]
- Roma, A.; Rota, S.G.; Spagnuolo, P.A. Diosmetin Induces Apoptosis of Acute Myeloid Leukemia Cells. Mol. Pharm. 2018, 15, 1353–1360. [Google Scholar] [CrossRef]
- Raynal, N.J.; Momparler, L.; Charbonneau, M.; Momparler, R.L. Antileukemic Activity of Genistein, a Major Isoflavone Present in Soy Products. J. Nat. Prod. 2008, 60, 3–7. [Google Scholar] [CrossRef]
- Narasimhan, K.; Lee, Y.M.; Lim, T.K.; Port, S.A.; Han, J.; Chen, C.; Lin, Q. Genistein exerts anti-leukemic effects on genetically different acute myeloid leukemia cell lines by inhibiting protein synthesis and cell proliferation while inducing apoptosis—Molecular insights from an iTRAQTM quantitative proteomics study. Oncoscience 2015, 2, 111–124. [Google Scholar] [CrossRef] [Green Version]
- Peng, Y.H.S.; Liao, K.L.C.; Lin, C.; Tsai, M.L.K.L.C. Genistein induces apoptosis in vitro and has antitumor activity against human leukemia HL-60 cancer cell xenograft growth in vivo. Environ. Toxicol. 2019, 34, 443–456. [Google Scholar]
- Hasan, M.; Kumolosasi, E.; Jasamai, M.; Jamal, J.A.; Azmi, N.; Rajab, N.F. Evaluation of phytoestrogens in inducing cell death mediated by decreasing Annexin A1 in Annexin A1-knockdown leukemia cells. Daru 2020, 1–12. [Google Scholar] [CrossRef]
- De Blas, E.; Estañ, M.C.; Gómez, C.; Ramos, J.; Boyano, C.; Aller, P. Selected polyphenols potentiate the apoptotic efficacy of glycolytic inhibitors in human acute myeloid leukemia cell lines. Regulation by protein kinase activities. Cancer Cell Int. 2016, 16, 70. [Google Scholar] [CrossRef] [PubMed]
- LaRocca, L.M.; Teofili, L.; Leone, G.; Sica, S.; Pierelli, L.; Menichella, G.; Scambia, G.; Panici, P.B.; Ricci, R.; Piantelli, M.; et al. Antiproliferative activity of quercetin on normal bone marrow and leukaemic progenitors. Br. J. Haematol. 1991, 79, 562–566. [Google Scholar] [CrossRef] [PubMed]
- Larocca, L.M.; Teofili, L.; Maggiano, N.; Piantelli, M.; Ranelletti, F.O.; Leone, G. Quercetin and the Growth of Leukemic Progenitors Quercetin and the Growth of Leukemic Progenitors. Leuk. Lymphoma 1996, 23, 49–53. [Google Scholar] [CrossRef]
- Lee, W.J.; Hsiao, M.; Chang, J.L.; Yang, S.F.; Tseng, T.H.; Cheng, C.W.; Chow, J.M.; Lin, K.H.; Lin, Y.W.; Liu, C.C.; et al. Quercetin induces mitochondrial-derived apoptosis via reactive oxygen species-mediated ERK activation in HL-60 leukemia cells and xenograft. Arch. Toxicol. 2015, 89, 1103–1117. [Google Scholar] [CrossRef]
- Alvarez, M.C.; Maso, V.; Torello, C.O.; Ferro, K.P.; Teresinha, S.; Saad, O. The polyphenol quercetin induces cell death in leukemia by targeting epigenetic regulators of pro-apoptotic genes. Clin. Epigenetics 2018, 10, 1–11. [Google Scholar] [CrossRef]
- Naimi, A.; Entezari, A.; Hagh, M.F.; Hassanzadeh, A.; Saraei, R.; Solali, S. Quercetin sensitizes human myeloid leukemia KG-1 cells against TRAIL-induced apoptosis. J. Cell. Physiol. 2019, 234, 13233–13241. [Google Scholar] [CrossRef]
- Yoshikawa, M.; Uemura, T.; Shimoda, H.; Kishi, A.; Kawahara, Y.; Matsuda, H. Medicinal Foodstuffs. XVIII. Phytoestrogens from the Aerial Part of Petroselinum crispum MILL. (PARSLEY) and Structures of Acetylapiin and a New Monoterpene Glycoside, Petroside. Chem. Pharm. Bull. 2000, 48, 1039–1044. [Google Scholar] [CrossRef] [Green Version]
- Mor, G.; Sapi, E.; Abrahams, V.M.; Rutherford, T.; Song, J.; Hao, X.Y.; Muzaffar, S.; Kohen, F. Interaction of the Estrogen Receptors with the Fas Ligand Promoter in Human Monocytes. J. Immunol. 2003, 170, 114–122. [Google Scholar] [CrossRef]
- Jaiswal, N.; Akhtar, J.; Singh, S.P.; Ahsan, F.; Res, D. An Overview on Genistein and its Various Formulations Chemistry of Genistein Biological Properties of Genistein Genistein plays a vital role in a number of biological reactions and. Drug Res. 2019, 69, 305–313. [Google Scholar]
