Update on GNA Alterations in Cancer: Implications for Uveal Melanoma Treatment
Abstract
:1. Introduction
2. Heterotrimeric G Proteins
3. Mutations in Genes Encoding G Proteins
3.1. GNAS Mutants
3.2. GNAQ and GNA11 Mutants
3.3. Other GNA Mutants
4. Recently Described Roles of G Protein Mutations in Tumorigenesis
5. G protein Mutations in Uveal Melanoma
6. Targeting the GNA Pathway as a Therapeutic Option for Uveal Melanoma
7. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Algazi, A.P.; Tsai, K.K.; Shoushtari, A.N.; Munhoz, R.R.; Eroglu, Z.; Piulats, J.M.; Ott, P.A.; Johnson, D.B.; Hwang, J.; Daud, A.I.; et al. Clinical outcomes in metastatic uveal melanoma treated with PD-1 and PD-L1 antibodies. Cancer 2016, 122, 3344–3353. [Google Scholar] [CrossRef] [PubMed]
- Annala, S.; Feng, X.; Shridhar, N.; Eryilmaz, F.; Patt, J.; Yang, J.; Pfeil, E.M.; Cervantes-Villagrana, R.D.; Inoue, A.; Häberlein, F.; et al. Direct targeting of Gαq and Gα11 oncoproteins in cancer cells. Sci. Signal. 2019, 12, eaau5948. [Google Scholar] [CrossRef] [PubMed]
- Bánfi, B.; Tirone, F.; Durussel, I.; Knisz, J.; Moskwa, P.; Molnár, G.Z.; Krause, K.-H.; Cox, J.A. Mechanism of Ca2+ activation of the NADPH oxidase 5 (NOX5). J. Biol. Chem. 2004, 279, 18583–18591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- BelAiba, R.S.; Djordjevic, T.; Petry, A.; Diemer, K.; Bonello, S.; Banfi, B.; Hess, J.; Pogrebniak, A.; Bickel, C.; Görlach, A. NOX5 variants are functionally active in endothelial cells. Free Radic. Biol. Med. 2007, 42, 446–459. [Google Scholar] [CrossRef] [PubMed]
- Berman, D.M.; Wilkie, T.M.; Gilman, A.G. GAIP and RGS4 Are GTPase-Activating Proteins for the Gi Subfamily of G Protein α Subunits. Cell 1996, 86, 445–452. [Google Scholar] [CrossRef] [Green Version]
- Blangy, A.; Bouquier, N.; Gauthier-Rouvière, C.; Schmidt, S.; Debant, A.; Leonetti, J.-P.; Fort, P. Identification of TRIO-GEFD1 chemical inhibitors using the yeast exchange assay. Biol. Cell 2006, 98, 511–522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boru, G.; Cebulla, C.M.; Sample, K.M.; Massengill, J.B.; Davidorf, F.H.; Abdel-Rahman, M.H. Heterogeneity in Mitogen-Activated Protein Kinase (MAPK) Pathway Activation in Uveal Melanoma With Somatic GNAQ and GNA11 Mutations. Investig. Ophthalmol. Vis. Sci. 2019, 60, 2474–2480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caggia, S.; Chunduri, H.; Millena, A.C.; Perkins, J.N.; Venugopal, S.V.; Vo, B.T.; Li, C.; Tu, Y.; Khan, S.A. Novel role of Giα2 in cell migration: Downstream of PI3-kinase-AKT and Rac1 in prostate cancer cells. J. Cell Physiol. 2018, 234, 802–815. [Google Scholar] [CrossRef] [PubMed]
- Carvajal, R.D.; Piperno-Neumann, S.; Kapiteijn, E.; Chapman, P.B.; Frank, S.; Joshua, A.M.; Piulats, J.M.; Wolter, P.; Cocquyt, V.; Chmielowski, B.; et al. Selumetinib in Combination With Dacarbazine in Patients With Metastatic Uveal Melanoma: A Phase III, Multicenter, Randomized Trial (SUMIT). J. Clin. Oncol. 2018, 36, 1232–1239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Case, A.J.; Li, S.; Basu, U.; Tian, J.; Zimmerman, M.C. Mitochondrial-localized NADPH oxidase 4 is a source of superoxide in angiotensin II-stimulated neurons. Am. J. Physiol. Heart Circ. Physiol. 2013, 305, H19–H28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castellone, M.D.; Teramoto, H.; Williams, B.O.; Druey, K.M.; Gutkind, J.S. Prostaglandin E2 Promotes Colon Cancer Cell Growth Through a Gs-Axin- -Catenin Signaling Axis. Science 2005, 310, 1504–1510. [Google Scholar] [CrossRef] [PubMed]
