Normalized Pulmonary Artery Diameter Predicts Occurrence of Postpneumonectomy Respiratory Failure, ARDS, and Mortality
Abstract
:1. Introduction
2. Results
2.1. Morphometric Measurements
2.2. Correlations between PAD, Morphometric Parameters, Clinical, and Laboratory Variables
2.3. Factors Associated with Short-Term Outcome: The Role of PAD
3. Discussion
Strengths and Limitations of the Study
4. Materials and Methods
4.1. General Study Design
4.2. Pre-Operative Investigations and Peri-Operative Care
4.3. Collected Data
4.4. CT Measurements
4.5. Outcomes
4.6. Data Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hanna, G.G.; Siva, S.; Plumridge, N.; Solomon, B.; Ball, D.L. Preoperative chemotherapy for non-small-cell lung cancer. Lancet 2014, 384, 232–233. [Google Scholar] [CrossRef]
- Janet-Vendroux, A.; Loi, M.; Bobbio, A.; Lococo, F.; Lupo, A.; Ledinot, P.; Magdeleinat, P.; Roche, N.; Damotte, D.; Regnard, J.-F.; et al. Which is the Role of Pneumonectomy in the Era of Parenchymal-Sparing Procedures? Early/Long-Term Survival and Functional Results of a Single-Center Experience. Lung 2015, 193, 965–973. [Google Scholar] [CrossRef] [PubMed]
- Kalathiya, R.; Saha, S.P. Pneumonectomy for Non–Small Cell Lung Cancer. South. Med. J. 2012, 105, 350–354. [Google Scholar] [CrossRef] [PubMed]
- James, T.W.; Faber, L.P. Indications for pneumonectomy. Pneumonectomy for malignant disease. Chest Surg. Clin. N. Am. 1999, 9, 291–309. [Google Scholar]
- Shah, A.A.; Worni, M.; Kelsey, C.; Onaitis, M.W.; D’Amico, T.A.; Berry, M.F. Does pneumonectomy have a role in the treatment of stage IIIA non-small cell lung cancer? Ann. Thorac. Surg. 2013, 95, 1700–1707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alam, N.; Park, B.J.; Wilton, A.; Seshan, V.E.; Bains, M.S.; Downey, R.J.; Flores, R.M.; Rizk, N.; Rusch, V.W.; Amar, D. Incidence and Risk Factors for Lung Injury After Lung Cancer Resection. Ann. Thorac. Surg. 2007, 84, 1085–1091. [Google Scholar] [CrossRef] [PubMed]
- Jeon, K.; Yoon, J.W.; Suh, G.Y.; Kim, J.; Kim, K.; Yang, M.; Kim, H.; Kwon, O.J.; Shims, Y.M. Risk Factors for Post-pneumonectomy Acute Lung Injury/Acute Respiratory Distress Syndrome in Primary Lung Cancer Patients. Anaesth. Intensiv. Care 2009, 37, 14–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.B.; Lee, S.W.; Park, S.-I.; Kim, Y.H.; Kim, D.K. Risk factor analysis for postoperative acute respiratory distress syndrome and early mortality after pneumonectomy: The predictive value of preoperative lung perfusion distribution. J. Thorac. Cardiovasc. Surg. 2010, 140, 26–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, P.; Berbis, J.; Baste, J.-M.; Le Pimpec-Barthes, F.; Tronc, F.; Falcoz, P.