Dysregulation of Redox Status in Urinary Bladder Cancer Patients
Abstract
:1. Introduction
2. Results
2.1. Demographic and Clinicopathological Features
2.2. Cytoprotective Gene Expression Analyzed Separately in the UBC Patients and Control Individuals
2.3. Alterations in Blood Redox Status of the UBC Patients and Control Individuals
2.4. The UBC Patients, Clinicopathological Features and Recurrence
2.5. DNA Damage and Gene Expression in the UBC Patients and Control Individuals
3. Discussion
4. Materials and Methods
4.1. Study Design
4.2. Comet Assay
4.3. Gene Expression
4.4. Se Measurement
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grotenhuis, A.J.; Vermeulen, S.H.; Kiemeney, L.A. Germline genetic markers for urinary bladder cancer risk, prognosis and treatment response. Future Oncol. 2010, 6, 1433–1460. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Qiu, X.; Xiong, X.; Chen, X.; Pan, F. Current updates on the role of reactive oxygen species in bladder cancer pathogenesis and therapeutics. Clin. Transl. Oncol. 2020. [Google Scholar] [CrossRef] [Green Version]
- Sies, H.; Berndt, C.; Jones, D.P. Oxidative Stress. Annu. Rev. Biochem. 2017, 86, 715–748. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, M.; Kensler, T.W.; Motohashi, H. The KEAP1-NRF2 System: A Thiol-Based Sensor-Effector Apparatus for Maintaining Redox Homeostasis. Physiol. Rev. 2018, 98, 1169–1203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayes, J.D.; Dinkova-Kostova, A.T. The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem. Sci. 2014, 39, 199–218. [Google Scholar] [CrossRef]
- Saginala, K.; Barsouk, A.; Aluru, J.S.; Rawla, P.; Padala, S.A. Epidemiology of Bladder Cancer. Med. Sci. (Basel) 2020, 8, 15. [Google Scholar] [CrossRef] [Green Version]
- Iida, K.; Itoh, K.; Maher, J.M.; Kumagai, Y.; Oyasu, R.; Mori, Y.; Shimazui, T.; Akaza, H.; Yamamoto, M. Nrf2 and p53 cooperatively protect against BBN-induced urinary bladder carcinogenesis. Carcinogenesis 2007, 28, 2398–2403. [Google Scholar] [CrossRef] [Green Version]
- Jiang, T.; Huang, Z.; Chan, J.Y.; Zhang, D.D. Nrf2 protects against As(III)-induced damage in mouse liver and bladder. Toxicol. Appl. Pharm. 2009, 240, 8–14. [Google Scholar] [CrossRef] [Green Version]
- Iida, K.; Itoh, K.; Kumagai, Y.; Oyasu, R.; Hattori, K.; Kawai, K.; Shimazui, T.; Akaza, H.; Yamamoto, M. Nrf2 is essential for the chemopreventive efficacy of oltipraz against urinary bladder carcinogenesis. Cancer Res. 2004, 64, 6424–6431. [Google Scholar] [CrossRef] [Green Version]
- Kawakami, K.; Enokida, H.; Tachiwada, T.; Gotanda, T.; Tsuneyoshi, K.; Kubo, H.; Nishiyama, K.; Takiguchi, M.; Nakagawa, M.; Seki, N. Identification of differentially expressed genes in human bladder cancer through genome-wide gene expression profiling. Oncol. Rep. 2006, 16, 521–531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brigelius-Flohe, R.; Flohe, L. Selenium and redox signaling. Arch. Biochem. Biophys. 2017, 617, 48–59. [Google Scholar] [CrossRef] [PubMed]
