Decreased Activity of Circulating Butyrylcholinesterase in Blood Is an Independent Prognostic Marker in Pancreatic Cancer Patients
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
Statistical Analyses
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ilic, M.; Ilic, I. Epidemiology of pancreatic cancer. World J. Gastroenterol. 2016, 22, 9694–9705. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA. Cancer J. Clin. 2019, 69, 7–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Golan, T.; Hammel, P.; Reni, M.; Van Cutsem, E.; Macarulla, T.; Hall, M.J.; Park, J.O.; Hochhauser, D.; Arnold, D.; Oh, D.Y.; et al. Maintenance olaparib for germline BRCA-mutated metastatic pancreatic cancer. N. Engl. J. Med. 2019, 381, 317–327. [Google Scholar] [CrossRef] [PubMed]
- Fesinmeyer, M.D.; Austin, M.A.; Li, C.I.; De Roos, A.J.; Bowen, D.J. Differences in survival by histologic type of pancreatic cancer. Cancer Epidemiol. Biomarkers Prev. 2005, 14, 1766–1773. [Google Scholar] [CrossRef] [Green Version]
- Fortner, J.G.; Klimstra, D.S.; Senie, R.T.; Maclean, B.J. Tumor size is the primary prognosticator for pancreatic cancer after regional pancreatectomy. Ann. Surg. 1996, 223, 147–153. [Google Scholar] [CrossRef]
- Raut, C.P.; Tseng, J.F.; Sun, C.C.; Wang, H.; Wolff, R.A.; Crane, C.H.; Hwang, R.; Vauthey, J.N.; Abdalla, E.K.; Lee, J.E.; et al. Impact of resection status on pattern of failure and survival after pancreaticoduodenectomy for pancreatic adenocarcinoma. Ann. Surg. 2007, 246, 52–60. [Google Scholar] [CrossRef]
- Ozaki, H.; Hiraoka, T.; Mizumoto, R.; Matsuno, S.; Matsumoto, Y.; Nakayama, T.; Tsunoda, T.; Suzuki, T.; Monden, M.; Saitoh, Y.; et al. The prognostic significance of lymph node metastasis and intrapancreatic perineural invasion in pancreatic cancer after curative resection. Surg. Today 1999, 29, 16–22. [Google Scholar] [CrossRef]
- Al-Zoughbi, W.; Schauer, S.; Pichler, M.; Hoefler, G. Early Loss of Forkhead Transcription Factor, O Subgroup, Member 1 Protein in the Development of Pancreatic Ductal Adenocarcinoma. Pathobiology 2018, 85, 342–347. [Google Scholar] [CrossRef]
- Al-Zoughbi, W.; Pichler, M.; Gorkiewicz, G.; Guertl-Lackner, B.; Haybaeck, J.; Jahn, S.W.; Lackner, C.; Liegl-Atzwanger, B.; Popper, H.; Schauer, S.; et al. Loss of adipose triglyceride lipase is associated with human cancer and induces mouse pulmonary neoplasia. Oncotarget 2016, 7, 33832–33840. [Google Scholar] [CrossRef] [Green Version]
- Stotz, M.; Szkandera, J.; Stojakovic, T.; Seidel, J.; Samonigg, H.; Kornprat, P.; Schaberl-Moser, R.; Seggewies, F.; Hoefler, G.; Gerger, A.; et al. The lymphocyte to monocyte ratio in peripheral blood represents a novel prognostic marker in patients with pancreatic cancer. Clin. Chem. Lab. Med. 2015, 53, 499–506. [Google Scholar] [CrossRef]
- Stotz, M.; Szkandera, J.; Seidel, J.; Stojakovic, T.; Samonigg, H.; Reitz, D.; Gary, T.; Kornprat, P.; Schaberl-Moser, R.; Hoefler, G.; et al. Evaluation of uric acid as a prognostic blood-based marker in a large cohort of pancreatic cancer patients. PLoS ONE 2014, 9, e104730. [Google Scholar] [CrossRef] [PubMed]
