Y RNA: An Overview of Their Role as Potential Biomarkers and Molecular Targets in Human Cancers
Abstract
:1. Introduction
2. Y RNA Structure and Function
2.1. Y RNA Structure
2.2. Y RNA Interacting Proteins
2.3. Role of Y RNA in RO60 Function
2.4. Role of Y RNA in DNA Replication
2.5. Y RNA Derivatives and Fragments
3. Y RNA and Human Cancer
3.1. Y RNA Expression is Altered in Human Cancers
3.2. Y RNA and Bladder Cancer (BC)
3.3. Y RNA and Breast Cancer (BrC)
3.4. Y RNA and Brain Cancer
3.5. Y RNA and Cervix Cancer
3.6. Y RNA and Colon Cancer
3.7. Y RNA and Head/Neck Cancers
3.8. Y RNA and Blood Cancers
3.9. Y RNA and Kidney Cancer
3.10. Y RNA and Pediatric Lymphoma
3.11. Y RNA and Lung Cancer
3.12. Y RNA and Skin Cancer
3.13. Y RNA and Prostate Cancer
3.14. Y RNA and Kaposi’s Sarcoma
3.15. A Possible Role of Y RNA in Other Cancer Types
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lerner, M.R.; Boyle, J.A.; Hardin, J.A.; Steitz, J.A. Two novel classes of small ribonucleoproteins detected by antibodies associated with lupus erythematosus. Science 1981, 211, 400–402. [Google Scholar] [CrossRef] [PubMed]
- Deutscher, S.L.; Harley, J.B.; Keene, J.D. Molecular analysis of the 60-kDa human Ro ribonucleoprotein. Proc. Natl. Acad. Sci. USA 1988, 85, 9479–9483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ben-Chetrit, E.; Gandy, B.J.; Tan, E.M.; Sullivan, K.F. Isolation and characterization of a cDNA clone encoding the 60-kD component of the human SS-A/Ro ribonucleoprotein autoantigen. J. Clin. Investig. 1989, 83, 1284–1292. [Google Scholar] [CrossRef] [PubMed]
- Chambers, J.C.; Kenan, D.; Martin, B.J.; Keene, J.D. Genomic structure and amino acid sequence domains of the human La autoantigen. J. Biol. Chem. 1988, 263, 18043–18051. [Google Scholar] [PubMed]
- Hendrick, J.P.; Wolin, S.L.; Rinke, J.; Lerner, M.R.; Steitz, J.A. Ro small cytoplasmic ribonucleoproteins are a subclass of La ribonucleoproteins: Further characterization of the Ro and La small ribonucleoproteins from uninfected mammalian cells. Mol. Cell. Biol. 1981, 1, 1138–1149. [Google Scholar] [CrossRef] [Green Version]
- Wolin, S.L.; Steitz, J.A. Genes for two small cytoplasmic Ro RNAs are adjacent and appear to be single-copy in the human genome. Cell 1983, 32, 735–744. [Google Scholar] [CrossRef]
- Maraia, R. Gene encoding human Ro-associated autoantigen Y5 RNA. Nucleic Acids Res. 1996, 24, 3552–3559. [Google Scholar] [CrossRef] [Green Version]
- Maraia, R.J.; Sasaki-tozawa, N.; Driscoll, C.T.; Green, E.D.; Darlington, G.J. The human Y4 small cytoplasmic RNA gene is controlled by upstream elements and resides on chromosome 7 with all other hY scRNA genes. Nucleic Acids Res. 1994, 22, 3045–3052. [Google Scholar] [CrossRef]
- Perreault, J.; Noël, J.F.; Brière, F.; Cousineau, B.; Lucier, J.F.; Perreault, J.P.; Boire, G. Retropseudogenes derived from the human Ro/SS-A autoantigen-associated hY RNAs. Nucleic Acids Res. 2005, 33, 2032–2041. [Google Scholar] [CrossRef]
- Signore, F.; Gulìa, C.; Votino, R.; De Leo, V.; Zaami, S.; Putignani, L.; Gigli, S.; Santini, E.; Bertacca, L.; Porrello, A.; et al. The Role of Number of Copies, Structure, Behavior and Copy Number Variations (CNV) of the Y Chromosome in Male Infertility. Genes (Basel) 2019, 11, 40. [Google Scholar] [CrossRef] [Green Version]
- Perreault, J.; Perreault, J.P.; Boire, G. Ro-associated Y RNAs in metazoans: Evolution and diversification. Mol. Biol. Evol. 2007, 24, 1678–1689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boria, I.; Gruber, A.R.; Tanzer, A.; Bernhart, S.H.; Lorenz, R.; Mueller, M.M.; Hofacker, I.L.; Stadler, P.F. Nematode sbRNAs: Homologs of vertebrate y RNAs. J. Mol. Evol. 2010, 70, 346–358. [Google Scholar] [CrossRef] [PubMed]