- Dennert, G.; Zwahlen, M.; Brinkman, M.; Vinceti, M.; Zeegers, M.P.; Horneber, M. Selenium for preventing cancer. Cochrane Database Syst. Rev. 2011. [Google Scholar] [CrossRef] [Green Version]
- Vinceti, M.; Filippini, T.; Del Giovane, C.; Dennert, G.; Zwahlen, M.; Brinkman, M.; Zeegers, M.P.; Horneber, M.; D’Amico, R.; Crespi, C.M. Selenium for preventing cancer. Cochrane Database Syst. Rev. 2018, 1, Cd005195. [Google Scholar] [CrossRef]
- Reszka, E. Selenoproteins in bladder cancer. Clin. Chim. Acta 2012, 413, 847–854. [Google Scholar] [CrossRef]
- Moller, P.; Stopper, H.; Collins, A.R. Measurement of DNA damage with the comet assay in high-prevalence diseases: Current status and future directions. Mutagenesis 2020, 35, 5–18. [Google Scholar] [CrossRef]
- Vodicka, P.; Vodenkova, S.; Opattova, A.; Vodickova, L. DNA damage and repair measured by comet assay in cancer patients. Mutat. Res. 2019, 843, 95–110. [Google Scholar] [CrossRef]
- Schabath, M.B.; Spitz, M.R.; Grossman, H.B.; Zhang, K.; Dinney, C.P.; Zheng, P.J.; Wu, X. Genetic instability in bladder cancer assessed by the comet assay. J. Natl. Cancer Inst. 2003, 95, 540–547. [Google Scholar] [CrossRef] [Green Version]
- Allione, A.; Pardini, B.; Viberti, C.; Oderda, M.; Allasia, M.; Gontero, P.; Vineis, P.; Sacerdote, C.; Matullo, G. The prognostic value of basal DNA damage level in peripheral blood lymphocytes of patients affected by bladder cancer. Urol. Oncol. 2018, 36, 241.e215–241.e223. [Google Scholar] [CrossRef] [Green Version]
- Savina, N.V.; Nikitchenko, N.V.; Kuzhir, T.D.; Rolevich, A.I.; Krasny, S.A.; Goncharova, R.I. The Cellular Response to Oxidatively Induced DNA Damage and Polymorphism of Some DNA Repair Genes Associated with Clinicopathological Features of Bladder Cancer. Oxidative Med. Cell. Longev. 2016, 2016, 5710403. [Google Scholar] [CrossRef] [Green Version]
- Bhat, A.V.; Hora, S.; Pal, A.; Jha, S.; Taneja, R. Stressing the (Epi) Genome: Dealing with Reactive Oxygen Species in Cancer. Antioxid. Redox Signal. 2018, 29, 1273–1292. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, D.; Portales-Casamar, E.; Singh, A.; Srivastava, S.; Arenillas, D.; Happel, C.; Shyr, C.; Wakabayashi, N.; Kensler, T.W.; Wasserman, W.W.; et al. Global mapping of binding sites for Nrf2 identifies novel targets in cell survival response through ChIP-Seq profiling and network analysis. Nucleic. Acids Res. 2010, 38, 5718–5734. [Google Scholar] [CrossRef] [PubMed]