- Szkandera, J.; Stotz, M.; Eisner, F.; Absenger, G.; Stojakovic, T.; Samonigg, H.; Kornprat, P.; Schaberl-Moser, R.; AlZoughbi, W.; Ress, A.L.; et al. External validation of the derived neutrophil to lymphocyte ratio as a prognostic marker on a large cohort of pancreatic cancer patients. PLoS ONE 2013, 8, e78225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, L.; Britten, J.J.; Morgan, M. Cholinesterase. Its significance in anaesthetic practice. Anaesthesia 1997, 52, 244–260. [Google Scholar] [CrossRef] [PubMed]
- Donini, L.M.; Savina, C.; Ricciardi, L.M.; Coletti, C.; Paolini, M.; Scavone, L.; De Felice, M.R.; Laviano, A.; Fanelli, F.R.; Cannella, C. Predicting the outcome of artificial nutrition by clinical and functional indices. Nutrition 2009, 25, 11–19. [Google Scholar] [CrossRef]
- Santarpia, L.; Grandone, I.; Contaldo, F.; Pasanisi, F. Butyrylcholinesterase as a prognostic marker: A review of the literature. J. Cachexia. Sarcopenia Muscle 2013, 4, 31–39. [Google Scholar] [CrossRef] [Green Version]
- Lampón, N.; Hermida-Cadahia, E.F.; Riveiro, A.; Tutor, J.C. Association between butyrylcholinesterase activity and low-grade systemic inflammation. Ann. Hepatol. 2012, 11, 356–363. [Google Scholar] [CrossRef]
- Das, U.N. Acetylcholinesterase and butyrylcholinesterase as markers of low-grade systemic inflammation. Ann. Hepatol. 2012, 11, 409–411. [Google Scholar] [CrossRef]
- Mitsunaga, S.; Kinoshita, T.; Hasebe, T.; Nakagohri, T.; Konishi, M.; Takahashi, S.; Gotohda, N.; Ochiai, A. Low serum level of cholinesterase at recurrence of pancreatic cancer is a poor prognostic factor and relates to systemic disorder and nerve plexus invasion. Pancreas 2008, 36, 241–248. [Google Scholar] [CrossRef]
- Yamamoto, M.; Saito, H.; Uejima, C.; Tanio, A.; Tada, Y.; Matsunaga, T.; Sakamoto, T.; Honjo, S.; Ashida, K.; Fujiwara, Y. Combination of Serum Albumin and Cholinesterase Levels as Prognostic Indicator in Patients ith Colorectal Cancer. Anticancer Res. 2019, 39, 1085–1090. [Google Scholar] [CrossRef]
- Koie, T.; Ohyama, C.; Yamamoto, H.; Hatakeyama, S.; Imai, A.; Yoneyama, T.; Hashimoto, Y.; Kitayam, M.; Hirota, K. Significance of preoperative butyrylcholinesterase as an independent predictor of survival in patients with muscle-invasive bladder cancer treated with radical cystectomy. Urol. Oncol. Semin. Orig. Investig. 2014, 32, 820–825. [Google Scholar] [CrossRef]
- Zhang, B.; Shen, C.; Jin, J.; Song, Y.; Zhao, Z.; Zhang, X.; Wang, G.; Fan, Y.; Mi, Y.; Hu, S.; et al. Pretreatment serum pseudocholinesterase level as a novel prognostic biomarker for upper tract urothelial carcinoma. Int. Urol. Nephrol. 2016, 48, 1993–1999. [Google Scholar] [CrossRef] [PubMed]
- Koie, T.; Ohyama, C.; Mikami, J.; Iwamura, H.; Fujita, N.; Sato, T.; Kojima, Y.; Fukushi, K.; Yamamoto, H.; Imai, A.; et al. Preoperative butyrylcholinesterase level as an independent predictor of overall survival in clear cell renal cell carcinoma patients treated with nephrectomy. Sci. World J. 2014, 2014, e948305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koie, T.; Ohyama, C.; Hatakeyama, S.; Imai, A.; Yoneyama, T.; Hashimoto, Y.; Yoneyama, T.; Tobisawa, Y.; Hosogoe, S.; Yamamoto, H.; et al. Significance of preoperative butyrylcholinesterase as an independent predictor of biochemical recurrence-free survival in patients with prostate cancer treated with radical prostatectomy. Int. J. Clin. Oncol. 2016, 21, 379–383. [Google Scholar] [CrossRef] [PubMed]