- Junior, F.F.D.; Bueno, P.S.A.; Pedersen, S.L.; Rando, F.; Júnior, J.R.P.; Caligari, D.; Ramos, A.C.; Polizelli, L.G.; Lima, A.F.D.S.; Neto, Q.A.D.L.; et al. Identification and characterization of stem-bulge RNAs in Drosophila melanogaster. RNA Biol. 2019, 16, 330–339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duarte Junior, F.F.; De Lima Neto, Q.A.; Rando, F.D.S.; De Freitas, D.V.B.; Pattaro Júnior, J.R.; Polizelli, L.G.; Munhoz, R.E.F.; Seixas, F.A.V.; Fernandez, M.A. Identification and molecular structure analysis of a new noncoding RNA, a sbRNA homolog, in the silkworm Bombyx mori genome. Mol. Biosyst. 2015, 11, 801–808. [Google Scholar] [CrossRef] [PubMed]
- Mosig, A.; Guofeng, M.; Stadler, B.M.R.; Stadler, P.F. Evolution of the vertebrate Y RNA cluster. Theory Biosci. 2007, 126, 9–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farris, A.D.; Gross, J.K.; Hanas, J.S.; Harley, J.B. Genes for murine Y1 and Y3 Ro RNAs have class 3 RNA polymerase III promoter structures and are unlinked on mouse chromosome 6. Gene 1996, 174, 35–42. [Google Scholar] [CrossRef]
- O’Brien, C.A.; Margelot, K.; Wolin, S.L. Xenopus Ro ribonucleoproteins: Members of an evolutionarily conserved class of cytoplasmic ribonucleoproteins. Proc. Natl. Acad. Sci. USA 1993, 90, 7250–7254. [Google Scholar] [CrossRef] [Green Version]
- Gardiner, T.J.; Christov, C.P.; Langley, A.R.; Krude, T. A conserved motif of vertebrate Y RNAs essential for chromosomal DNA replication. RNA 2009, 15, 1375–1385. [Google Scholar] [CrossRef] [Green Version]
- Teunissen, S.W.M. Conserved features of Y RNAs: A comparison of experimentally derived secondary structures. Nucleic Acids Res. 2000, 28, 610–619. [Google Scholar] [CrossRef] [Green Version]
- Shukla, S.; Parker, R. PARN modulates Y RNA stability, 3′ end formation and its modification. Mol. Cell. Biol. 2017, 37, e00264-17. [Google Scholar]
- Van Gelder, C.W.; Thijssen, J.P.; Klaassen, E.C.; Sturchler, C.; Krol, A.; van Venrooij, W.J.; Pruijn, G.J. Common structural features of the Ro RNP associated hY1 and hY5 RNAs. Nucleic Acids Res. 1994, 22, 2498–2506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kowalski, M.P.; Krude, T. Functional roles of non-coding Y RNAs. Int. J. Biochem. Cell Biol. 2015, 66, 20–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Köhn, M.; Pazaitis, N.; Hüttelmaier, S. Why YRNAs? About Versatile RNAs and Their Functions. Biomolecules 2013, 3, 143–156. [Google Scholar] [CrossRef] [PubMed]
- Boccitto, M.; Wolin, S.L. Ro60 and Y RNAs: Structure, functions, and roles in autoimmunity. Crit. Rev. Biochem. Mol. Biol. 2019, 54, 133–152. [Google Scholar] [CrossRef]
- Thomson, D.W.; Pillman, K.A.; Anderson, M.L.; Lawrence, D.M.; Toubia, J.; Goodall, G.J.; Bracken, C.P. Assessing the gene regulatory properties of Argonaute-bound small RNAs of diverse genomic origin. Nucleic Acids Res. 2015, 43, 470–481. [Google Scholar] [CrossRef] [Green Version]
- Gallois-Montbrun, S.; Holmes, R.K.; Swanson, C.M.; Fernández-Ocaña, M.; Byers, H.L.; Ward, M.A.; Malim, M.H. Comparison of cellular ribonucleoprotein complexes associated with the APOBEC3F and APOBEC3G antiviral proteins. J. Virol. 2008, 82, 5636–5642. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Tian, C.; Zhang, W.; Luo, K.; Sarkis, P.T.N.; Yu, L.; Liu, B.; Yu, Y.; Yu, X.-F. 7SL RNA mediates virion packaging of the antiviral cytidine deaminase APOBEC3G. J. Virol. 2007, 81, 13112–13124. [Google Scholar] [CrossRef] [Green Version]
- Cheng, S.T.; Nguyen, T.Q.; Yang, Y.S.; Capra, J.D.; Sontheimer, R.D. Calreticulin binds hYRNA and the 52-kDa polypeptide component of the Ro/SS-A ribonucleoprotein autoantigen. J. Immunol. 1996, 156, 4484–4491. [Google Scholar]
- Köhn, M.; Ihling, C.; Sinz, A.; Krohn, K.; Hüttelmaier, S. The Y3** ncRNA promotes the 3′ end processing of histone mRNAs. Genes Dev. 2015, 29, 1998–2003. [Google Scholar] [CrossRef] [Green Version]
- Tebaldi, T.; Zuccotti, P.; Peroni, D.; Köhn, M.; Gasperini, L.; Potrich, V.; Bonazza, V.; Dudnakova, T.; Rossi, A.; Sanguinetti, G.; et al. HuD Is a Neural Translation Enhancer Acting on mTORC1-Responsive Genes and Counteracted by the Y3 Small Non-coding RNA. Mol. Cell 2018, 71, 256–270. [Google Scholar] [CrossRef] [Green Version]