- Yan, L.; Spitznagel, E.L. Soy consumption and prostate cancer risk in men: A revisit of a meta-analysis. Am. J. Clin. Nutr. 2009, 89, 1155–1163. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Rao, Y.; Zheng, Y.; Wei, S.; Li, Y.; Guo, T.; Yin, P. Association between soy isoflavone intake and breast cancer risk for pre-and post-menopausal women: A meta-analysis of epidemiological studies. PLoS ONE 2014, 9, e89288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Zhang, Y.M.; Song, D.F.; Cui, H.B. Effect of apoptosis in human breast cancer cells and its probable mechanisms by genistein. J. Hyg. Res. 2005, 34, 67–69. [Google Scholar]
- Zhang, Y.; Li, Q.; Zhou, D.; Chen, H. Genistein, a soya isoflavone, prevents azoxymethane-induced up-regulation of WNT/β-catenin signalling and reduces colon pre-neoplasia in rats. Br. J. Nutr. 2013, 109, 33–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, B.; Cao, J.; Yi, S.; Wang, C.; Zheng, G.; He, Z. Inhibition of proliferation and induction of G1-phase cell-cycle arrest by dFMGEN, a novel genistein derivative, in lung carcinoma A549 cells. Drug Chem. Toxicol. 2013, 36, 196–204. [Google Scholar] [CrossRef]
- Gu, Y.; Zhu, C.-F.; Iwamoto, H.; Chen, J.-S. Genistein inhibits invasive potential of human hepatocellular carcinoma by altering cell cycle, apoptosis, and angiogenesis. World J. Gastroenterol. WJG 2005, 11, 6512–6517. [Google Scholar] [CrossRef]
- Tatsuta, M.; Iishi, H.; Baba, M.; Yano, H.; Uehara, H.; Nakaizumi, A. Attenuation by genistein of sodium-chloride-enhanced gastric carcinogenesis induced by N-methyl-N′-nitro-N-nitrosoguanidine in Wistar rats. Int. J. Cancer 1999, 80, 396–399. [Google Scholar] [CrossRef]
- Spagnuolo, C.; Russo, G.L.; Orhan, I.E.; Habtemariam, S.; Daglia, M.; Sureda, A.; Nabavi, S.F.; Devi, K.P.; Loizzo, M.R.; Tundis, R.; et al. Genistein and cancer: Current status, challenges, and future directions. Am. Soc. Nutr. 2015, 6, 408–419. [Google Scholar] [CrossRef] [Green Version]
- Andres, S.; Pevny, S.; Ziegenhagen, R.; Bakhiya, N.; Schäfer, B.; Hirsch-Ernst, K.I.; Lampen, A. Safety aspects of the use of quercetin as a dietary supplement. Mol. Nutr. Food Res. 2018, 62, 1700447. [Google Scholar] [CrossRef]
- Covaleda, A.M.S.; Ratman, D.; van der Saag, P.; Ström, A.; Gustafsson, J.A.; Vervoort, J.J.M. Phytoestrogen-mediated inhibition of proliferation of the human T47D breast cancer cells depends on the ER/ER ratio. J. Steroid Biochem. Mol. Biol. 2008, 112, 171–178. [Google Scholar]
- Maggiolini, M.; Bonofiglio, D.; Marsico, S.; Panno, M.L.; Cenni, B.; Picard, D.; Andò, S. Estrogen receptor α mediates the proliferative but not the cytotoxic dose-dependent effects of two major phytoestrogens on human breast cancer cells. Mol. Pharmacol. 2001, 60, 595–602. [Google Scholar] [PubMed]
- Rauf, A.; Imran, M.; Khan, I.A.; ur-Rehman, M.; Gilani, S.A.; Mehmood, Z.; Mubarak, M.S. Anticancer potential of quercetin: A comprehensive review. Phyther. Res. 2018, 32, 2109–2130. [Google Scholar] [CrossRef] [PubMed]
- Kuiper, G.G.; Lemmen, J.G.; Carlsson, B.; Corton, J.C.; Safe, S.H.; van der Saag, P.T.; van der Burg, B.; Gustafsson, J.A. Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology 1998, 139, 4252–4263. [Google Scholar] [CrossRef] [PubMed]
- Lagadinou, E.D.; Sach, A.; Callahan, K.; Rossi, R.M.; Neering, S.J.; Minhajuddin, M.; Ashton, J.M.; Pei, S.; Grose, V.; O’Dwyer, K.M. BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells. Cell Stem Cell 2013, 12, 329–341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farge, T.; Saland, E.; de Toni, F.; Aroua, N.; Hosseini, M.; Perry, R.; Bosc, C.; Sugita, M.; Stuani, L.; Fraisse, M.; et al. Chemotherapy-Resistant Human Acute Myeloid Leukemia Cells Are Not Enriched for Leukemic Stem Cells but Require Oxidative Metabolism. Cancer Discov. 2017, 7, 716–735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konopleva, M.; Letai, A. BCL-2 inhibition in AML: An unexpected bonus? Blood 2018, 132, 1007–1012. [Google Scholar] [CrossRef] [Green Version]
Agent | Model(s) | Summary of Results and Underlying Mechanisms | Reference |
---|---|---|---|
