PIOS (Patras Immunotherapy Score) Score Is Associated with Best Overall Response, Progression-Free Survival, and Post-Immunotherapy Overall Survival in Patients with Advanced Non-Small-Cell Lung Cancer (NSCLC) Treated with Anti-Program Cell Death-1 (PD-1) Inhibitors
Abstract
:1. Introduction
2. Results
2.1. Patients’ Characteristics
2.2. PIOS Score Was Associated with Best Response to Anti-PD-1 Treatment
2.3. PIOS Was Associated with PFS and Clinical Outcome
2.4. PIOS Was Associated with Clinical Outcome
2.5. PIOS Was Associated with TtBR, TiBR, and TTBR
3. Discussion
4. Patients and Methods
4.1. Study Design, Population, and Data Collection
4.2. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Vansteenkiste, J.; Wauters, E.; Reymen, B.; Ackermann, C.J.; Peters, S.; De Ruysscher, D. Current status of immune checkpoint inhibition in early-stage nsclc. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2019, 30, 1244–1253. [Google Scholar] [CrossRef]
- Chiang, A.C.; Herbst, R.S. Frontline immunotherapy for nsclc—The tale of the tail. Nat. Rev. Clin. Oncol. 2020, 17, 73–74. [Google Scholar] [CrossRef] [PubMed]
- Berghmans, T.; Durieux, V.; Hendriks, L.E.L.; Dingemans, A.-M. Immunotherapy: From advanced nsclc to early stages, an evolving concept. Front. Med. 2020, 7, 90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doroshow, D.B.; Sanmamed, M.F.; Hastings, K.; Politi, K.; Rimm, D.L.; Chen, L.; Melero, I.; Schalper, K.A.; Herbst, R.S. Immunotherapy in non-small cell lung cancer: Facts and hopes. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2019, 25, 4592–4602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brahmer, J.; Reckamp, K.L.; Baas, P.; Crino, L.; Eberhardt, W.E.; Poddubskaya, E.; Antonia, S.; Pluzanski, A.; Vokes, E.E.; Holgado, E.; et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N. Engl. J. Med. 2015, 373, 123–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borghaei, H.; Paz-Ares, L.; Horn, L.; Spigel, D.R.; Steins, M.; Ready, N.E.; Chow, L.Q.; Vokes, E.E.; Felip, E.; Holgado, E.; et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N. Engl. J. Med. 2015, 373, 1627–1639. [Google Scholar] [CrossRef]
- Rebuzzi, S.E.; Leonetti, A.; Tiseo, M.; Facchinetti, F. Advances in the prediction of long-term effectiveness of immune checkpoint blockers for non-small-cell lung cancer. Immunotherapy 2019, 11, 993–1003. [Google Scholar] [CrossRef] [Green Version]
- Kaderbhai, C.; Tharin, Z.; Ghiringhelli, F. The role of molecular profiling to predict the response to immune checkpoint inhibitors in lung cancer. Cancers 2019, 11, 201. [Google Scholar] [CrossRef] [Green Version]
- Rizvi, N.A.; Hellmann, M.D.; Snyder, A.; Kvistborg, P.; Makarov, V.; Havel, J.J.; Lee, W.; Yuan, J.; Wong, P.; Ho, T.S.; et al. Cancer immunology. Mutational landscape determines sensitivity to pd-1 blockade in non-small cell lung cancer. Science 2015, 348, 124–128. [Google Scholar] [CrossRef] [Green Version]
- Bodor, J.N.; Boumber, Y.; Borghaei, H. Biomarkers for immune checkpoint inhibition in non-small cell lung cancer (nsclc). Cancer 2020, 126, 260–270. [Google Scholar] [CrossRef]