- Gerhard, D.S.; Wagner, L.; Feingold, E.A.; Shenmen, C.M.; Grouse, L.H.; Schuler, G.; Klein, S.L.; Old, S.; Rasooly, R.; Good, P.; et al. The status, quality, and expansion of the NIH full-length cDNA project: The Mammalian Gene Collection (MGC). Genome Res. 2004, 14, 2121–2127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banning, A.; Deubel, S.; Kluth, D.; Zhou, Z.; Brigelius-Flohe, R. The GI-GPx gene is a target for Nrf2. Mol. Cell. Biol. 2005, 25, 4914–4923. [Google Scholar] [CrossRef] [Green Version]
- Hintze, K.J.; Wald, K.A.; Zeng, H.; Jeffery, E.H.; Finley, J.W. Thioredoxin reductase in human hepatoma cells is transcriptionally regulated by sulforaphane and other electrophiles via an antioxidant response element. J. Nutr. 2003, 133, 2721–2727. [Google Scholar] [CrossRef] [Green Version]
- Cooke, M.S.; Olinski, R.; Evans, M.D. Does measurement of oxidative damage to DNA have clinical significance? Clin. Chim. Acta Int. J. Clin. Chem. 2006, 365, 30–49. [Google Scholar] [CrossRef]
- Paz-Elizur, T.; Krupsky, M.; Blumenstein, S.; Elinger, D.; Schechtman, E.; Livneh, Z. DNA repair activity for oxidative damage and risk of lung cancer. J. Natl. Cancer Inst. 2003, 95, 1312–1319. [Google Scholar] [CrossRef] [Green Version]
- Paz-Elizur, T.; Elinger, D.; Leitner-Dagan, Y.; Blumenstein, S.; Krupsky, M.; Berrebi, A.; Schechtman, E.; Livneh, Z. Development of an enzymatic DNA repair assay for molecular epidemiology studies: Distribution of OGG activity in healthy individuals. DNA Repair. (Amst.) 2007, 6, 45–60. [Google Scholar] [CrossRef]
- Ceylan, D.; Yilmaz, S.; Tuna, G.; Kant, M.; Er, A.; Ildiz, A.; Verim, B.; Akis, M.; Akan, P.; Islekel, H.; et al. Alterations in levels of 8-Oxo-2’-deoxyguanosine and 8-Oxoguanine DNA glycosylase 1 during a current episode and after remission in unipolar and bipolar depression. Psychoneuroendocrinology 2020, 114, 104600. [Google Scholar] [CrossRef]
- Munkholm, K.; Peijs, L.; Vinberg, M.; Kessing, L.V. A composite peripheral blood gene expression measure as a potential diagnostic biomarker in bipolar disorder. Transl. Psychiatry 2015, 5, e614. [Google Scholar] [CrossRef] [Green Version]
- Lillenes, M.S.; Rabano, A.; Stoen, M.; Riaz, T.; Misaghian, D.; Mollersen, L.; Esbensen, Y.; Gunther, C.C.; Selnes, P.; Stenset, V.T.; et al. Altered DNA base excision repair profile in brain tissue and blood in Alzheimer’s disease. Mol. Brain 2016, 9, 61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohanty, K.; Dada, R.; Dada, T. Oxidative DNA damage and reduced expression of DNA repair genes: Role in primary open angle glaucoma (POAG). Ophthalmic Genet. 2017, 38, 446–450. [Google Scholar] [CrossRef] [PubMed]
- Alsaad, A.M.; Al-Arifi, M.N.; Maayah, Z.H.; Attafi, I.M.; Alanazi, F.E.; Belali, O.M.; Alhoshani, A.; Asiri, Y.A.; Korashy, H.M. Genotoxic impact of long-term cigarette and waterpipe smoking on DNA damage and oxidative stress in healthy subjects. Toxicol. Mech. Methods 2019, 29, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Sun, X.; Fang, L.; Li, K.; Yang, P.; Du, L.; Ji, K.; Wang, J.; Liu, Q.; Xu, C.; et al. Genomic instability in adult men involved in processing electronic waste in Northern China. Environ. Int. 2018, 117, 69–81. [Google Scholar] [CrossRef] [PubMed]