- Poetsch, N.; Sturdza, A.; Aust, S.; Polterauer, S.; Grimm, C.; Schwameis, R.; Pötter, R.; Koelbl, H.; Reinthaller, A.; Seebacher, V. The value of pretreatment serum butyrylcholinesterase level as a novel prognostic biomarker in patients with cervical cancer treated with primary (chemo-)radiation therapy. Strahlenther. Onkol. 2019, 195, 430–440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, S.Z.; Zhao, X.H.; Ping, Q.; Li, S.B.; Pan, B.R. Alterations of serum cholinesterase in patients with gastric cancer. World J. Gastroenterol. 2005, 11, 4604–4606. [Google Scholar] [CrossRef]
- Santarpia, L.; Alfonsi, L.; Pasanisi, F.; De Caprio, C.; Scalfi, L.; Contaldo, F. Predictive factors of survival in patients with peritoneal carcinomatosis on home parenteral nutrition. Nutrition 2006, 22, 355–360. [Google Scholar] [CrossRef]
- Prabhu, K.; Naik, D.; Ray, S. Significance of serum butyrylcholinesterase levels in oral cancer. Australas. Med. J. 2011, 4, 374–378. [Google Scholar] [CrossRef]
- Pavo, N.; Goliasch, G.; Wurm, R.; Cho, A.; Novak, J.F.; Pacher, R.; Hülsmann, M.; Raderer, M.; Gisslinger, H.; Steger, G.G.; et al. Subclinical involvement of the liver is associated with prognosis in treatment naïve cancer patients. Oncotarget 2017, 8, 81250–81260. [Google Scholar] [CrossRef] [Green Version]
- Rosas-Ballina, M.; Tracey, K.J. Cholinergic control of inflammation. J. Intern. Med. 2009, 265, 663–679. [Google Scholar] [CrossRef]
- Borovikova, L.V.; Ivanova, S.; Zhang, M.; Yang, H.; Botchkina, G.I.; Watkins, L.R.; Wang, H.; Abumrad, N.; Eaton, J.W.; Tracey, K.J. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 2000, 405, 458–462. [Google Scholar] [CrossRef]
- Hubbard, R.E.; O’Mahony, M.S.; Calver, B.L.; Woodhouse, K.W. Plasma esterases and inflammation in ageing and frailty. Eur. J. Clin. Pharmacol. 2008, 64, 895–900. [Google Scholar] [CrossRef] [PubMed]
- Lockridge, O. Review of human butyrylcholinesterase structure, function, genetic variants, history of use in the clinic, and potential therapeutic uses. Pharmacol. Ther. 2015, 148, 34–46. [Google Scholar] [CrossRef] [PubMed]
- Lockridge, O.; Norgren, R.B.; Johnson, R.C.; Blake, T.A. Naturally Occurring Genetic Variants of Human Acetylcholinesterase and Butyrylcholinesterase and Their Potential Impact on the Risk of Toxicity from Cholinesterase Inhibitors. Chem. Res. Toxicol. 2016, 29, 1381–1392. [Google Scholar] [CrossRef] [PubMed]
- Edge, S.B.; Compton, C.C. The american joint committee on cancer: The 7th edition of the AJCC cancer staging manual and the future of TNM. Ann. Surg. Oncol. 2010, 17, 1471–1474. [Google Scholar] [CrossRef]
- Szkandera, J.; Stotz, M.; Absenger, G.; Stojakovic, T.; Samonigg, H.; Kornprat, P.; Schaberl-Moser, R.; Alzoughbi, W.; Lackner, C.; Ress, A.L.; et al. Validation of C-reactive protein levels as a prognostic indicator for survival in a large cohort of pancreatic cancer patients. Br. J. Cancer 2014, 110, 183–188. [Google Scholar] [CrossRef] [Green Version]
- Absenger, G.; Szkandera, J.; Pichler, M.; Stotz, M.; Arminger, F.; Weissmueller, M.; Schaberl-Moser, R.; Samonigg, H.; Stojakovic, T.; Gerger, A. A derived neutrophil to lymphocyte ratio predicts clinical outcome in stage II and III colon cancer patients. Br. J. Cancer 2013, 109, 395–400. [Google Scholar] [CrossRef] [Green Version]