- Cerami, E.; Gao, J.; Dogrusoz, U.; Gross, B.E.; Sumer, S.O.; Aksoy, B.A.; Jacobsen, A.; Byrne, C.J.; Heuer, M.L.; Larsson, E.; et al. The cBio Cancer Genomics Portal: An Open Platform for Exploring Multidimensional Cancer Genomics Data: Figure 1. Cancer Discov. 2012, 2, 401–404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ceraudo, E.; Horioka, M.; Mattheisen, J.M.; Hitchman, T.D.; Moore, A.R.; Kazmi, M.A.; Chi, P.; Chen, Y.; Sakmar, T.P.; Huber, T. Uveal Melanoma Oncogene CYSLTR2 Encodes a Constitutively Active GPCR Highly Biased Toward Gq Signaling. bioRxiv 2019. [Google Scholar] [CrossRef] [Green Version]
- Cervantes-Villagrana, R.D.; Adame-García, S.R.; García-Jiménez, I.; Color-Aparicio, V.M.; Beltrán-Navarro, Y.M.; König, G.M.; Kostenis, E.; Reyes-Cruz, G.; Gutkind, J.S.; Vázquez-Prado, J. Gβγ signaling to the chemotactic effector P-REX1 and mammalian cell migration is directly regulated by Gαq and Gα13 proteins. J. Biol. Chem. 2019, 294, 531–546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, A.T.; Ogino, S.; Fuchs, C.S. Aspirin and the risk of colorectal cancer in relation to the expression of COX-2. N. Engl. J. Med. 2007, 356, 2131–2142. [Google Scholar] [CrossRef] [PubMed]
- Chattopadhyay, C.; Kim, D.W.; Gombos, D.S.; Oba, J.; Qin, Y.; Williams, M.D.; Esmaeli, B.; Grimm, E.A.; Wargo, J.A.; Woodman, S.E.; et al. Uveal melanoma: From diagnosis to treatment and the science in between. Cancer 2016, 122, 2299–2312. [Google Scholar] [CrossRef] [PubMed]
- Croce, M.; Ferrini, S.; Pfeffer, U.; Gangemi, R. Targeted therapy of uveal melanoma: Recent failures and new perspectives. Cancers 2019, 11, 846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danielli, R.; Ridolfi, R.; Chiarion-Sileni, V.; Queirolo, P.; Testori, A.; Plummer, R.; Boitano, M.; Calabrò, L.; De Rossi, C.; Di Giacomo, A.M.; et al. Ipilimumab in pretreated patients with metastatic uveal melanoma: Safety and clinical efficacy. Cancer Immunol. Immunother. 2012, 61, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Davies, H.; Bignell, G.R.; Cox, C.; Stephens, P.; Edkins, S.; Clegg, S.; Teague, J.; Woffendin, H.; Garnett, M.J.; Bottomley, W.; et al. Mutations of the BRAF gene in human cancer. Nature 2002, 417, 949–954. [Google Scholar] [CrossRef] [PubMed]
- Decatur, C.L.; Ong, E.; Garg, N.; Anbunathan, H.; Bowcock, A.M.; Field, M.G.; Harbour, J.W. Driver Mutations in Uveal Melanoma. JAMA Ophthalmol. 2016, 134, 728–733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delaney, M.K.; Kim, K.; Estevez, B.; Xu, Z.; Stojanovic-Terpo, A.; Shen, B.; Ushio-Fukai, M.; Cho, J.; Du, X. Differential Roles of the NADPH-Oxidase 1 and 2 in Platelet Activation and Thrombosis. Arter. Thromb. Vasc. Biol. 2016, 36, 846–854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeWire, S.M.; Ahn, S.; Lefkowitz, R.J.; Shenoy, S.K. β-Arrestins and Cell Signaling. Annu. Rev. Physiol. 2007, 69, 483–510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diebold, I.; Petry, A.; Burger, M.; Hess, J.; Görlach, A. NOX4 mediates activation of FoxO3a and matrix metalloproteinase-2 expression by urotensin-II. Mol. Biol. Cell 2011, 22, 4424–4434. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Aksoy, B.B.A.; Dogrusoz, U.; Dresdner, G.; Gross, B.; Sumer, S.O.; Sun, Y.; Jacobsen, A.; Sinha, R.; Larsson, E.; et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 2013, 6, pl1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diebold, I.; Petry, A.; Hess, J.; Görlach, A. The NADPH oxidase subunit NOX4 is a new target gene of the hypoxia-inducible factor-1. Mol. Biol. Cell 2010, 21, 2087–2096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drews, R.T.; Gravel, R.A.; Collu, R. Identification of G protein α subunit mutations in human growth hormone (GH)- and GH/prolactin-secreting pituitary tumors by single-strand conformation polymorphism (SSCP) analysis. Mol. Cell. Endocrinol. 1992, 87, 125–129. [Google Scholar] [CrossRef]
- Fazeli, G.; Stopper, H.; Schinzel, R.; Ni, C.-W.; Jo, H.; Schupp, N. Angiotensin II induces DNA damage via AT1 receptor and NADPH oxidase isoform Nox4. Mutagenesis 2012, 27, 673–681. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Arang, N.; Rigiracciolo, D.C.; Lee, J.S.; Yeerna, H.; Wang, Z.; Lubrano, S.; Kishore, A.; Pachter, J.A.; König, G.M.; et al. A Platform of Synthetic Lethal Gene Interaction Networks Reveals that the GNAQ Uveal Melanoma Oncogene Controls the Hippo Pathway through FAK. Cancer Cell 2019, 35, 457–472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, X.; Degese, M.S.; Iglesias-Bartolome, R.; Vaque, J.P.; Molinolo, A.A.; Rodrigues, M.; Zaidi, M.R.; Ksander, B.R.; Merlino, G.; Sodhi, A.; et al. Hippo-independent activation of YAP by the GNAQ uveal melanoma oncogene through a trio-regulated rho GTPase signaling circuitry. Cancer Cell 2014, 25, 831–845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forbes, S.A.; Bindal, N.; Bamford, S.; Cole, C.; Kok, C.Y.; Beare, D.; Jia, M.; Shepherd, R.; Leung, K.; Menzies, A.; et al. COSMIC: Mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res. 2010, 39, D945–D950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gauvreau, G.M.; Boulet, L.-P.; FitzGerald, J.M.; Cockcroft, D.W.; Davis, B.E.; Leigh, R.; Tanaka, M.; Fourre, J.A.; Tanaka, M.; Nabata, T.; et al. A dual CysLT1/2 antagonist attenuates allergen-induced airway responses in subjects with mild allergic asthma. Allergy 2016, 71, 1721–1727. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.A.; DuBois, R.N. Colorectal cancer prevention and treatment by inhibition of cyclooxygenase-2. Nat. Rev. Cancer 2001, 1, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Heppt, M.V.; Amaral, T.; Kähler, K.C.; Heinzerling, L.; Hassel, J.C.; Meissner, M.; Kreuzberg, N.; Loquai, C.; Reinhardt, L.; Utikal, J.; et al. Combined immune checkpoint blockade for metastatic uveal melanoma: A retrospective, multi-center study. J. Immunother. Cancer 2019, 7, 299. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Shokat, K.M. Disease-Causing Mutations in the G Protein Gαs Subvert the Roles of GDP and GTP. Cell 2018, 173, 1254–1264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, J.L.-Y.; Urtatiz, O.; Van Raamsdonk, C.D. Oncogenic G Protein GNAQ Induces Uveal Melanoma and Intravasation in Mice. Cancer Res. 2015, 75, 3384–3397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diebold, I.; Flügel, D.; Becht, S.; BelAiba, R.S.; Bonello, S.; Hess, J.; Kietzmann, T.; Görlach, A. The Hypoxia-Inducible factor-2alpha Is Stabilized by Oxidative Stress Involving NOX4. Antioxid. Redox Signal. 2010, 13, 425–436. [Google Scholar] [CrossRef] [PubMed]