- Behboudi, H.; Noureini, S.K.; Ghazanfari, T.; Ardestani, S.K. DNA damage and telomere length shortening in the peripheral blood leukocytes of 20years SM-exposed veterans. Int. Immunopharmacol. 2018, 61, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Rangel-Zuniga, O.A.; Haro, C.; Tormos, C.; Perez-Martinez, P.; Delgado-Lista, J.; Marin, C.; Quintana-Navarro, G.M.; Cerda, C.; Saez, G.T.; Lopez-Segura, F.; et al. Frying oils with high natural or added antioxidants content, which protect against postprandial oxidative stress, also protect against DNA oxidation damage. Eur. J. Nutr. 2017, 56, 1597–1607. [Google Scholar] [CrossRef]
- Amaral, A.F.; Cantor, K.P.; Silverman, D.T.; Malats, N. Selenium and bladder cancer risk: A meta-analysis. Cancer epidemiology, biomarkers & prevention: A publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. Cancer Epidemiol. Biomark. Prev. 2010, 19, 2407–2415. [Google Scholar] [CrossRef] [Green Version]
- Ramos-Gomez, M.; Kwak, M.K.; Dolan, P.M.; Itoh, K.; Yamamoto, M.; Talalay, P.; Kensler, T.W. Sensitivity to carcinogenesis is increased and chemoprotective efficacy of enzyme inducers is lost in nrf2 transcription factor-deficient mice. Proc. Natl. Acad. Sci. USA 2001, 98, 3410–3415. [Google Scholar] [CrossRef] [Green Version]
- Reszka, E.; Jablonowski, Z.; Wieczorek, E.; Gromadzinska, J.; Jablonska, E.; Sosnowski, M.; Wasowicz, W. Expression of NRF2 and NRF2-modulated genes in peripheral blood leukocytes of bladder cancer males. Neoplasma 2013, 60, 123–128. [Google Scholar] [CrossRef] [Green Version]
- Kensler, T.W.; Wakabayashi, N. Nrf2: Friend or foe for chemoprevention? Carcinogenesis 2010, 31, 90–99. [Google Scholar] [CrossRef] [Green Version]
- Maher, J.; Yamamoto, M. The rise of antioxidant signaling--the evolution and hormetic actions of Nrf2. Toxicol. Appl. Pharm. 2010, 244, 4–15. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Miao, W.; Loignon, M.; Kandouz, M.; Batist, G. Putative chemopreventive molecules can increase Nrf2-regulated cell defense in some human cancer cell lines, resulting in resistance to common cytotoxic therapies. Cancer Chemother. Pharmacol. 2010, 66, 467–474. [Google Scholar] [CrossRef] [PubMed]
- Kerins, M.J.; Ooi, A. A catalogue of somatic NRF2 gain-of-function mutations in cancer. Sci. Rep. 2018, 8, 12846. [Google Scholar] [CrossRef]
- The Cancer Genome Atlas Research Network. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature 2014, 507, 315–322. [Google Scholar] [CrossRef] [Green Version]