- Fabini, G.; Raijmakers, R.; Hayer, S.; Fouraux, M.A.; Pruijn, G.J.M.; Steiner, G. The Heterogeneous Nuclear Ribonucleoproteins I and K Interact with a Subset of the Ro Ribonucleoprotein-associated Y RNAs in Vitro and in Vivo. J. Biol. Chem. 2001, 276, 20711–20718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hogg, J.R.; Collins, K. Human Y5 RNA specializes a Ro ribonucleoprotein for 5S ribosomal RNA quality control. Genes Dev. 2007, 21, 3067–3072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamazaki, F.; Kim, H.H.; Lau, P.; Hwang, C.K.; Iuvone, P.M.; Klein, D.; Clokie, S.J.H. pY RNA1-s2: A highly retina-enriched small RNA that selectively binds to Matrin 3 (Matr3). PLoS ONE 2014, 9, e88217V. [Google Scholar] [CrossRef] [PubMed]
- Sim, S.; Yao, J.; Weinberg, D.E.; Niessen, S.; Yates, J.R.; Wolin, S.L. The zipcode-binding protein ZBP1 influences the subcellular location of the Ro 60-kDa autoantigen and the noncoding Y3 RNA. RNA 2012, 18, 100–110. [Google Scholar] [CrossRef] [Green Version]
- Fouraux, M.A.; Bouvet, P.; Verkaart, S.; van Venrooij, W.J.; Pruijn, G.J.M. Nucleolin associates with a subset of the human Ro ribonucleoprotein complexes. J. Mol. Biol. 2002, 320, 475–488. [Google Scholar] [CrossRef]
- Bouffard, P.; Barbar, E.; Brière, F.; Boire, G. Interaction cloning and characterization of RoBPI, a novel protein binding to human Ro ribonucleoproteins. RNA 2000, 6, 66–78. [Google Scholar] [CrossRef] [Green Version]
- Donovan, J.; Rath, S.; Kolet-Mandrikov, D.; Korennykh, A. Rapid RNase L–driven arrest of protein synthesis in the dsRNA response without degradation of translation machinery. RNA 2017, 23, 1660–1671. [Google Scholar] [CrossRef] [Green Version]
- Sim, S.; Weinberg, D.E.; Fuchs, G.; Choi, K.; Chung, J.; Wolin, S.L. The subcellular distribution of an RNA quality control protein, the Ro autoantigen, is regulated by noncoding Y RNA binding. Mol. Biol. Cell 2009, 20, 1555–1564. [Google Scholar] [CrossRef] [Green Version]
- Simons, F.H.; Rutjes, S.A.; van Venrooij, W.J.; Pruijn, G.J. The interactions with Ro60 and La differentially affect nuclear export of hY1 RNA. RNA 1996, 2, 264–273. [Google Scholar]
- Rutjes, S.A.; Lund, E.; van der Heijden, A.; Grimm, C.; van Venrooij, W.J.; Pruijn, G.J. Identification of a novel cis-acting RNA element involved in nuclear export of hY RNAs. RNA 2001, 7, 741–752. [Google Scholar] [CrossRef]
- Köhn, M.; Lederer, M.; Wächter, K.; Hüttelmaier, S. Near-infrared (NIR) dye-labeled RNAs identify binding of ZBP1 to the noncoding Y3-RNA. RNA 2010, 16, 1420–1428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stein, A.J.; Fuchs, G.; Fu, C.; Wolin, S.L.; Reinisch, K.M. Structural insights into RNA quality control: The Ro autoantigen binds misfolded RNAs via its central cavity. Cell 2005, 121, 529–539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Täuber, H.; Hüttelmaier, S.; Köhn, M. POLIII-derived non-coding RNAs acting as scaffolds and decoys. J. Mol. Cell Biol. 2019, 11, 880–885. [Google Scholar] [CrossRef] [PubMed]
- Sim, S.; Wolin, S.L. Emerging roles for the Ro 60-kDa autoantigen in noncoding RNA metabolism. Wiley Interdiscip. Rev. RNA 2011, 2, 686–699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belisova, A.; Semrad, K.; Mayer, O.; Kocian, G.; Waigmann, E.; Schroeder, R.; Steiner, G. RNA chaperone activity of protein components of human Ro RNPs. RNA 2005, 11, 1084–1094. [Google Scholar] [CrossRef] [Green Version]
- Wolin, S.L.; Belair, C.; Boccitto, M.; Chen, X.; Sim, S.; Taylor, D.W.; Wang, H.W. Non-coding Y RNAs as tethers and gates: Insights from bacteria. RNA Biol. 2013, 10, 1602–1608. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Smith, J.D.; Shi, H.; Yang, D.D.; Flavell, R.A.; Wolin, S.L. The Ro Autoantigen Binds Misfolded U2 Small Nuclear RNAs and Assists Mammalian Cell Survival after UV Irradiation. Curr. Biol. 2003, 13, 2206–2211. [Google Scholar] [CrossRef]