-E.; Dahan, M.; Loundou, A. Pneumonectomy for lung cancer: Contemporary national early morbidity and mortality outcomes. J. Thorac. Cardiovasc. Surg. 2015, 149, 73–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Licker, M.; De Perrot, M.; Spiliopoulos, A.; Robert, J.; Diaper, J.; Chevalley, C.; Tschopp, J.-M. Risk Factors for Acute Lung Injury After Thoracic Surgery for Lung Cancer. Anesthesia Analg. 2003, 97, 1558–1565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruffini, E.; Parola, A.; Papalia, E.; Filosso, P.L.; Mancuso, M.; Oliaro, A.; Actis-Dato, G.; Maggi, G. Frequency and mortality of acute lung injury and acute respiratory distress syndrome after pulmonary resection for bronchogenic carcinoma. Eur. J. Cardio-Thorac. Surg. 2001, 20, 30–37. [Google Scholar] [CrossRef] [Green Version]
- Kutlu, C.A.; A Williams, E.; Evans, T.W.; Pastorino, U.; Goldstraw, P. Acute lung injury and acute respiratory distress syndrome after pulmonary resection. Ann. Thorac. Surg. 2000, 69, 376–380. [Google Scholar] [CrossRef]
- Parquin, F.; Marchal, M.; Mehiri, S.; Herve, P.; Lescot, B. Post-pneumonectomy pulmonary edema: Analysis and risk factors. Eur. J. Cardio-Thorac. Surg. 1996, 10, 929–932. [Google Scholar] [CrossRef]
- Hayes, J.P.; Williams, E.A.; Goldstraw, P.; Evans, T.W. Lung injury in patients following thoracotomy. Thorax 1995, 50, 990–991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blanc, K.; Zaimi, R.; Dechartres, A.; Lefebvre, A.; Janet-Vendroux, A.; Hamelin-Canny, E.; Roche, N.; Alifano, M.; Rabbat, A. Early acute respiratory distress syndrome after pneumonectomy: Presentation, management, and short- and long-term outcomes. J. Thorac. Cardiovasc. Surg. 2018, 156, 1706–1714.e5. [Google Scholar] [CrossRef] [PubMed]
- Rams, J.J.; Harrison, R.W.; Fry, W.A.; Moulder, P.V.; Adams, W.E. Operative Pulmonary Artery Pressure Measurements as a Guide to Postoperative Management and Prognosis following Pneumonectomy. Dis. Chest 1962, 41, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Brunelli, A.; Kim, A.W.; Berger, K.I.; Addrizzo-Harris, D.J. Physiologic Evaluation of the Patient with Lung Cancer being Considered for Resectional Surgery: Diagnosis and Management of Lung Cancer, 3rd ed.; American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest 2013, 143 (Suppl. 5), e166S–e190S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, B.; D’Amico, T.; Samad, Z.; Hasan, R.; Berry, M.F. The impact of pulmonary hypertension on morbidity and mortality following major lung resection. Eur. J. Cardiothorac. Surg. 2014, 45, 1028–1033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peretti, M.; Hervochon, R.; Loi, M.; Blanc, K.; Roche, N.; Alifano, M. Predictors of post-pneumonectomy respiratory failure and ARDS: Usefulness of normalized pulmonary artery diameter. Intensiv. Care Med. 2018, 44, 1357–1359. [Google Scholar] [CrossRef] [PubMed]