- Reeves, M.A.; Hoffmann, P.R. The human selenoproteome: Recent insights into functions and regulation. Cell Mol. Life Sci. 2009, 66, 2457–2478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reszka, E.; Jablonska, E.; Gromadzinska, J.; Wasowicz, W. Relevance of selenoprotein transcripts for selenium status in humans. Genes Nutr. 2012, 7, 127–137. [Google Scholar] [CrossRef] [Green Version]
- Reszka, E.; Gromadzinska, J.; Jablonska, E.; Wasowicz, W.; Jablonowski, Z.; Sosnowski, M. Level of selenoprotein transcripts in peripheral leukocytes of patients with bladder cancer and healthy individuals. Clin. Chem. Lab. Med. 2009, 47, 1125–1132. [Google Scholar] [CrossRef] [Green Version]
- Labunskyy, V.M.; Hatfield, D.L.; Gladyshev, V.N. Selenoproteins: Molecular pathways and physiological roles. Physiol. Rev. 2014, 94, 739–777. [Google Scholar] [CrossRef] [Green Version]
- Jeong, D.; Kim, T.S.; Chung, Y.W.; Lee, B.J.; Kim, I.Y. Selenoprotein W is a glutathione-dependent antioxidant in vivo. FEBS Lett. 2002, 517, 225–228. [Google Scholar] [CrossRef] [Green Version]
- Hawkes, W.C.; Alkan, Z. Delayed cell cycle progression in selenoprotein W-depleted cells is regulated by a mitogen-activated protein kinase kinase 4-p38/c-Jun NH2-terminal kinase-p53 pathway. J. Biol. Chem. 2012, 287, 27371–27379. [Google Scholar] [CrossRef] [Green Version]
- Hawkes, W.C.; Alkan, Z. Delayed cell cycle progression from SEPW1 depletion is p53- and p21-dependent in MCF-7 breast cancer cells. Biochem. Biophys Res. Commun. 2011, 413, 36–40. [Google Scholar] [CrossRef] [PubMed]
- Alkan, Z.; Duong, F.L.; Hawkes, W.C. Selenoprotein W controls epidermal growth factor receptor surface expression, activation and degradation via receptor ubiquitination. Biochim. Biophys. Acta 2015, 1853, 1087–1095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guariniello, S.; Di Bernardo, G.; Colonna, G.; Cammarota, M.; Castello, G.; Costantini, S. Evaluation of the selenotranscriptome expression in two hepatocellular carcinoma cell lines. Anal. Cell Pathol. (Amst.) 2015, 2015, 419561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, H.; Tang, J.; Xu, J.; Cao, L.; Jia, G.; Long, D.; Liu, G.; Chen, X.; Wang, K. Selenoprotein Genes Exhibit Differential Expression Patterns Between Hepatoma HepG2 and Normal Hepatocytes LO2 Cell Lines. Biol. Trace Elem. Res. 2015, 167, 236–241. [Google Scholar] [CrossRef]
- Lan, X.; Xing, J.; Gao, H.; Li, S.; Quan, L.; Jiang, Y.; Ding, S.; Xue, Y. Decreased Expression of Selenoproteins as a Poor Prognosticator of Gastric Cancer in Humans. Biol. Trace Elem. Res. 2017, 178, 22–28. [Google Scholar] [CrossRef]
- Singh, M.; Venugopal, C.; Tokar, T.; McFarlane, N.; Subapanditha, M.K.; Qazi, M.; Bakhshinyan, D.; Vora, P.; Murty, N.K.; Jurisica, I.; et al. Therapeutic Targeting of the Premetastatic Stage in Human Lung-to-Brain Metastasis. Cancer Res. 2018, 78, 5124–5134. [Google Scholar] [CrossRef] [Green Version]