- O’Brien, C.A.; Wolin, S.L. A possible role for the 60-kD Ro autoantigen in a discard pathway for defective 5S rRNA precursors. Genes Dev. 1994, 8, 2891–2903. [Google Scholar] [CrossRef] [Green Version]
- Fuchs, G.; Stein, A.J.; Fu, C.; Reinisch, K.M.; Wolin, S.L. Structural and biochemical basis for misfolded RNA recognition by the Ro autoantigen. Nat. Struct. Mol. Biol. 2006, 13, 1002–1009. [Google Scholar] [CrossRef]
- Chen, X.; Wolin, S.L. The Ro 60 kDa autoantigen: Insights into cellular function and role in autoimmunity. J. Mol. Med. 2004, 82, 232–239. [Google Scholar] [CrossRef]
- Christov, C.P.; Gardiner, T.J.; Szuts, D.; Krude, T. Functional Requirement of Noncoding Y RNAs for Human Chromosomal DNA Replication. Mol. Cell. Biol. 2006, 26, 6993–7004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christov, C.P.; Trivier, E.; Krude, T. Noncoding human Y RNAs are overexpressed in tumours and required for cell proliferation. Br. J. Cancer 2008, 98, 981–988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collart, C.; Christov, C.P.; Smith, J.C.; Krude, T. The midblastula transition defines the onset of Y RNA-dependent DNA replication in Xenopus laevis. Mol. Cell. Biol. 2011, 31, 3857–3870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krude, T.; Christov, C.P.; Hyrien, O.; Marheineke, K. Y RNA functions at the initiation step of mammalian chromosomal DNA replication. J. Cell Sci. 2009, 122, 2836–2845. [Google Scholar] [CrossRef] [Green Version]
- Kowalski, M.P.; Baylis, H.A.; Krude, T. Non-coding stem-bulge RNAs are required for cell proliferation and embryonic development in C. elegans. J. Cell Sci. 2015, 128, 2118–2129. [Google Scholar] [CrossRef] [Green Version]
- Langley, A.R.; Chambers, H.; Christov, C.P.; Krude, T. Ribonucleoprotein particles containing non-coding Y RNAs, Ro60, la and nucleolin are not required for Y RNA function in DNA replication. PLoS ONE 2010, 5. [Google Scholar] [CrossRef] [Green Version]
- Wang, I.; Kowalski, M.P.; Langley, A.R.; Rodriguez, R.; Balasubramanian, S.; Hsu, S.T.D.; Krude, T. Nucleotide Contributions to the Structural Integrity and DNA Replication Initiation Activity of Noncoding y RNA. Biochemistry 2014, 53, 5848–5863. [Google Scholar] [CrossRef]
- Zhang, A.T.; Langley, A.R.; Christov, C.P.; Kheir, E.; Shafee, T.; Gardiner, T.J.; Krude, T. Dynamic interaction of Y RNAs with chromatin and initiation proteins during human DNA replication. J. Cell Sci. 2011, 124, 2058–2069. [Google Scholar] [CrossRef] [Green Version]
- Nicolas, F.E.; Hall, A.E.; Csorba, T.; Turnbull, C.; Dalmay, T. Biogenesis of y RNA-derived small RNAs is independent of the microRNA pathway. FEBS Lett. 2012, 586, 1226–1230. [Google Scholar] [CrossRef]
- Langenberger, D.; Çakir, M.V.; Hoffmann, S.; Stadler, P.F. Dicer-Processed Small RNAs: Rules and Exceptions. J. Exp. Zool. Part B Mol. Dev. Evol. 2013, 320, 35–46. [Google Scholar] [CrossRef]
- Rutjes, S.A.; Van Der Heijden, A.; Utz, P.J.; Van Venrooij, W.J.; Pruijn, G.J.M. Rapid nucleolytic degradation of the small cytoplasmic Y RNAs during apoptosis. J. Biol. Chem. 1999, 274, 24799–24807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meiri, E.; Levy, A.; Benjamin, H.; Ben-David, M.; Cohen, L.; Dov, A.; Dromi, N.; Elyakim, E.; Yerushalmi, N.; Zion, O.; et al. Discovery of microRNAs and other small RNAs in solid tumors. Nucleic Acids Res. 2010, 38, 6234–6246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhahbi, J.M.; Spindler, S.R.; Atamna, H.; Boffelli, D.; Mote, P.; Martin, D.I.K. 5-YRNA fragments derived by processing of transcripts from specific YRNA genes and pseudogenes are abundant in human serum and plasma. Physiol. Genom. 2013, 45, 990–998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeri, A.; Courtright, A.; Reiman, R.; Carlson, E.; Beecroft, T.; Janss, A.; Siniard, A.; Richholt, R.; Balak, C.; Rozowsky, J.; et al. Total extracellular small RNA profiles from plasma, saliva, and urine of healthy subjects. Sci. Rep. 2017, 7, 44061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Umu, S.U.; Langseth, H.; Bucher-Johannessen, C.; Fromm, B.; Keller, A.; Meese, E.; Lauritzen, M.; Leithaug, M.; Lyle, R.; Rounge, T.B. A comprehensive profile of circulating RNAs in human serum. RNA Biol. 2018, 15, 242–250. [Google Scholar] [CrossRef] [Green Version]