- Rudski, L. Point: Can Doppler Echocardiography Estimates of Pulmonary Artery Systolic Pressures Be Relied Upon to Accurately Make the Diagnosis of Pulmonary Hypertension? Yes. Chest 2013, 143, 1533–1536. [Google Scholar] [CrossRef] [PubMed]
- Rich, J.D. Counterpoint: Can Doppler echocardiography estimates of pulmonary artery systolic pressures be relied upon to accurately make the diagnosis of pulmonary hypertension? No. Chest 2013, 143, 1536–1539. [Google Scholar] [CrossRef] [PubMed]
- Ng, C.S.; Wells, A.U.; Padley, S.P.G. A CT Sign of Chronic Pulmonary Arterial Hypertension: The Ratio of Main Pulmonary Artery to Aortic Diameter. J. Thorac. Imaging 1999, 14, 270–278. [Google Scholar] [CrossRef] [PubMed]
- Beller, C.J.; Farag, M.; Wannaku, S.; Seppelt, P.; Arif, R.; Ruhparwar, A.; Karck, M.; Weymann, A.; Kallenbach, K. Gender-Specific Differences in Outcome of Ascending Aortic Aneurysm Surgery. PLoS ONE 2015, 10, e0124461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wells, J.M.; Washko, G.R.; Han, M.K.; Abbas, N.; Nath, H.; Mamary, A.J.; Regan, E.; Bailey, W.C.; Martinez, F.J.; Westfall, E.; et al. Pulmonary arterial enlargement and acute exacerbations of COPD. New Engl. J. Med. 2012, 367, 913–921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blanc, K.; Dechartres, A.; Zaimi, R.; Lefebvre, A.; Janet-Vendroux, A.; Fournel, L.; Dermine, H.; Lorut, C.; Becanne, X.; Hamelin-Canny, E.; et al. Patients experiencing early acute respiratory failure have high postoperative mortality after pneumonectomy. J. Thorac. Cardiovasc. Surg. 2018, 156, 2368–2376. [Google Scholar] [CrossRef] [PubMed]
- Foroulis, C.N.; Kotoulas, C.; Kakouros, S.; Evangelatos, G.; Chassapis, C.; Konstantinou, M.; Lioulias, A.G. Study on the late effect of pneumonectomy on right heart pressures using Doppler echocardiography. Eur. J. Cardio-Thorac. Surg. 2004, 26, 508–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Der Werff, Y.D.; Van Der Houwen, H.K.; Heijmans, P.J.; A Duurkens, V.; A Leusink, H.; Van Heesewijk, H.P.; De Boer, A. Postpneumonectomy pulmonary edema. A retrospective analysis of incidence and possible risk factors. Chest 1997, 111, 1278–1284. [Google Scholar] [CrossRef] [PubMed]
- Fee, H.J.; Holmes, E.C.; Gewirtz, H.S.; Ramming, K.P.; Alexander, J.M. Role of pulmonary vascular resistance measurements in preoperative evaluation of candidates for pulmonary resection. J. Thorac. Cardiovasc. Surg. 1978, 75, 519–524. [Google Scholar] [CrossRef]
- Sobin, L.H.; Gospodrowicz, M.K.; Wittekind, C.H. International Union against Cancer: TNM Classification of Malignant Tumours, 7th ed.; Wiley-Blackwell: New York, NY, USA, 2009. [Google Scholar]