- Ismail, I.H.; Davidson, R.; Gagne, J.-P.; Xu, Z.Z.; Poirier, G.G.; Hendzel, M.J. Germline Mutations in BAP1 Impair Its Function in DNA Double-Strand Break Repair. Cancer Res. 2014, 74, 4282–4294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jie, H.; Dan, L.; Weibiao, C. Rho Kinase ROCK2 Mediates Acid-Induced NADPH Oxidase NOX5-S Expression in Human Esophageal Adenocarcinoma Cells. PLoS ONE 2016, 11, e0149735. [Google Scholar]
- Johansson, P.; Aoude, L.G.; Wadt, K.; Glasson, W.J.; Warrier, S.K.; Hewitt, A.W.; Kiilgaard, J.F.; Heegaard, S.; Isaacs, T.; Franchina, M.; et al. Deep sequencing of uveal melanoma identifies a recurrent mutation in PLCB4. Oncotarget 2016, 7, 4624–4631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalinec, G.; Nazarali, A.J.; Hermouet, S.; Xu, N.; Gutkind, J.S. Mutated alpha subunit of the Gq protein induces malignant transformation in NIH 3T3 cells. Mol. Cell. Biol. 1992, 12, 4687–4693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kan, Z.; Jaiswal, B.S.; Stinson, J.; Janakiraman, V.; Bhatt, D.; Stern, H.M.; Yue, P.; Haverty, P.M.; Bourgon, R.; Zheng, J.; et al. Diverse somatic mutation patterns and pathway alterations in human cancers. Nature 2010, 466, 869–873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kostenis, E.; Pfeil, E.M.; Annala, S. Heterotrimeric Gq proteins as therapeutic targets? J. Boil. Chem. 2020, 295, 5206–5215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Küsters-Vandevelde, H.V.N.; van Engen-van Grunsven, I.A.C.H.; Küsters, B.; van Dijk, M.R.C.F.; Groenen, P.J.T.A.; Wesseling, P.; Blokx, W.A.M. Improved discrimination of melanotic schwannoma from melanocytic lesions by combined morphological and GNAQ mutational analysis. Acta Neuropathol. 2010, 120, 755–764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landis, C.A.; Masters, S.B.; Spada, A.; Pace, A.M.; Bourne, H.R.; Vallar, L. GTPase inhibiting mutations activate the alpha chain of Gs and stimulate adenylyl cyclase in human pituitary tumours. Nature 1989, 340, 692–696. [Google Scholar] [CrossRef] [PubMed]
- Lapadula, D.; Farias, E.; Randolph, C.E.; Purwin, T.J.; McGrath, D.; Charpentier, T.H.; Zhang, L.; Wu, S.; Terai, M.; Sato, T.; et al. Effects of Oncogenic Gαq and Gα11 Inhibition by FR900359 in Uveal Melanoma. Mol. Cancer Res. 2019, 17, 963–973. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Cao, W. Bile acid receptor TGR5, NADPH Oxidase NOX5-S and CREB Mediate Bile Acid-Induced DNA Damage In Barrett’s Esophageal Adenocarcinoma Cells. Sci. Rep. 2016, 6, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Livingstone, E.; Zaremba, A.; Horn, S.; Ugurel, S.; Casalini, B.; Schlaak, M.; Hassel, J.C.; Herbst, R.; Utikal, J.S.; Weide, B.; et al. GNAQ and GNA11 mutant nonuveal melanoma: A subtype distinct from both cutaneous and uveal melanoma. Br. J. Derm. 2020, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Long, G.V.; Flaherty, K.T.; Stroyakovskiy, D.; Gogas, H.; Levchenko, E.; de Braud, F.; Larkin, J.; Garbe, C.; Jouary, T.; Hauschild, A.; et al. Dabrafenib plus trametinib versus dabrafenib monotherapy in patients with metastatic BRAF V600E/K-mutant melanoma: Long-term survival and safety analysis of a phase 3 study. Ann. Oncol. 2017, 28, 1631–1639. [Google Scholar] [CrossRef] [PubMed]