Tamoxifen | In vivo: MLL-AF9+ induced AML | Enhanced doxycycline-induced apoptosis, which was preceded by a decrease in mitochondrial respiration and spare reserve capacity. | [29] |
In vitro: HL-60, KG-1 cells, primary AML cells | In synergy with C6-ceraminde, inhibited complex I respiration and induced apoptosis in AML. | [73] | |
In vitro: HL-60 cells, primary APL cells | Enhanced ATRA-induced differentiation of APL cells. | [75] | |
Diosmetin | In vitro: TEX, primary AML cells In vivo: Intravenous engraftment of primary AML cells | Reduced the leukemia burden in vitro and in vivo through the targeting of ERβ. High ERβ:ERα ratios were necessary for diosmetin-induced activity. | [40] |
In vitro: TEX, primary AML cells In vivo: Subcutaneous xenograft of TEX cells | ERβ activation by diosmetin increased intracellular TNFα, which activated the extrinsic apoptosis pathway. TNFα increases are lost when ERβ is not expressed. Apoptosis is abrogated by a TNFα-neutralizing antibody. | [77] | |
Genistein | In vitro: HL-60, MOLT-2, KG1a, Raji cells In vivo: Intravenous engraftment of murine L1210 cells | Inhibited the growth and clonogenicity of myeloid and lymphoid leukemic cell lines, and a genistein-rich diet improved the survival of leukemia bearing mice. It also caused the re-expression of the silenced tumor suppressor genes, p57KIP2 and p15CDKN2B. | [78] |
In vitro: HL-60, MV4-11 | Induced caspase-dependent apoptosis of leukemia cell lines and decreased protein synthesis through the inhibition of mTOR. It also inhibited FLT3. | [79] | |
In vitro: HL-60 cells In vitro: Subcutaneous xenograft of HL-60 cells | Induced G2/M cell cycle arrest and activated intrinsic and calpain-mediated apoptosis. It also reduced the HL-60 tumor burden. | [80] | |
In vitro: U937, Jurkat, K562 cells | Caused G2/M cell cycle arrest and reduced expression of ANXA1, leading to intrinsic apoptosis via caspase 9 activation. | [81] | |
In vitro: HL-60, THP-1, NB4 cells | Sensitized AML cells to 2-DG and lonidamine cytotoxicity by inhibiting compensatory Akt and ERK activation, enhancing apoptosis. | [82] | |
Quercetin | In vitro: Primary AML and ALL cells | Primary AML samples expressed a type II estrogen receptor binding receptor for which quercetin had affinity. Quercetin reduced leukemic blast proliferation and inhibited the clonogenic growth of primary AML samples but not CD34+ normal bone-marrow derived cells. | [39,83,84] |
In vivo: HL-60, THP-1, MV4-11, and U937 cell In vivo: Subcutaneous xenograft of HL-60 cells | Caused the ROS-mediated activation of ERK and caspase-mediated apoptosis. It delayed tumor growth in vivo in an ROS-dependent manner, as growth inhibitory effects were lost when mice were co-treated with N-acetylcysteine. | [85] | |
In vitro: HL-60, U937 cells In vivo: Subcutaneous xenograft of HL-60 and U937 cells | Abrogated DNMT1 and DNMT3a expression and increased the proteasome degradation of class I HDACs in cell lines and xenograft tumors. It increased the apoptosis of leukemic cell lines by inducing demethylation and the transcriptional activation of pro-apoptotic proteins. | [86] | |
In vitro: KG-1 cells | Improved the efficacy of TRAIL in apoptosis induction by upregulating the expression of DR4 and DR5 and downregulating several antiapoptotic proteins like XIAP, c-IAP1 and c-IAP2. | [87] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roma, A.; Spagnuolo, P.A. Estrogen Receptors Alpha and Beta in Acute Myeloid Leukemia. Cancers 2020, 12, 907. https://doi.org/10.3390/cancers12040907
Roma A, Spagnuolo PA. Estrogen Receptors Alpha and Beta in Acute Myeloid Leukemia. Cancers. 2020; 12(4):907. https://doi.org/10.3390/cancers12040907
Chicago/Turabian StyleRoma, Alessia, and Paul A. Spagnuolo. 2020. "Estrogen Receptors Alpha and Beta in Acute Myeloid Leukemia" Cancers 12, no. 4: 907. https://doi.org/10.3390/cancers12040907
APA StyleRoma, A., & Spagnuolo, P. A. (2020). Estrogen Receptors Alpha and Beta in Acute Myeloid Leukemia. Cancers, 12(4), 907. https://doi.org/10.3390/cancers12040907