- The ARDS Definition Task Force. Acute Respiratory Distress Syndrome. The Berlin Definition. JAMA 2012, 307, 2526–2533. [Google Scholar]
Features | Total Sample = 294 |
---|---|
Age: Years | 63.9 ± 9.9 |
Gender: Men/Women | 211 (71.8%)/83(28.2%) |
Current/Never Smokers (n = 291) | 267 (91.8%)/24 (8.2%) |
Cumulative tobacco consumption (Pack/Years) (n = 291) | 40 (30–50) |
Right/Left side | 135 (45.9%)/159 (54.1%) |
Weight (kg) | 71.84 ± 14.48 |
Height (cm) | 169.3 ± 8.1 |
BMI (kg/m2) | 24.98 ± 4.29; median 24 |
Underweight <18.5 | 18 (6.1%) |
Normal weight 18.5–25 | 137 (46.6%) |
Overweight 25.01–30 | 102 (34.7%) |
Obesity >30 | 37 (12.6%) |
BSA (m2) | 1.82 ± 0.19 |
Diabetes Yes/No (n = 291) | 24 (8.2%)/267 (91.8%) |
Hypertension Yes/No (n = 291) | 110 (37.8%)/181 (62.2%) |
Ischemic Heart Disease Yes/No (n = 291) | 61 (21.0%)/230 (79.0%) |
CCI (n = 291) | 5.1 ±1.7; median 5.0 |
Baseline Modified Borg Dyspnea Scale >2 (n = 288) Yes/No | 53 (18.4%)/235 (81.6%) |
FEV1 (% of predicted) | 79.9 ± 17.1 |
FEV1/FVC ratio (n = 285) | 71.9 ± 13.2 |
ppoFEV1 | 50.56 ± 11.24 |
Pattern of respiratory function (n = 285) Normal Obstructive Restrictive | 104 (36.5%) 118 (41.4%) 63 (22.1%) |
KCO (% of predicted) (n = 132) | 78.13 ± 21.07 |
PAD (mm) | 26.0 (24.0–28.0) |
NPAD (mm/m2) | 14.4 ± 2.0 Median 14.0 (13.0–15.6) |
Ratio PAD/AoD | 0.8 ± 0.1 |
NAC Yes/No (n = 291) | 90(30.9%)/201(69.1%) |
NAR Yes/No (n = 291) | 4 (1.4%)/287 (98.6%) |
NSCLC/other malignancies | 289 (98.3%)/5 (1.7%) |
SqCLC/malignancies other than SqCLC | 146 (49.7%)/148 (50.3%) |
Pathologic stage I/II/IIIA/IIIB/IV (n = 282/289 NSCLC) | 21 (7.4%)/71 (25.2%)/176 (62.4%)/14 (5%) |
Feature | Normalized Pulmonary Artery Diameter | p | Ratio PAD/AoD | p | |
---|---|---|---|---|---|
<Median Value | ≥Median Value | ||||
Mean age | 61.48 ± 9.89 | 64.70 ± 9.74 | 0.0049 | r = −0.186 | 0.0015 |
Men | 113 (53.6%) | 98 (46.4%) | 0.052 | 0.79 ± 0.11 | 0.31 |
Women | 34 (41.0%) | 49 (59.0%) | 0.81 ± 0.11 | ||
Smoke (n = 291) Current Never Smokers | 131 (49.1%) 15 (62.5%) | 136 (50.9%) 9 (37.5%) | 0.21 | 0.79 ± 0.11 0.80 ± 0.09 | 0.71 |
Mean cumulative tobacco consumption (Pack/Years) (n = 291) | 39.53 ± 24.84 | 41.41 ± 22.13 | 0.39 | r = −0.065 | 0.26 |
Right side | 59 (43.7%) | 76 (56.3%) | 0.047 | 0.81 ± 0.11 | 0.067 |
Left side | 88 (55.4%) | 71 (44.6%) | 0.78 ± 0.11 | ||
Weight (kg) | 76.04 ± 13.96 | 67.65 ± 13.76 | 0.00000021 | r = 0.019 | 0.74 |
Height (cm) | 171.4 ± 8.2 | 167.3 ± 7.5 | 0.000081 | r = 0.011 | 0.85 |
BMI (kg/m2) | 25.87 ± 4.26 | 24.09 ± 4.13 | 0.00024 | r = 0.032 | 0.59 |
Underweight | 7 (38.9%) | 11 (61.1%) | 0.78 | 0.78 ± 0.11 | 0.77 |