- Godoy, P.M.; Bhakta, N.R.; Barczak, A.J.; Cakmak, H.; Fisher, S.; MacKenzie, T.C.; Patel, T.; Price, R.W.; Smith, J.F.; Woodruff, P.G.; et al. Large Differences in Small RNA Composition Between Human Biofluids. Cell Rep. 2018, 25, 1346–1358. [Google Scholar] [CrossRef] [Green Version]
- Vojtech, L.; Woo, S.; Hughes, S.; Levy, C.; Ballweber, L.; Sauteraud, R.P.; Strobl, J.; Westerberg, K.; Gottardo, R.; Tewari, M.; et al. Exosomes in human semen carry a distinctive repertoire of small non-coding RNAs with potential regulatory functions. Nucleic Acids Res. 2014, 42, 7290–7304. [Google Scholar] [CrossRef] [Green Version]
- Van Balkom, B.W.M.; Eisele, A.S.; Michiel Pegtel, D.; Bervoets, S.; Verhaar, M.C. Quantitative and qualitative analysis of small RNAs in human endothelial cells and exosomes provides insights into localized RNA processing, degradation and sorting. J. Extracell. Vesicles 2015, 4, 1–14. [Google Scholar] [CrossRef]
- Tolkach, Y.; Stahl, A.F.; Niehoff, E.M.; Zhao, C.; Kristiansen, G.; Müller, S.C.; Ellinger, J. YRNA expression predicts survival in bladder cancer patients. BMC Cancer 2017, 17, 749. [Google Scholar] [CrossRef] [Green Version]
- Chakrabortty, S.K.; Prakash, A.; Nechooshtan, G.; Hearn, S.; Gingeras, T.R. Extracellular vesicle-mediated transfer of processed and functional RNY5 RNA. RNA 2015, 21, 1966–1979. [Google Scholar] [CrossRef] [Green Version]
- Haderk, F.; Schulz, R.; Iskar, M.; Cid, L.L.; Worst, T.; Willmund, K.V.; Schulz, A.; Warnken, U.; Seiler, J.; Benner, A.; et al. Tumor-derived exosomes modulate PD-L1 expression in monocytes. Sci. Immunol. 2017, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, Z.; Batagov, A.O.; Schinelli, S.; Wang, J.; Wang, Y.; El Fatimy, R.; Rabinovsky, R.; Balaj, L.; Chen, C.C.; Hochberg, F.; et al. Coding and noncoding landscape of extracellular RNA released by human glioma stem cells. Nat. Commun. 2017, 8, 1145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhahbi, J.M.; Spindler, S.R.; Atamna, H.; Boffelli, D.; Martin, D.I. Deep Sequencing of Serum Small RNAs Identifies Patterns of 5′ tRNA Half and YRNA Fragment Expression Associated with Breast Cancer. Biomark. Cancer 2014, 6, 37–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tosar, J.P.; Gámbaro, F.; Sanguinetti, J.; Bonilla, B.; Witwer, K.W.; Cayota, A. Assessment of small RNA sorting into different extracellular fractions revealed by high-throughput sequencing of breast cell lines. Nucleic Acids Res. 2015, 43, 5601–5616. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Yu, H.; Wang, J.; Sheng, Q.; Zhao, S.; Zhao, Y.Y.; Lehmann, B.D. The landscape of small non-coding RNAs in triple-negative breast cancer. Genes 2018, 9, 29. [Google Scholar] [CrossRef] [Green Version]
- Mjelle, R.; Sellæg, K.; Sætrom, P.; Thommesen, L.; Sjursen, W.; Hofsli, E. Identification of metastasis-associated microRNAs in serum from rectal cancer patients. Oncotarget 2017, 8, 90077–90089. [Google Scholar] [CrossRef]
- Martinez, B.V.; Dhahbi, J.M.; Nunez Lopez, Y.O.; Lamperska, K.; Golusinski, P.; Luczewski, L.; Kolenda, T.; Atamna, H.; Spindler, S.R.; Golusinski, W.; et al. Circulating small non coding RNA signature in head and neck squamous cell carcinoma. Oncotarget 2015, 6, 19246–19263. [Google Scholar] [CrossRef]
- Dhahbi, J.; Nunez Lopez, Y.O.; Schneider, A.; Victoria, B.; Saccon, T.; Bharat, K.; McClatchey, T.; Atamna, H.; Scierski, W.; Golusinski, P.; et al. Profiling of tRNA Halves and YRNA Fragments in Serum and Tissue From Oral Squamous Cell Carcinoma Patients Identify Key Role of 5′ tRNA-Val-CAC-2-1 Half. Front. Oncol. 2019, 9, 959. [Google Scholar] [CrossRef]