- Lu, T.; Zhang, D.-M.; Wang, X.-L.; He, T.; Wang, R.-X.; Chai, Q.; Katusic, Z.S.; Lee, H.-C. Regulation of coronary arterial BK channels by caveolae-mediated angiotensin II signaling in diabetes mellitus. Circ. Res. 2010, 106, 1164–1173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, X.; Wang, F.; Liu, M.; Yang, K.T.; Nau, A.; Kohan, D.E.; Reese, V.; Richardson, R.S.; Yang, T. Activation of ENaC in collecting duct cells by prorenin and its receptor PRR: Involvement of Nox4-derived hydrogen peroxide. Am. J. Physiol. Ren. Physiol. 2016, 310, F1243–F1250. [Google Scholar] [CrossRef] [Green Version]
- Lyon, A.M.; Tesmer, J.J.G. Structural insights into phospholipase C-β function. Mol. Pharm. 2013, 84, 488–500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marty, C.; Ye, R.D. Heterotrimeric G protein signaling outside the realm of seven transmembrane domain receptors. Mol. Pharm. 2010, 78, 12–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKenna, K.C.; Chen, P.W. Influence of Immune Privilege on Ocular Tumor Development. Ocul. Immunol. Inflamm. 2010, 18, 80–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Metz, C.H.; Scheulen, M.; Bornfeld, N.; Lohmann, D.; Zeschnigk, M. Ultradeep sequencing detects GNAQ and GNA11 mutations in cell-free DNA from plasma of patients with uveal melanoma. Cancer Med. 2013, 2, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Mezhybovska, M.; Wikström, K.; Ohd, J.F.; Sjölander, A. Pro-inflammatory mediator leukotriene D4 induces transcriptional activity of potentially oncogenic genes. Biochem. Soc. Trans. 2005, 33, 698–700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, F.J.; Chu, X.; Stanic, B.; Tian, X.; Sharma, R.V.; Davisson, R.L.; Lamb, F.S. A differential role for endocytosis in receptor-mediated activation of Nox1. Antioxid. Redox Signal. 2010, 12, 583–593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mong, S.; Miller, J.; Wu, H.L.; Crooke, S.T. Leukotriene D4 receptor-mediated hydrolysis of phosphoinositide and mobilization of calcium in sheep tracheal smooth muscle cells. J. Pharm. Exp. 1988, 244, 508–515. [Google Scholar]
- Montezano, A.C.; Burger, D.; Paravicini, T.M.; Chignalia, A.Z.; Yusuf, H.; Almasri, M.; He, Y.; Callera, G.E.; He, G.; Krause, K.-H.; et al. Nicotinamide adenine dinucleotide phosphate reduced oxidase 5 (Nox5) regulation by angiotensin II and endothelin-1 is mediated via calcium/calmodulin-dependent, rac-1-independent pathways in human endothelial cells. Circ. Res. 2010, 106, 1363–1373. [Google Scholar] [CrossRef] [PubMed]
- Moore, A.R.; Ceraudo, E.; Sher, J.J.; Guan, Y.; Shoushtari, A.N.; Chang, M.T.; Zhang, J.Q.; Walczak, E.G.; Kazmi, M.A.; Taylor, B.S.; et al. Recurrent activating mutations of G-protein-coupled receptor CYSLTR2 in uveal melanoma. Nat. Genet. 