Normal weight | 58 (42.3%) | 79 (57.7%) | 0.79 ± 0.11 | ||
Overweight | 59 (57.8%) | 43 (42.2%) | 0.80 ± 0.11 | ||
Obesity | 23 (62.2%) | 14 (37.8%) | 0.79 ± 0.11 | ||
BSA (m2) | 1.88 ± 0.19 | 1.76 ± 0.19 | <0.0000001 | r = 0.012 | 0.84 |
CCI | 4.89 ± 1.64 | 5.34 ± 1.83 | 0.041 | r = −0.120 | 0.040 |
Baseline dyspnea—Modified Borg Dyspnea Scale ≥2 (n = 288) Yes No | 28 (52.8%) 114 (48.5%) | 25 (47.2%) 121 (51.5%) | 0.57 | 0.80 ± 0.09 0.80 ± 0.11 | 0.56 |
Mean FEV1 (% of predicted) | 79.84 ± 16.02 | 79.90 ± 18.10 | 0.97 | r = −0.040 | 0.50 |
Mean FEV1/FVC (n = 285) | 72.31 ± 12.79 | 71.55 ± 13.68 | 0.81 | r = 0.022 | 0.72 |
Pattern of respiratory function (n = 285) Obstructive Normal Restrictive | 60 (50.8%) 51 (49.0%) 31 (49.2%) | 58 (49.2%) 53 (51.0%) 32 (50.8%) | 0.83 | 0.79 ± 0.12 0.79 ± 0.11 0.80 ± 0.11 | 0.54 |
Mean ppoFEV1 | 50.68 ± 11.20 | 50.43 ± 11.29 | 0.88 | r = −0.027 | 0.69 |
NAC (n = 291) Yes No | 46 (51.1%) 100 (49.75%) | 44 (48.9%) 101 (50.25%) | 0.83 | 0.80 ± 0.11 0.79 ± 0.11 | 0.73 |
NAR (n = 291) Yes No | 2 (50%) 144 (50.17%) | 2 (50%) 143 (49.83%) | 0.62 | 0.83 ± 0.04 0.79 ± 0.11 | 0.48 |
Type of malignancy NSCLC Other malignancies | 142 (49.1%) 5 (100%) | 147 (50.9%) 0 (0%) | 0.07 | 0.80 ± 0.11 0.78 ± 0.11 | 0.76 |
SqCLC | 72 (49.3%) | 74 (50.7%) | 0.82 | 0.80 ± 0.12 | 0.28 |
malignancies other than SqCLC | 75 (50.7%) | 73 (49.3%) | 0.80 ± 0.11 | ||
Pathologic stage (n = 282/289 NSCLC) I–II III–IV | 46 (50.0%) 92 (48.4%) | 46 (50.0%) 98 (51.6%) | 0.80 | 0.79 ± 0.11 0.80 ± 0.11 | 0.44 |
Feature | Need of Mechanical Ventilation | ARDS | ||||
---|---|---|---|---|---|---|
Yes | No | p | Yes | No | p | |
Mean age | 66.26 ± 9.53 | 62.50 ± 9.91 | 0.028 | 67.43 ± 8.78 | 62.60 ± 9.95 | 0.020 |
Men | 38 (18.0%) | 173 (82.0%) | 0.075 | 24 (11.4%) | 187 (88.6%) | 0.29 |
Women | 8 (9.64%) | 75 (90.36%) | 6 (7.2%) | 77 (92.8%) | ||
Smoke (n = 291) Current Never Smokers | 43 (16.1%) 3 (12.5%) | 224 (83.9%) 21 (87.5%) | 0.86 | 28 (10.5%) 2 (8.3%) | 239 (89.5%) 22 (91.7%) | 0.99 |
Mean cumulative tobacco consumption (Pack/Years) (n = 291) | 41.96 ± 21.80 | 40.19 ± 23.85 | 0.67 | 43.53 ± 22.22 | 40.12 ± 23.67 | 0.41 |
Right side | 29 (21.5%) | 106 (78.5%) | 0.011 | 19 (14.1%) | 116 (85.9%) | 0.043 |
Left side | 17 (10.7%) | 142 (89.3%) | 11 (6.9%) | 148 (93.1%) | ||
Weight (Kg) | 71.22 ± 14.94 | 71.96 ± 14.39 | 0.73 | 70.27 ± 14.18 | 72.02 ± 14.51 | 0.53 |
Height (cm) | 170.61 ± 8.80 | 169.1 ± 8.0 | 0.28 | 168.1 ± 6.6 | 169.4 ± 8.3 | 0.39 |
BMI (kg/m2) | 24.45 ± 4.64 | 25.08 ± 4.21 | 0.39 | 24.86 ± 4.76 | 24.99 ± 4.23 | 0.87 |
BSA (m2) | 1.82 ± 0.20 | 1.817 ± 0.196 | 0.92 | 1.79 ± 0.18 | 1.821 ± 0.199 | 0.44 |
CCI | 6.20 ± 1.92 | 4.90 ± 1.64 | 0.00032 | 5.93 ± 1.57 | 5.02 ± 1.75 | 0.0043 |