- Duffy, M.J.; Crown, J. Biomarkers for predicting response to immunotherapy with immune checkpoint inhibitors in cancer patients. Clin. Chem. 2019, 65, 1228–1238. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Su, Y. Immunotherapy in non-small cell lung cancer: The past, the present, and the future. Thorac. Cancer 2019, 10, 585–586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prelaj, A.; Ferrara, R.; Rebuzzi, S.E.; Proto, C.; Signorelli, D.; Galli, G.; De Toma, A.; Randon, G.; Pagani, F.; Viscardi, G.; et al. Epsilon: A prognostic score for immunotherapy in advanced non-small-cell lung cancer: A validation cohort. Cancers 2019, 11, 1954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, T.; Lycan, T.; Gandhi, P.; Miller, J.; Levine, B.; Farris, M.; Ruiz, J.; Petty, W.J. P2.04-93 performance status and age as predictors of immunotherapy outcomes in advanced non-small cell lung cancer. J. Thorac. Oncol. 2019, 14, S746–S747. [Google Scholar] [CrossRef]
- Cortellini, A.; Bersanelli, M.; Buti, S.; Cannita, K.; Santini, D.; Perrone, F.; Giusti, R.; Tiseo, M.; Michiara, M.; Di Marino, P.; et al. A multicenter study of body mass index in cancer patients treated with anti-pd-1/pd-l1 immune checkpoint inhibitors: When overweight becomes favorable. J. Immunother. Cancer 2019, 7, 57. [Google Scholar] [CrossRef]
- Kugel, C.H., III; Douglass, S.M.; Webster, M.R.; Kaur, A.; Liu, Q.; Yin, X.; Weiss, S.A.; Darvishian, F.; Al-Rohil, R.N.; Ndoye, A.; et al. Age correlates with response to anti-pd1, reflecting age-related differences in intratumoral effector and regulatory t-cell populations. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2018, 24, 5347–5356. [Google Scholar] [CrossRef] [Green Version]
- Betof, A.S.; Nipp, R.D.; Giobbie-Hurder, A.; Johnpulle, R.A.N.; Rubin, K.; Rubinstein, S.M.; Flaherty, K.T.; Lawrence, D.P.; Johnson, D.B.; Sullivan, R.J. Impact of age on outcomes with immunotherapy for patients with melanoma. Oncologist 2017, 22, 963–971. [Google Scholar] [CrossRef] [Green Version]
- Marur, S.; Singh, H.; Mishra-Kalyani, P.; Larkins, E.; Keegan, P.; Sridhara, R.; Blumenthal, G.M.; Pazdur, R. Fda analyses of survival in older adults with metastatic non-small cell lung cancer in controlled trials of pd-1/pd-l1 blocking antibodies. Semin. Oncol. 2018, 45, 220–225. [Google Scholar] [CrossRef]
- Botticelli, A.; Salati, M.; Di Pietro, F.R.; Strigari, L.; Cerbelli, B.; Zizzari, I.G.; Giusti, R.; Mazzotta, M.; Mazzuca, F.; Roberto, M.; et al. A nomogram to predict survival in non-small cell lung cancer patients treated with nivolumab. J. Transl. Med. 2019, 17, 99. [Google Scholar] [CrossRef] [Green Version]
- Mezquita, L.; Auclin, E.; Ferrara, R.; Charrier, M.; Remon, J.; Planchard, D.; Ponce, S.; Ares, L.P.; Leroy, L.; Audigier-Valette, C.; et al. Association of the lung immune prognostic index with immune checkpoint inhibitor outcomes in patients with advanced non-small cell lung cancer. JAMA Oncol. 2018, 4, 351–357. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, C.H.; Lee, H.Y.; Lee, S.H.; Kim, H.S.; Lee, S.; Cha, H.; Hong, S.; Kim, K.; Seo, S.W.; et al. Comprehensive clinical and genetic characterization of hyperprogression based on volumetry in advanced non-small cell lung cancer treated with immune checkpoint inhibitor. J. Thorac. Oncol. Off. Publ. Int. Assoc. Study Lung Cancer 2019, 14, 1608–1618. [Google Scholar] [CrossRef] [PubMed]