2016, 48, 675–680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, A.R.; Ran, L.; Guan, Y.; Sher, J.J.; Hitchman, T.D.; Zhang, J.Q.; Hwang, C.; Walzak, E.G.; Shoushtari, A.N.; Monette, S.; et al. GNA11 Q209L Mouse Model Reveals RasGRP3 as an Essential Signaling Node in Uveal Melanoma. Cell Rep. 2018, 22, 2455–2468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morelli, J.G.; Yohn, J.J.; Lyons, M.B.; Murphy, R.C.; Norris, D.A. Leukotrienes C4 and D4 as potent mitogens for cultured human neonatal melanocytes. J. Investig. Derm. 1989, 93, 719–722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carrim, N.; Arthur, J.F.; Hamilton, J.R.; Gardiner, E.E.; Andrews, R.K.; Moran, N.; Berndt, M.C.; Metharom, P. Thrombin-induced Reactive Oxygen Species Generation in Platelets: A Novel Role for Protease-Activated Receptor 4 and GPIbα. Redox Biol. 2015, 6, 640–647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Hayre, M.; Degese, M.S.; Gutkind, J.S. Novel insights into G protein and G protein-coupled receptor signaling in cancer. Curr. Opin. Cell Biol. 2014, 27, 126–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Onken, M.D.; Makepeace, C.M.; Kaltenbronn, K.M.; Kanai, S.M.; Todd, T.D.; Wang, S.; Broekelmann, T.J.; Rao, P.K.; Cooper, J.A.; Blumer, K.J. Targeting nucleotide exchange to inhibit constitutively active G protein α subunits in cancer cells. Sci. Signal. 2018, 11, eaao6852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paletta-Silva, R.; Rocco-Machado, N.; Meyer-Fernandes, J.R. NADPH oxidase biology and the regulation of tyrosine kinase receptor signaling and cancer drug cytotoxicity. Int. J. Mol. Sci. 2013, 14, 3683–3704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandey, D.; Gratton, J.-P.; Rafikov, R.; Black, S.M.; Fulton, D.J.R. Calcium/calmodulin-dependent kinase II mediates the phosphorylation and activation of NADPH oxidase 5. Mol. Pharm. 2011, 80, 407–415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parish, A.J.; Nguyen, V.; Goodman, A.M.; Murugesan, K.; Frampton, G.M.; Kurzrock, R. GNAS, GNAQ, and GNA11 alterations in patients with diverse cancers. Cancer 2018, 124, 4080–4089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patra, K.C.; Kato, Y.; Mizukami, Y.; Widholz, S.; Boukhali, M.; Revenco, I.; Grossman, E.A.; Ji, F.; Sadreyev, R.I.; Liss, A.S.; et al. Mutant GNAS drives pancreatic tumourigenesis by inducing PKA-mediated SIK suppression and reprogramming lipid metabolism. Nat. Cell Biol. 2018, 20, 811–822. [Google Scholar] [CrossRef] [PubMed]
- Pelletier, S.; Duhamel, F.; Coulombe, P.; Popoff, M.R.; Meloche, S. Rho family GTPases are required for activation of Jak/STAT signaling by G protein-coupled receptors. Mol. Cell. Biol. 2003, 23, 1316–1333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perez, D.E.; Henle, A.M.; Amsterdam, A.; Hagen, H.R.; Lees, J.A. Uveal melanoma driver mutations in GNAQ/11 yield numerous changes in melanocyte biology. Pigment Cell Melanoma Res. 2018, 31, 604–613. [Google Scholar] [CrossRef] [PubMed]
- Piaggio, F.; Tozzo, V.; Bernardi, C.; Croce, M.; Puzone, R.; Viaggi, S.; Patrone, S.; Barla, A.; Coviello, D.; Jager, M.J.; et al. Secondary Somatic Mutations in G-Protein-Related Pathways and Mutation Signatures in Uveal Melanoma. Cancers 2019, 11, 1688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pusapati, G.V.; Kong, J.H.; Patel, B.B.; Gouti, M.; Sagner, A.; Sircar, R.; Luchetti, G.; Ingham, P.W.; Briscoe, J.; Rohatgi, R. G protein–coupled receptors control the sensitivity of cells to the morphogen Sonic Hedgehog. Sci. Signal. 2018, 11, eaao5749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robert, C.; Karaszewska, B.; Schachter, J.; Rutkowski, P.; Mackiewicz, A.; Stroiakovski, D.; Lichinitser, M.; Dummer, R.; Grange, F.; Mortier, L.; et al. Improved Overall Survival in Melanoma with Combined Dabrafenib and Trametinib. N. Engl. J. Med. 2015, 372, 30–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robertson, A.G.; Shih, J.; Yau, C.; Gibb, E.A.; Oba, J.; Mungall, K.L.; Hess, J.M.; Uzunangelov, V.; Walter, V.; Danilova, L.; et al. Integrative Analysis Identifies Four Molecular and Clinical Subsets in Uveal Melanoma. Cancer Cell 2017, 32, 204–220. [Google Scholar] [CrossRef] [PubMed]