- Nientiedt, M.; Schmidt, D.; Kristiansen, G.; Müller, S.C.; Ellinger, J. YRNA Expression Profiles are Altered in Clear Cell Renal Cell Carcinoma. Eur. Urol. Focus 2018, 4, 260–266. [Google Scholar] [CrossRef]
- Lovisa, F.; Di Battista, P.; Gaffo, E.; Damanti, C.C.; Garbin, A.; Gallingani, I.; Carraro, E.; Pillon, M.; Biffi, A.; Bortoluzzi, S.; et al. RNY4 in Circulating Exosomes of Patients With Pediatric Anaplastic Large Cell Lymphoma: An Active Player? Front. Oncol. 2020, 10, 238. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Qin, F.; Hu, F.; Xu, H.; Sun, G.; Han, G.; Wang, T.; Guo, M. Characterization and selective incorporation of small non-coding RNAs in non-small cell lung cancer extracellular vesicles. Cell Biosci. 2018, 8, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tolkach, Y.; Niehoff, E.M.; Stahl, A.F.; Zhao, C.; Kristiansen, G.; Müller, S.C.; Ellinger, J. YRNA expression in prostate cancer patients: Diagnostic and prognostic implications. World J. Urol. 2018, 36, 1073–1078. [Google Scholar] [CrossRef] [PubMed]
- Lunavat, T.R.; Cheng, L.; Kim, D.K.; Bhadury, J.; Jang, S.C.; Lässer, C.; Sharples, R.A.; López, M.D.; Nilsson, J.; Gho, Y.S.; et al. Small RNA deep sequencing discriminates subsets of extracellular vesicles released by melanoma cells–Evidence of unique microRNA cargos. RNA Biol. 2015, 12, 810–823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solé, C.; Tramonti, D.; Schramm, M.; Goicoechea, I.; Armesto, M.; Hernandez, L.I.; Manterola, L.; Fernandez-Mercado, M.; Mujika, K.; Tuneu, A.; et al. The circulating transcriptome as a source of biomarkers for melanoma. Cancers 2019, 11, 70. [Google Scholar] [CrossRef] [Green Version]
- Ikoma, M.; Gantt, S.; Casper, C.; Ogata, Y.; Zhang, Q.; Basom, R.; Dyen, M.R.; Rose, T.M.; Barcy, S. Kshv oral shedding and plasma viremia result in significant changes in the extracellular tumorigenic miRNA expression profile in individuals infected with the malaria parasite. PLoS ONE 2018, 13, e0192659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babatunde, K.A.; Mbagwu, S.; Hernández-Castañeda, M.A.; Adapa, S.R.; Walch, M.; Filgueira, L.; Falquet, L.; Jiang, R.H.Y.; Ghiran, I.; Mantel, P.Y. Malaria infected red blood cells release small regulatory RNAs through extracellular vesicles. Sci. Rep. 2018, 8, 884. [Google Scholar] [CrossRef] [Green Version]
- Gendron, M.; Roberge, D.; Boire, G. Heterogeneity of human Ro ribonucleoproteins (RNPS): Nuclear retention of Ro RNPS containing the human hY5 RNA in human and mouse cells. Clin. Exp. Immunol. 2001, 125, 162–168. [Google Scholar] [CrossRef]
- Gulìa, C.; Baldassarra, S.; Signore, F.; Rigon, G.; Pizzuti, V.; Gaffi, M.; Briganti, V.; Porrello, A.; Piergentili, R. Role of non-coding RNAs in the etiology of bladder cancer. Genes 2017, 8, E339. [Google Scholar] [CrossRef] [Green Version]
- Spinelli, C.; Adnani, L.; Choi, D.; Rak, J. Extracellular Vesicles as Conduits of Non-Coding RNA Emission and Intercellular Transfer in Brain Tumors. Non-Coding RNA 2018, 5, 1. [Google Scholar] [CrossRef] [Green Version]
- Bernatsky, S.; Ramsey-Goldman, R.; Labrecque, J.; Joseph, L.; Boivin, J.-F.; Petri, M.; Zoma, A.; Manzi, S.; Urowitz, M.B.; Gladman, D.; et al. Cancer risk in systemic lupus: An updated international multi-centre cohort study. J. Autoimmun. 2013, 42, 130–135. [Google Scholar] [CrossRef] [Green Version]
- Turner, S.D.; Lamant, L.; Kenner, L.; Brugières, L. Anaplastic large cell lymphoma in paediatric and young adult patients. Br. J. Haematol. 2016, 173, 560–572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wakelee, H.; Kelly, K.; Edelman, M.J. 50 Years of Progress in the Systemic Therapy of Non–Small Cell Lung Cancer. Am. Soc. Clin. Oncol. Educ. B. 2014, 177–189. [Google Scholar] [CrossRef] [PubMed]
- Routsias, J.G.; Goules, J.D.; Charalampakis, G.; Tzima, S.; Papageorgiou, A.; Voulgarelis, M. Malignant lymphoma in primary Sjögren’s syndrome: An update on the pathogenesis and treatment. Semin. Arthritis Rheum. 2013, 43, 178–186. [Google Scholar] [CrossRef] [PubMed]