- Cao, D.; Xu, H.; Xu, X.; Guo, T.; Ge, W. A reliable and feasible way to predict the benefits of nivolumab in patients with non-small cell lung cancer: A pooled analysis of 14 retrospective studies. Oncoimmunology 2018, 7, e1507262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shiroyama, T.; Suzuki, H.; Tamiya, M.; Tamiya, A.; Tanaka, A.; Okamoto, N.; Nakahama, K.; Taniguchi, Y.; Isa, S.I.; Inoue, T.; et al. Pretreatment advanced lung cancer inflammation index (ali) for predicting early progression in nivolumab-treated patients with advanced non-small cell lung cancer. Cancer Med. 2018, 7, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Putzu, C.; Cortinovis, D.L.; Colonese, F.; Canova, S.; Carru, C.; Zinellu, A.; Paliogiannis, P. Blood cell count indexes as predictors of outcomes in advanced non-small-cell lung cancer patients treated with nivolumab. Cancer Immunol. Immunother. CII 2018, 67, 1349–1353. [Google Scholar] [CrossRef]
- Liu, J.; Li, S.; Zhang, S.; Liu, Y.; Ma, L.; Zhu, J.; Xin, Y.; Wang, Y.; Yang, C.; Cheng, Y. Systemic immune-inflammation index, neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio can predict clinical outcomes in patients with metastatic non-small-cell lung cancer treated with nivolumab. J. Clin. Lab. Anal. 2019, 33, e22964. [Google Scholar] [CrossRef]
- Park, W.; Mezquita, L.; Okabe, N.; Chae, Y.K.; Kwon, D.; Saravia, D.; Auclin, E.; Planchard, D.; Caramella, C.; Ferrara, R.; et al. Association of the prognostic model isend with pd-1/l1 monotherapy outcome in non-small-cell lung cancer. Br. J. Cancer 2020, 122, 340–347. [Google Scholar] [CrossRef]
- World Medical, A. World medical association declaration of helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar]
- Prasad, K.T.; Kaur, H.; Muthu, V.; Aggarwal, A.N.; Behera, D.; Singh, N. Interconversion of two commonly used performance tools: An analysis of 5844 paired assessments in 1501 lung cancer patients. World J. Clin. Oncol. 2018, 9, 140–147. [Google Scholar] [CrossRef]
Patient Characteristics | Number (%) |
---|---|
Total | 112 |
Age (years) median (range) | 67 (39–84) |
BMI mean (range) | 26.08 (17.4–44.6) |
Gender | |
Male | 86 (76.8) |
Female | 26 (23.2) |
Smoking status | |
Current | 76 (67.9) |
Former | 21 (18.8) |
Never | 8 (7.1) |
NA | 7 (6.3) |
Pack-years mean (range) | 72.4 (0–200) |
Histology | |
Total | 112 |
Squamous | 45 (40.2) |
Non-squamous | 53 (47.3) |
NSCLC | 14 (12.5) |
Stage | |
IIIA | 2 (1.8) |
IIIB | 31 (27.7) |
IIIC | 5 (4.5) |
IV | 74 (66.1) |
Primary location | |
Left lung | 51 (45.5) |
Right lung | 57 (50.9) |
NA | 4 (3.6) |
Lymph node infiltration | |
No | 20 (17.9) |
Yes | 88 (78.6) |
NA | 4 (3.6) |
Grade | |
I | 4 (3.6) |
II | 19 (17.0) |
III | 57 (50.9) |
NA | 32 (28.6) |
Molecular status | |
EGFR mutations | 3 (2.7) |
ALK translocations | 0 (0) |
PD-L1 status | |
Positive (>1%) | 27 (24.1) |
Negative | 9 (8.0) |
NA | 76 (67.9) |
PS | |
0 | 54 (48.2) |
1 | 47 (42) |
2 | 8 (7.1) |
3 | 3 (2.7) |
NA | 0 (0) |
Lines of treatment (LOT) | |
1 | 13 (11.6) |
2 | 77 (68.8) |
≥3 | 22 (19.6) |
NA | 0 (0) |
Regimen | |
Nivolumab | 94 (83.9) |
Pembrolizumab | 18 (16.1) |
Best overall response (BOR) | |
CR | 4 (3.6) |
PR | 40 (35.7) |
SD | 26 (23.2) |
PD | 42 (37.5) |
NA | 0 (0) |
Final outcome | |
PD | 76 (67.9) |
SD, PR, CR | 19 (17.0) |
NA | 17 (15.2) |
Overall survival status | |
Alive | 52 (46.4) |
Dead | 60 (53.6) |
Covariate | Univariate Analysis | Multivariate Analysis | ||
---|---|---|---|---|
HR (95% CI) | p Value | HR (95% CI) | p Value | |
Age ≥ 67 years | 1.386 (0.886–2.168) | 0.131 | ||
Sex | 1.353 (0.796–2.297) | 0.238 | ||
Weight ≥ 74.5 kg | 0.547 (0.348–0.859) | 0.005 | 0.650 (0.402–1.049) | 0.077 |
Height ≥ 1.68 m | 1.157 (0.738–1.815) | 0.502 | ||
BMI ≥ 26.26 | 0.738 (0.471–1.156) | 0.160 | ||
BSA ≥ 1.84 | 0.723 (0.460–1.136) | 0.137 | ||