Baseline dyspnea—Modified Borg Dyspnea Scale >2 (n= 288) Yes No | 8 (15.1%) 36 (15.3%) | 45 (84.9%) 199 (84.7%) | 0.97 | 5 (9.4%) 24 (10.2%) | 48 (9.6%) 211 (89.8%) | 0.86 |
Mean FEV1 (% of predicted) | 76.22 ± 17.11 | 80.55 ± 17.00 | 0.18 | 78.53 ± 14.78 | 80.02 ± 17.33 | 0.64 |
Mean FEV1/FVC (n = 285) | 73.41 ± 15.22 | 71.66 ± 12.84 | 0.58 | 75.29 ± 13.02 | 71.56 ± 13.22 | 0.24 |
Pattern of respiratory function (n = 285) Obstructive Normal Restrictive | 18 (15.3%) 12 (11.5%) 14 (22.2%) | 100 (84.7%) 92 (88.5%) 49 (77.8%) | 0.18 | 10 (8.5%) 8 (7.7%) 10 (15.9%) | 108 (91.5%) 96 (92.3%) 53 (84.1%) | 0.098 |
Mean KCO (n = 132) (% of predicted) | 70.25 ± 19.32 | 79.88 ± 21.05 | 0.041 | 65.43 ± 15.00 | 79.64 ± 21.18 | 0.016 |
Mean ppoFEV1 | 47.83 ± 9.81 | 51.07 ± 11.42 | 0.12 | 49.08 ± 10.70 | 50.73 ± 11.29 | 0.54 |
NAC (n = 291) Yes No | 10 (11.1%) 36 (17.9%) | 80 (88.9%) 165 (82.1%) | 0.14 | 5 (5.6%) 25 (12.4%) | 85 (94.4%) 176 (87.6%) | 0.074 |
NAR (n = 291) Yes No | 0 (0.0%) 46 (16.0%) | 4 (100.0%) 241 (84.0%) | 0.86 | 0 (0.0%) 30 (10.4%) | 4 (100.0%) 257 (89.6%) | 0.88 |
Type of malignancy NSCLC Other malignancies | 46 (15.9%) 0 (0.0%) | 243 (84.1%) 5 (100.0%) | 0.73 | 30 (10.4%) 0 (0.0%) | 259 (89.6%) 5 (100.0%) | 0.99 |
SqCLC | 25 (17.1%) | 121 (82.9%) | 0.49 | 15 (10.3%) | 131 (89.7%) | 0.97 |
Malignancies other than SqCLC | 21 (14.2%) | 127 (85.8%) | 15 (10.1%) | 133 (89.9%) | ||
Pathologic stage (n = 282/289 NSCLC) I–II III–IV | 18 (19.6%) 28 (14.7%) | 74 (80.4%) 162 (85.3%) | 0.30 | 12 (13.4%) 18 (9.47%) | 80 (89.9%) 172 (90.5%) | 0.36 |
PAD (mm) | 26.74 ± 3.70 | 25.80 ± 3.34 | 0.22 | 26.37 ± 3.37 | 25.90 ± 3.42 | 0.60 |
NPAD (≥median) Yes No | 31 (21.1%) 15 (10.2%) | 116 (78.9%) 132 (89.8%) | 0.010 | 21 (14.3%) 9 (6.1%) | 126 (85.7%) 138 (93.9%) | 0.021 |
PAD/AoD ratio | 0.82 ± 0.13 | 0.79 ± 0.11 | 0.18 | 0.80 ± 0.12 | 0.79 ± 0.11 | 0.85 |
Feature | 30-Day Mortality | ||
---|---|---|---|
Dead | Alive | p | |
Mean age | 69.76 ± 7.47 | 62.47 ± 9.92 | 0.00046 |
Men | 18 (8.5%) | 193 (91.5%) | 0.98 |
Women | 7 (91.6%) | 76 (8.4%) | |
Smoke (n = 291) Current Never Smokers | 22 (8.3%) 3 (12.5%) | 245 (91.7%) 21 (87.5%) | 0.74 |
Mean cumulative tobacco consumption (Pack/Years) (n = 291) | 41.08 ± 23.73 | 40.41 ± 23.53 | 0.77 |
Right side | 18 (13.3%) | 117 (86.7%) | 0.0062 |
Left side | 7 (4.4%) | 152 (95.6%) | |
Weight (kg) | 71.92 ± 15.45 | 71.84 ± 14.39 | 0.93 |
Height (cm) | 167.70 ± 7.10 | 169.50 ± 8.20 | 0.31 |
BMI (kg/m2) | 25.53 ± 4.98 | 24.93 ± 4.21 | 0.51 |
BSA (m2) | 1.80 ± 0.20 | 1.80 ± 0.19 | 0.73 |
CCI | 6.41 ± 1.81 | 4.98 ± 1.69 | 0.000086 |
Baseline dyspnea—Modified Borg Dyspnea Scale >2 (n = 288) Yes No | 4 (7.6%) 21 (8.9%) | 49 (92.4%) 214 (91.1%) | 0.99 |