- Ehrenfeld, M.; Abu-Shakra, M.; Buskila, D.; Shoenfeld, Y. The dual association between lymphoma and autoimmunity. Blood Cells Mol. Dis. 2001, 27, 750–756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voulgarelis, M.; Moutsopoulos, H.M. Malignant lymphoma in primary Sjogren’s syndrome. Isr. Med. Assoc. J. 2001, 3, 761–766. [Google Scholar]
- Böckle, B.C.; Stanarevic, G.; Ratzinger, G.; Sepp, N.T. Analysis of 303 Ro/SS-A antibody-positive patients: Is this antibody a possible marker for malignancy? Br. J. Dermatol. 2012, 167, 1067–1075. [Google Scholar] [CrossRef]
- Liu, D.; Qian, W.; Li, D.; Kong, L. Ro60/SSA levels are increased and promote the progression of pancreatic ductal adenocarcinoma. Biochem. Biophys. Res. Commun. 2018, 495, 2519–2524. [Google Scholar] [CrossRef]
Protein (HGNC) | Synonym(s) | Interacting Y RNA | Y RNA Domain Involved | Protein Function | Refs |
---|---|---|---|---|---|
AGO1 | EIF2C1, AGO | unknown | unknown | gene silencing through RNAi | [25] |
APOBEC3F | ARP8 | (1), (3), (4), (5) | unknown | antiviral activity | [26,27] |
APOBEC3G | CEM15 | 1, 3, 4, 5 | unknown | antiviral activity | [26,27] |
CALR | CR, CRT | 1, 3, 4, 5 | unknown | formation of the RO60 RNP complex, calcium-binding chaperone | [28] |
CPSF1 | CPSF160 | 1, 3 | loop | mRNA poly-adenylation | [29] |
CPSF2 | CPSF100 | 1, 3 | loop | mRNA poly-adenylation | [29] |
CPSF4 | NEB1 | 1, 3 | loop | histone pre-mRNA processing | [29] |
DIS3 | EXOSC11 | (1), (3) | polyU tail | Y RNA stabilization | [20] |
DIS3L | DIS3L1 | 1, 3 | polyU tail | Y RNA degradation and turnover | [20] |
EXOSC10 | PMSCL2 | 1, 3, 4, 5 | polyU tail | Y RNA trimming, stabilization | [20] |
ELAVL1 | HuR | 3 | unknown | mRNA stabilization | [29] |
ELAVL4 | HuD | 3 | loop | mRNA stabilization, mRNA translation | [30] |
FIP1L1 | FIP1-like 1 | 1, 3 | loop | mRNA poly-adenylation | [29] |
HNRNPK | HNRPK | 1, 3 | loop | pre-mRNA binding | [31] |
IFIT5 | RI58 | 5 | unknown | innate immunity | [32] |
MATR3 | VCPDM | 1, 3 | upper and lower stem | nuclear matrix, transcription, RNA-editing | [29,33] |
MOV10 | gb110, KIAA1631 | unknown | unknown | microRNA-guided mRNA cleavage | [34] |
NCL | nucleolin, C23 | 1, 3 | loop | association with intranucleolar chromatin | [35] |
PARN | DAN | 1, 3, 4, 5 | polyU tail | Y RNA trimming, stabilization | [20] |
PTBP1 | hnRNP I, PTB | 1, 3 | loop | pre-mRNA splicing | [31] |
PUF60 | RoBPI, FIR | (1), (3), 5 | (loop) | pre-mRNA splicing, apoptosis, transcription regulation | [32,36] |
RNASEL | PRCA1, RNS4 | 1, (3), 4, 5 | loop | cell cycle arrest and apoptosis | [37] |
RO60 | TROVE2, SSA | 1, 3, 4, 5 | lower stem | stabilization, nuclear export, RNA quality control | [38,39,40] |
RPL5 | L5 | 5 | loop | 5S rRNA quality control | [32] |
SSB | La, LARP3 | 1, 3, 4, 5 | polyU tail | nuclear localization, protection of 3′ ends of pol-III transcripts | [39] |
SYMPK | SYM, SPK | 1, 3, (4), (5) | loop | mRNA poly-adenylation, histone pre-mRNA processing | [29] |
TENT4B | PAPD5 | 1, 3, 4, 5 | polyU tail | Y RNA oligoadenylation, degradation | [20] |
TOE1 | PCH7 | 1, (3) | polyU tail | Y RNA degradation and turnover | [20] |
YBX1 | NSEP1 | 1, 3, 4, (5) | unknown | mRNA transcription, splicing, translation, stability | [29,34] |
YBX3 | DBPA | unknown | unknown | cold-shock domain protein; DNA-binding domain protein | [34] |
ZBP1 | C20ORF183, IGF2BP1 | (1), 3 | loop | nuclear export of RO60 and Y3 | [34,41] |
Cancer | hY1 | hY3 | hY4 | hY5 | Refs | Sample Type | Sample Number | Control Number | Method | Ref Gene | Notes |
---|---|---|---|---|---|---|---|---|---|---|---|
bladder | ↑ | ↑ | ↔ | (↑) | [52] | cell cultures | 4 | 4 | qRT-PCR | Ki-67, HPRT1 | |
↑ | ↑ | N/A | N/A | [62] | FFPE | 5 | 1 | (a) | hsa-miR-200b | ||
↓ | ↓ | ↓ | ↓ | [69] | FFPE | 88 | 30 | qRT-PCR | SNORD43, RNU6-2 | ||
blood | N/A | N/A | N/A | ↑ | [70] | K562 cells EV | N/A | N/A | RNA-seq | N/A | 1 |