Characteristics | No. Pancreatic Cancer (%) |
---|---|
Gender female male | 268 (46.7) 306 (53.3) |
Tumor stage I + II III IV | 143 (25) 31 (5.4) 399 (69.6) |
Tumor grade 1 + 2 3 + 4 | 343 (59.8) 231 (40.2) |
Surgical resection yes no | 173 (30.1) 401 (69.9) |
Chemotherapy missing cases yes no | 1 (0.2) 410 (71.4) 163 (28.4) |
Karfnosky Index missing cases ≤80 90–100 | 5 (9) 337 (58.7) 232 (40.4) |
Cancer specific survival alive dead | 53 (9.2) 521 (90.8) |
Variable | Subset | Univariate Analysis | Multivariate Analysis | ||
---|---|---|---|---|---|
HR 1 (95% CIl) 2 | p | HR 1 (95% CI) 2 | p | ||
Gender | Female/Male | 1.159 (0.975–1.377) | 0.94 | 1.003 (0.794–1.266) | 0.98 |
Grading | G3+4/G1+2 | 1.269 (1.065–1.512) | 0.008 | 1.699 (1.342–2.15) | <0.001 |
Staging | Stage III/I+II | 3.161 (2.099–4.761) | <0.001 | 2.254 (1.367–3.717) | 0.001 |
Stage IV/I+II | 3.789 (2.995–4.794) | <0.001 | 3.001 (2.178–4.136) | <0.001 | |
Chemotherapy | Yes/No | 0.412 (0.339–0.501) | <0.001 | 0.329 (0.251–0.432) | <0.001 |
Surgical resection | Yes/No | 0.339 (0.775–0.418) | <0.001 | not included | |
CA 19-9 | >1191.7/≤1191.7 U/mL | 1.872 (1.554–2.256) | <0.001 | 1.288 (1.015–1.635) | 0.037 |
Bilirubin | >1.9/≤1.9 mg/dL | 0.746 (0.610–0.913) | 0.004 | 0.694 (0.502–0.96) | 0.027 |
GGT | >25/≤25 U/L | 1.443 (1.093–1.905) | 0.010 | 1.1 (0.711.686) | 0.663 |
AST | >42/≤42 U/L | 0.880 (0.737–1.052) | 0.160 | 1.017 (0.713–1.45) | 0.925 |
ALT | >64/≤64 U/L | 0.791 (0.658–0.951) | 0.013 | 0.876 (0.623–1.231) | 0.446 |
ALP | >70/≤70 U/L | 1.440 (1.101–1.884) | 0.008 | 1.406 (0.937.11) | 0.1 |
BChE | ≤7272/>7272 U/L | 1.406 (1.129–1.754) | 0.002 | 1.416 (1.10–1.818) | 0.006 |
PT | >70/≤70% | 0.706 (0.485–1.028) | 0.069 | 0.777 (0.466–1.293) | 0.331 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klocker, E.V.; Barth, D.A.; Riedl, J.M.; Prinz, F.; Szkandera, J.; Schlick, K.; Kornprat, P.; Lackner, K.; Lindenmann, J.; Stöger, H.; et al. Decreased Activity of Circulating Butyrylcholinesterase in Blood Is an Independent Prognostic Marker in Pancreatic Cancer Patients. Cancers 2020, 12, 1154. https://doi.org/10.3390/cancers12051154
Klocker EV, Barth DA, Riedl JM, Prinz F, Szkandera J, Schlick K, Kornprat P, Lackner K, Lindenmann J, Stöger H, et al. Decreased Activity of Circulating Butyrylcholinesterase in Blood Is an Independent Prognostic Marker in Pancreatic Cancer Patients. Cancers. 2020; 12(5):1154. https://doi.org/10.3390/cancers12051154
Chicago/Turabian StyleKlocker, Eva Valentina, Dominik Andreas Barth, Jakob Michael Riedl, Felix Prinz, Joanna Szkandera, Konstantin Schlick, Peter Kornprat, Karoline Lackner, Jörg Lindenmann, Herbert Stöger, and et al. 2020. "Decreased Activity of Circulating Butyrylcholinesterase in Blood Is an Independent Prognostic Marker in Pancreatic Cancer Patients" Cancers 12, no. 5: 1154. https://doi.org/10.3390/cancers12051154
APA StyleKlocker, E. V., Barth, D. A., Riedl, J. M., Prinz, F., Szkandera, J., Schlick, K., Kornprat, P., Lackner, K., Lindenmann, J., Stöger, H., Stotz, M., Gerger, A., & Pichler, M. (2020). Decreased Activity of Circulating Butyrylcholinesterase in Blood Is an Independent Prognostic Marker in Pancreatic Cancer Patients. Cancers, 12(5), 1154. https://doi.org/10.3390/cancers12051154