Location (left) | 1.129 (0.721–1.767) | 0.576 | ||
Histology (SQ) | 1.378 (0.860–2.207) | 0.158 | ||
Stage (3) | 1.028 (0.648–1.631) | 0.903 | ||
Infiltrated LN (No vs. Yes) | 1.364 (0.755–2.462) | 0.276 | ||
Smoking (Current) | 0.859 (0.516–1.429) | 0.535 | ||
PS (0 or 1) | 0.316 (0.160–0.625) | <0.001 | 0.367 (0.180–0.750) | 0.006 |
LOT (First) | 0.489 (0.212–1.126) | 0.072 | ||
PIOS score + | 0.469 (0.295–0.747) | 0.001 | 0.023(0.001–0.590) | 0.023 |
Covariate | Univariate Analysis | Multivariate Analysis | ||
---|---|---|---|---|
HR (95% CI) | p Value | HR (95% CI) | p Value | |
Age ≥ 67 years | 1.306 (0.777–2.195) | 0.304 | ||
Sex | 1.944 (0.980–3.856) | 0.049 | 1.794 (0.861–3.736) | 0.119 |
Weight ≥ 74.5 kg | 0.736 (0.438–1.237) | 0.237 | ||
Height ≥ 1.68 m | 1.515 (0.895–2.565) | 0.113 | ||
BMI ≥ 26.26 | 0.853 (0.507–1.436) | 0.542 | ||
BSA ≥ 1.84 | 0.820 (0.487–1.383) | 0.449 | ||
Location (left) | 0.855 (0.507–1.443) | 0.551 | ||
Histology (SQ) | 1.925 (1.105–3.355) | 0.017 | 2.417 (1.317–4.438) | 0.004 |
Stage (3) | 0.867 (0.511–1.470) | 0.590 | ||
Infiltrated LN (No vs. Yes) | 1.117 (0.577–2.163) | 0.743 | ||
Smoking (Current) | 0.792 (0.446–1.404) | 0.415 | ||
PS (0 or 1) | 0.240 (0.115–0.499) | <0.001 | 0.199 (0.081–0.492) | <0.001 |
LOT (First) | 0.337 (0.105–1.080) | 0.051 | 2.533 (0.505–12.706) | 0.259 |
PIOS score + | 0.539 (0.317–0.918) | 0.019 | 0.001 (0.000–0.571) | 0.030 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dimitrakopoulos, F.-I.; Nikolakopoulos, A.; Kottorou, A.; Kalofonou, F.; Liolis, E.; Frantzi, T.; Pyrousis, I.; Koutras, A.; Makatsoris, T.; Kalofonos, H. PIOS (Patras Immunotherapy Score) Score Is Associated with Best Overall Response, Progression-Free Survival, and Post-Immunotherapy Overall Survival in Patients with Advanced Non-Small-Cell Lung Cancer (NSCLC) Treated with Anti-Program Cell Death-1 (PD-1) Inhibitors. Cancers 2020, 12, 1257. https://doi.org/10.3390/cancers12051257
Dimitrakopoulos F-I, Nikolakopoulos A, Kottorou A, Kalofonou F, Liolis E, Frantzi T, Pyrousis I, Koutras A, Makatsoris T, Kalofonos H. PIOS (Patras Immunotherapy Score) Score Is Associated with Best Overall Response, Progression-Free Survival, and Post-Immunotherapy Overall Survival in Patients with Advanced Non-Small-Cell Lung Cancer (NSCLC) Treated with Anti-Program Cell Death-1 (PD-1) Inhibitors. Cancers. 2020; 12(5):1257. https://doi.org/10.3390/cancers12051257
Chicago/Turabian StyleDimitrakopoulos, Foteinos-Ioannis, Achilleas Nikolakopoulos, Anastasia Kottorou, Fotini Kalofonou, Elias Liolis, Theodora Frantzi, Ioannis Pyrousis, Angelos Koutras, Thomas Makatsoris, and Haralabos Kalofonos. 2020. "PIOS (Patras Immunotherapy Score) Score Is Associated with Best Overall Response, Progression-Free Survival, and Post-Immunotherapy Overall Survival in Patients with Advanced Non-Small-Cell Lung Cancer (NSCLC) Treated with Anti-Program Cell Death-1 (PD-1) Inhibitors" Cancers 12, no. 5: 1257. https://doi.org/10.3390/cancers12051257
APA StyleDimitrakopoulos, F. -I., Nikolakopoulos, A., Kottorou, A., Kalofonou, F., Liolis, E., Frantzi, T., Pyrousis, I., Koutras, A., Makatsoris, T., & Kalofonos, H. (2020). PIOS (Patras Immunotherapy Score) Score Is Associated with Best Overall Response, Progression-Free Survival, and Post-Immunotherapy Overall Survival in Patients with Advanced Non-Small-Cell Lung Cancer (NSCLC) Treated with Anti-Program Cell Death-1 (PD-1) Inhibitors. Cancers, 12(5), 1257. https://doi.org/10.3390/cancers12051257