- Reszka, E.; Wieczorek, E.; Jablonska, E.; Janasik, B.; Fendler, W.; Wasowicz, W. Association between plasma selenium level and NRF2 target genes expression in humans. J. Trace Elem. Med. Biol. 2015, 30, 102–106. [Google Scholar] [CrossRef]
- Jin, F.; Thaiparambil, J.; Donepudi, S.R.; Vantaku, V.; Piyarathna, D.W.B.; Maity, S.; Krishnapuram, R.; Putluri, V.; Gu, F.; Purwaha, P.; et al. Tobacco-Specific Carcinogens Induce Hypermethylation, DNA Adducts, and DNA Damage in Bladder Cancer. Cancer Prev. Res. (Phila) 2017, 10, 588–597. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.T.; Wu, C.F.; Lu, C.H.; Lin, C.C.; Chen, W.C.; Lin, P.Y.; Chen, M.F. Expression and function role of DNA methyltransferase 1 in human bladder cancer. Cancer 2011, 117, 5221–5233. [Google Scholar] [CrossRef]
- Xu, Q.; Ni, S.; Wu, F.; Liu, F.; Ye, X.; Mougin, B.; Meng, X.; Du, X. Investigation of variation in gene expression profiling of human blood by extended principle component analysis. PLoS ONE 2011, 6, e26905. [Google Scholar] [CrossRef]
- Whitney, A.R.; Diehn, M.; Popper, S.J.; Alizadeh, A.A.; Boldrick, J.C.; Relman, D.A.; Brown, P.O. Individuality and variation in gene expression patterns in human blood. Proc. Natl. Acad. Sci. USA 2003, 100, 1896–1901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, C.; Fan, X.; Wu, G. Peroxiredoxin 1—An antioxidant enzyme in cancer. J. Cell. Mol. Med. 2017, 21, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Mishra, M.; Jiang, H.; Wu, L.; Chawsheen, H.A.; Wei, Q. The sulfiredoxin-peroxiredoxin (Srx-Prx) axis in cell signal transduction and cancer development. Cancer Lett. 2015, 366, 150–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woo, H.A.; Jeong, W.; Chang, T.S.; Park, K.J.; Park, S.J.; Yang, J.S.; Rhee, S.G. Reduction of cysteine sulfinic acid by sulfiredoxin is specific to 2-cys peroxiredoxins. J. Biol. Chem. 2005, 280, 3125–3128. [Google Scholar] [CrossRef] [Green Version]
- Findlay, V.J.; Townsend, D.M.; Morris, T.E.; Fraser, J.P.; He, L.; Tew, K.D. A novel role for human sulfiredoxin in the reversal of glutathionylation. Cancer Res. 2006, 66, 6800–6806. [Google Scholar] [CrossRef] [Green Version]
- Bowers, R.R.; Manevich, Y.; Townsend, D.M.; Tew, K.D. Sulfiredoxin redox-sensitive interaction with S100A4 and non-muscle myosin IIA regulates cancer cell motility. Biochemistry 2012, 51, 7740–7754. [Google Scholar] [CrossRef]
- Wei, Q.; Jiang, H.; Xiao, Z.; Baker, A.; Young, M.R.; Veenstra, T.D.; Colburn, N.H. Sulfiredoxin-Peroxiredoxin IV axis promotes human lung cancer progression through modulation of specific phosphokinase signaling. Proc. Natl. Acad. Sci. USA 2011, 108, 7004–7009. [Google Scholar] [CrossRef] [Green Version]