Mean FEV1 (% of predicted) | 78.24 ± 14.78 | 80.02 ± 17.28 | 0.65 |
Mean FEV1/FVC (n = 285) | 72.13 ± 15.16 | 71.91 ± 13.07 | 0.60 |
Pattern of respiratory function (n = 285) Obstructive Normal Restrictive | 12 (10.2%) 3 (2.9%) 8 (12.7%) | 106 (89.8%) 101 (97.1%) 55 (87.3%) | 0.042 |
Mean KCO (n = 132) (% of predicted) | 73.09 ± 22.01 | 78.59 ± 20.93 | 0.42 |
Mean ppoFEV1 | 45.86 ± 8.55 | 51.06 ± 11.38 | 0.047 |
NAR (291) Yes No | 0 (0.0%) 25 (89.7%) | 4 (100.0%) 262 (91.3%) | 0.78 |
NAC (291) Yes No | 4 (4.4%) 21 (10.5%) | 86 (95.6%) 180 (89.5%) | 0.091 |
Type of malignancy NSCLC Other malignancies | 25 (8.5%) 0 (0.0%) | 264 (91.5%) 5 (100.0%) | 0.90 |
SqCLC | 12 (8.2%) | 134 (91.8%) | 0.86 |
Malignancies other than SqCLC | 13 (8.8%) | 135 (91.2%) | |
Pathologic stage (n = 282/289 NSCLC) I–II III–IV | 11 (12.0%) 14 (7.4%) | 81 (88.0%) 176 (92.6%) | 0.20 |
PAD (mm) | 26.60 ± 3.60 | 25.88 ± 3.39 | 0.38 |
NPAD (≥median) Yes No | 8 (5.4%) 17 (11.6%) | 139(94.6%) 130(88.4%) | 0.06 |
PAD/AoD ratio | 0.808 ± 0.141 | 0.793 ± 0.107 | 0.67 |
Feature | OR | IC 95% | p | |
---|---|---|---|---|
IMV | CCI > 5 | 3.8 | 1.76–822 | 0.0009 |
Right pneumonectomy | 2.37 | 1.20–4.71 | 0.013 | |
NPAD > 14 mm/m2 | 2.16 | 1.08–4.33 | 0.029 | |
ARDS | CCI > 5 | 2.55 | 1.17–5.59 | 0.018 |
NPAD > 14 mm/m2 | 2.52 | 1.10–5.77 | 0.028 | |
DEATH | CCI > 5 | 5.56 | 1.99–15.54 | 0.0011 |
Right pneumonectomy | 4.11 | 1.46–11.56 | 0.0074 | |
NPAD > 14 mm/m2 | 3.39 | 1.15–9.95 | 0.026 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daffrè, E.; Prieto, M.; Huang, H.; Janet-Vendroux, A.; Blanc, K.; N’Guyen, Y.-L.; Fournel, L.; Alifano, M. Normalized Pulmonary Artery Diameter Predicts Occurrence of Postpneumonectomy Respiratory Failure, ARDS, and Mortality. Cancers 2020, 12, 1515. https://doi.org/10.3390/cancers12061515
Daffrè E, Prieto M, Huang H, Janet-Vendroux A, Blanc K, N’Guyen Y-L, Fournel L, Alifano M. Normalized Pulmonary Artery Diameter Predicts Occurrence of Postpneumonectomy Respiratory Failure, ARDS, and Mortality. Cancers. 2020; 12(6):1515. https://doi.org/10.3390/cancers12061515
Chicago/Turabian StyleDaffrè, Elisa, Mathilde Prieto, Haihua Huang, Aurélie Janet-Vendroux, Kim Blanc, Yen-Lan N’Guyen, Ludovic Fournel, and Marco Alifano. 2020. "Normalized Pulmonary Artery Diameter Predicts Occurrence of Postpneumonectomy Respiratory Failure, ARDS, and Mortality" Cancers 12, no. 6: 1515. https://doi.org/10.3390/cancers12061515
APA StyleDaffrè, E., Prieto, M., Huang, H., Janet-Vendroux, A., Blanc, K., N’Guyen, Y. -L., Fournel, L., & Alifano, M. (2020). Normalized Pulmonary Artery Diameter Predicts Occurrence of Postpneumonectomy Respiratory Failure, ARDS, and Mortality. Cancers, 12(6), 1515. https://doi.org/10.3390/cancers12061515