(↑) | N/A | ↑ | N/A | [71] | plasma EV | N/A | N/A | RNA-seq | N/A | 1 | |
brain | ↑ | ↔ | ↑ | ↑ | [72] | cell culture EV, free RNP | N/A | N/A | RNA-seq | N/A | |
breast | ↑ | ↑ | N/A | N/A | [62] | FFPE | 5 | N/A | (a) | hsa-miR-200b | |
see text | see text | see text | see text | [73] | serum | 5 | 5 | RNA-seq | N/A | 2 | |
N/A | N/A | ↑ | N/A | [74] | cell culture EV, free RNP | N/A | N/A | RNA-seq | N/A | ||
↑ | N/A | ↑ | ↑ | [75] | cell lines | 26 | N/A | RNA-seq | N/A | ||
cervix | ↑ | ↑ | ↑ | ↑ | [52] | cell cultures | 4 | 4 | qRT-PCR | Ki-67, HPRT1 | |
N/A | N/A | N/A | ↑ | [59] | HeLa cells | N/A | N/A | northern blotting | N/A | ||
↑ | (↑) | N/A | N/A | [62] | FFPE | N/A | N/A | (a) | hsa-miR-200b | ||
colon | ↑ | ↑ | ↑ | ↑ | [52] | cell cultures | 8 | 4 | qRT-PCR | Ki-67, HPRT1 | |
N/A | N/A | N/A | ↑ | [59] | HeLa cells | N/A | N/A | northern blotting | N/A | ||
↑ | ↔ | N/A | N/A | [62] | FFPE | N/A | 7 | (a) | hsa-miR-200b | ||
N/A | N/A | ↑ | N/A | [76] | PE | 96 | N/A | HTS | miR-128a-3p, miR-92a-3p, miR-151a-3p | ||
esophagus | (↑) | ↔ | N/A | N/A | [62] | FFPE | N/A | N/A | (a) | hsa-miR-200b | |
head/neck | see text | see text | see text | see text | [77] | serum | N/A | N/A | RNA-seq | N/A | 2 |
see text | see text | see text | see text | [78] | serum, tumor tissue | 5+2 | 5+2 | qRT-PCR | β2-microglobulin | 2 | |
kidney | ↑ | ↑ | ↑ | ↑ | [52] | cell cultures | 15 | 4 | qRT-PCR | Ki-67, HPRT1 | 3 |
↔ | ↔ | N/A | N/A | [62] | FFPE | N/A | N/A | (a) | hsa-miR-200b | ||
↔ | ↑ | ↑ | ↔ | [79] | tissue, serum | 30+88 | 15+59 | qRT-PCR | SNORD43 | ||
liver | ↑ | ↔ | N/A | N/A | [62] | FFPE | N/A | 3 | (a) | hsa-miR-200b | |
lymphatic system | N/A | N/A | ↑ | N/A | [80] | fresh, cell lines | 20+5+44 | 5+19 | RNA-seq | N/A | |
lung | ↑ | ↑ | ↔ | ↑ | [52] | cell cultures | 6 | 4 | qRT-PCR | Ki-67, HPRT1 | 1 |
↑ | ↑ | N/A | N/A | [62] | FFPE | 6 | 4 | (a) | hsa-miR-200b | 1 | |
N/A | N/A | ↑ | N/A | [81] | plasma EV, cell cultures | 44+31 | 17 | RNA-seq, qRT-PCR | U6 snRNA | ||
ovary | ↑ | ↔ | N/A | N/A | [62] | FFPE | N/A | N/A | (a) | hsa-miR-200b | |
pancreas | ↑ | ↑ | N/A | N/A | [62] | FFPE | N/A | N/A | (a) | hsa-miR-200b | |
prostate | ↑ | ↑ | ↔ | (↑) | [52] | cell cultures | 5 | 4 | qRT-PCR | Ki-67, HPRT1 | |
↔ | ↑ | N/A | N/A | [62] | FFPE | N/A | N/A | (a) | hsa-miR-200b | ||
↓ | ↓ | ↓ | ↓ | [82] | FFPE | 56 | 36+28 | qRT-PCR | SNORD43, RNU6-2 | ||
skin | ↑ | (↑) | ↑ | ↑ | [83] | MML-1 cells | N/A | N/A | RNA-seq | N/A | 1 |
↑ | ↑ | ↑ | N/A | [84] | plasma EV | 118 | 99 | RNA-seq, ddPCR | N/A | 1 | |
KS | ↑ | (↑) | ↑ | ↑ | [85] | plasma EV | 8+28 | 19 | RNA-seq | N/A | 1 |
↑ | N/A | ↑ | N/A | [86] | plasma EV | N/A | N/A | RNA-Seq | N/A | 1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gulìa, C.; Signore, F.; Gaffi, M.; Gigli, S.; Votino, R.; Nucciotti, R.; Bertacca, L.; Zaami, S.; Baffa, A.; Santini, E.; et al. Y RNA: An Overview of Their Role as Potential Biomarkers and Molecular Targets in Human Cancers. Cancers 2020, 12, 1238. https://doi.org/10.3390/cancers12051238
Gulìa C, Signore F, Gaffi M, Gigli S, Votino R, Nucciotti R, Bertacca L, Zaami S, Baffa A, Santini E, et al. Y RNA: An Overview of Their Role as Potential Biomarkers and Molecular Targets in Human Cancers. Cancers. 2020; 12(5):1238. https://doi.org/10.3390/cancers12051238
Chicago/Turabian StyleGulìa, Caterina, Fabrizio Signore, Marco Gaffi, Silvia Gigli, Raffaella Votino, Roberto Nucciotti, Luca Bertacca, Simona Zaami, Alberto Baffa, Edoardo Santini, and et al. 2020. "Y RNA: An Overview of Their Role as Potential Biomarkers and Molecular Targets in Human Cancers" Cancers 12, no. 5: 1238. https://doi.org/10.3390/cancers12051238
APA StyleGulìa, C., Signore, F., Gaffi, M., Gigli, S., Votino, R., Nucciotti, R., Bertacca, L., Zaami, S., Baffa, A., Santini, E., Porrello, A., & Piergentili, R. (2020). Y RNA: An Overview of Their Role as Potential Biomarkers and Molecular Targets in Human Cancers. Cancers, 12(5), 1238. https://doi.org/10.3390/cancers12051238