- Singh, N.P.; McCoy, M.T.; Tice, R.R.; Schneider, E.L. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res. 1988, 175, 184–191. [Google Scholar] [CrossRef] [Green Version]
- McKelvey-Martin, V.J.; Green, M.H.; Schmezer, P.; Pool-Zobel, B.L.; De Meo, M.P.; Collins, A. The single cell gel electrophoresis assay (comet assay): A European review. Mutat. Res. 1993, 288, 47–63. [Google Scholar] [CrossRef]
Characteristic | Urinary Bladder Cancer | Control | p-Value |
---|---|---|---|
N = 122 | N = 115 | ||
Age mean ± SD | 62.88 ± 10.07 | 66.38 ± 4.73 | 0.0008 1 |
Gender | |||
Males | 86 (70.49%) | 81 (70.43%) | NS |
Females | 36 (29.51%) | 34 (29.57%) | |
BMI mean ± SD | 27.29 ± 4.60 | 26.79 ± 3.25 | NS |
Smoking habit | |||
Yes | 42 (34.42%) | 15 (13.04%) | 0.0001 2 |
No | 80 (65.57%) | 100 (86.96%) | |
Alcohol | |||
Yes | 85 (69.67%) | 100 (86.96%) | 0.001 2 |
No | 37 (30.33%) | 15 (13.04%) | |
T stage | |||
Ta | 61 (50.0%) | ||
T1 | 21 (17.21%) | ||
T2 | 15 (12.30%) | ||
Unknown | 25 (20.49%) | ||
G grade | |||
G1 | 57 (46.72%) | ||
G2 | 26 (21.31%) | ||
G3 | 14 (11.48%) | ||
Unknown | 25 (20.49%) | ||
Recurrence | |||
Recurrence months | 10.01 ± 7.96 | ||
Early <1 year | 38 (31.15%) | ||
Late recurrence ≥1 year | 39 (31.97%) | ||
Free | 22 (18.03%) | ||
Unknown | 23 (18.85%) | ||
No of tumors | |||
Single | 71 (58.20%) | ||
Multiple | 38 (31.15%) | ||
Unknown | 13(10.65%) | ||
Size of tumors | |||
Small (≤3 cm) | 72 (59.01%) | ||
Large (>3 cm) | 40 (32.79%) | ||
Unknown | 10 (8.20%) |
Redox Parameter | Urinary Bladder Cancer N = 122 | Control N = 115 | Beta (ß) Coefficient | p-Value 1 |
---|---|---|---|---|
Se 2 | 67.52 ± 16.43 | 74.67 ± 16.98 | −0.204 | 0.004 |
NRF2 | 8.540 ± 0.337 | 8.448 ± 0.257 | 0.142 | 0.044 |
KEAP1 | 5.466 ± 0.336 | 5.848 ± 0.410 | −0.460 | 0.000 |
MAFG | 7.970 ± 0.281 | 7.983 ± 0.261 | −0.047 | 0.511 |
ABCC4 | 5.932 ± 0.744 | 5.973 ± 0.473 | −0.056 | 0.431 |
GCLC | 6.427 ± 0.398 | 6.307 ± 0.318 | 0.153 | 0.027 |
GCLM | 7.834 ± 0.346 | 7.890 ± 0.224 | −0.122 | 0.089 |
GSR | 7.189 ± 0.371 | 7.280 ± 0.524 | −0.184 | 0.009 |
GSTP1 | 10.390 ± 0.260 | 10.420 ± 0.200 | −0.013 | 0.851 |
HMOX1 | 8.649 ± 0.357 | 8.820 ± 0.256 | −0.199 | 0.003 |
MMP9 | 8.475 ± 0.824 | 8.201 ± 0.606 | 0.164 | 0.021 |
NQO1 | 5.461 ± 0.509 | 5.620 ± 0.486 | −0.160 | 0.023 |
OGG1 | 3.144 ± 0.479 | 3.541 ± 0.692 | −0.316 | 0.000 |
PRDX1 | 9.491 ± 0.226 | 9.534 ± 0.158 | −0.070 | 0.309 |
SOD1 | 9.075 ± 0.306 | 9.064 ± 0.239 | 0.010 | 0.884 |
SOD2 | 11.00 ± 0.53 | 10.91 ± 0.429 | 0.134 | 0.060 |
SRXN1 | 7.944 ± 0.492 | 7.874 ± 0.534 | 0.063 | 0.379 |
UGT1A6 | 3.393 ± 0.861 | 3.572 ± 1.051 | −0.036 | 0.620 |
GPX1 | 11.82 ± 0.55 | 11.72 ± 0.42 | 0.092 | 0.182 |
SELT | 7.371 ± 0.248 | 7.363 ± 0.314 | 0.091 | 0.200 |
SEP15 | 9.108 ± 0.161 | 9.090 ± 0.142 | 0.137 | 0.047 |
SEPW1 | 6.058 ± 0.335 | 6.480 ± 0.439 | −0.497 | 0.000 |
TRXR1 | 5.151 ± 0.482 | 5.170 ± 0.344 | −0.097 | 0.170 |
DNMT1 | 6.696 ± 0.314 | 6.869 ± 0.260 | −0.320 | 0.000 |
DNMT3A | 6.316 ± 0.403 | 6.408 ± 0.306 | −0.187 | 0.009 |
SIRT1 | 6.191 ± 0.274 | 6.262 ± 0.261 | −0.139 | 0.050 |
Tail DNA (%) 3 | 6.902 ± 2.741 | 4.694 ± 1.705 | 0.446 | 0.000 |
Ox Tail DNA (%) 4 | 10.810 ± 3.350 | 7.195 ± 2.001 | 0.536 | 0.000 |
Variables | Median | Group | ≤Median N | Median< N | Cut-Off Value 2 | OR | 95.00% | 95.00% | p-Value 1 |
---|---|---|---|---|---|---|---|---|---|
Se 3 | 75.5 | Co UBC | 58 81 | 57 41 | ≤Median | 6.19 | 3.04 | 12.59 | 0.04 |
NRF2 | 8.46 | Co UBC | 59 48 | 56 74 | >Median | 1.57 | 0.88 | 2.80 | 0.13 |
KEAP1 | 5.89 | Co UBC | 58 110 | 57 12 | ≤Median | 9.83 | 4.41 | 21.91 | 0.0000 |
GCLC | 6.32 | Co UBC | 58 56 | 57 66 | >Median | 1.21 | 0.68 | 2.16 | 0.51 |
GSR | 7.31 | Co UBC | 58 73 | 57 49 | ≤Median | 1.44 | 0.81 | 2.57 | 0.21 |
HMOX1 | 8.82 | Co UBC | 58 86 | 57 36 | ≤Median | 2.23 | 1.22 | 4.07 | 0.009 |
MMP9 | 8.24 | Co UBC | 59 44 | 56 78 | >Median | 2.00 | 1.11 | 3.63 | 0.02 |
NQO1 | 5.64 | Co UBC | 58 82 | 57 39 | ≤Median | 2.38 | 1.31 | 4.33 | 0.005 |
OGG1 | 3.51 | Co UBC | 58 94 | 57 27 | ≤Median | 3.33 | 1.79 | 6.23 | 0.0002 |
SEP15 | 9.08 | Co UBC | 59 51 | 56 71 | >Median | 1.83 | 1.02 | 3.30 | 0.04 |
SEPW1 | 6.52 | Co UBC | 58 106 | 57 16 | ≤Median | 6.19 | 3.04 | 12.59 | 0.0000 |
DNMT1 | 6.83 | Co UBC | 58 80 | 57 42 | ≤Median | 1.89 | 1.06 | 3.37 | 0.03 |
DNMT3A | 6.41 | Co UBC | 59 75 | 56 47 | ≤Median | 2.03 | 1.11 | 3.69 | 0.02 |
SIRT1 | 6.27 | Co UBC | 58 73 | 57 49 | ≤Median | 1.56 | 0.88 | 2.77 | 0.13 |
Tail DNA 4 | 4.26 | Co UBC | 58 57 | 22 100 | >Median | 4.96 | 2.55 | 9.62 | 0.0000 |
Ox Tail DNA 5 | 6.76 | Co UBC | 58 10 | 57 112 | >Median | 11.72 | 5.16 | 26.61 | 0.0000 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reszka, E.; Lesicka, M.; Wieczorek, E.; Jabłońska, E.; Janasik, B.; Stępnik, M.; Konecki, T.; Jabłonowski, Z. Dysregulation of Redox Status in Urinary Bladder Cancer Patients. Cancers 2020, 12, 1296. https://doi.org/10.3390/cancers12051296
Reszka E, Lesicka M, Wieczorek E, Jabłońska E, Janasik B, Stępnik M, Konecki T, Jabłonowski Z. Dysregulation of Redox Status in Urinary Bladder Cancer Patients. Cancers. 2020; 12(5):1296. https://doi.org/10.3390/cancers12051296
Chicago/Turabian StyleReszka, Edyta, Monika Lesicka, Edyta Wieczorek, Ewa Jabłońska, Beata Janasik, Maciej Stępnik, Tomasz Konecki, and Zbigniew Jabłonowski. 2020. "Dysregulation of Redox Status in Urinary Bladder Cancer Patients" Cancers 12, no. 5: 1296. https://doi.org/10.3390/cancers12051296
APA StyleReszka, E., Lesicka, M., Wieczorek, E., Jabłońska, E., Janasik, B., Stępnik, M., Konecki, T., & Jabłonowski, Z. (2020). Dysregulation of Redox Status in Urinary Bladder Cancer Patients. Cancers, 12(5), 1296. https://doi.org/10.3390/cancers12051296