- Royer-Bertrand, B.; Torsello, M.; Rimoldi, D.; El Zaoui, I.; Cisarova, K.; Pescini-Gobert, R.; Raynaud, F.; Zografos, L.; Schalenbourg, A.; Speiser, D.; et al. Comprehensive Genetic Landscape of Uveal Melanoma by Whole-Genome Sequencing. Am. J. Hum. Genet. 2016, 99, 1190–1198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, S.; Debant, A. Aptamer-Derived Peptide Inhibitors of Rho Guanine Nucleotide Exchange Factors. In The Enzymes; Academic Press: Waltham, MA, USA, 2013; Volume 33, pp. 147–168. [Google Scholar]
- Schrage, R.; Schmitz, A.-L.; Gaffal, E.; Annala, S.; Kehraus, S.; Wenzel, D.; Büllesbach, K.M.; Bald, T.; Inoue, A.; Shinjo, Y.; et al. The experimental power of FR900359 to study Gq-regulated biological processes. Nat. Commun. 2015, 6, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, A.D.; Topham, A. Survival rates with uveal melanoma in the United States: 1973–1997. Ophthalmology 2003, 110, 962–965. [Google Scholar] [CrossRef]
- Kim, S.-M.; Kim, Y.-G.; Jeong, K.-H.; Lee, S.-H.; Lee, T.-W.; Ihm, C.-G.; Moon, J.-Y. Angiotensin II-induced Mitochondrial Nox4 Is a Major Endogenous Source of Oxidative Stress in Kidney Tubular Cells. PLoS ONE 2012, 7, e39739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takasaki, J.; Saito, T.; Taniguchi, M.; Kawasaki, T.; Moritani, Y.; Hayashi, K.; Kobori, M. A novel Galphaq/11-selective inhibitor. J. Biol. Chem. 2004, 279, 47438–47445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Theccanat, T.; Philip, J.L.; Razzaque, A.M.; Ludmer, N.; Li, J.; Xu, X.; Akhter, S.A. Regulation of cellular oxidative stress and apoptosis by G protein-coupled receptor kinase-2; The role of NADPH oxidase 4. Cell. Signal. 2016, 28, 190–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urtatiz, O.; Cook, C.; Huang, J.L.Y.; Yeh, I.; Van Raamsdonk, C.D. GNAQQ209L expression initiated in multipotent neural crest cells drives aggressive melanoma of the central nervous system. Pigment Cell Melanoma Res. 2020, 33, 96–111. [Google Scholar] [CrossRef] [PubMed]
- van der Kooij, M.K.; Joosse, A.; Speetjens, F.M.; Hospers, G.A.P.; Bisschop, C.; de Groot, J.W.B.; Koornstra, R.; Blank, C.U.; Kapiteijn, E. Anti-PD1 treatment in metastatic uveal melanoma in the Netherlands. Acta Oncol. 2017, 56, 101–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Raamsdonk, C.D.; Bezrookove, V.; Green, G.; Bauer, J.; Gaugler, L.; O’Brien, J.M.; Simpson, E.M.; Barsh, G.S.; Bastian, B.C. Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi. Nature 2009, 457, 599–602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Raamsdonk, C.D.; Griewank, K.G.; Crosby, M.B.; Garrido, M.C.; Vemula, S.; Wiesner, T.; Obenauf, A.C.; Wackernagel, W.; Green, G.; Bouvier, N.; et al. Mutations in GNA11 in uveal melanoma. N. Engl. J. Med. 2010, 363, 2191–2199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaqué, J.P.; Dorsam, R.T.; Feng, X.; Iglesias-Bartolome, R.; Forsthoefel, D.J.; Chen, Q.; Debant, A.; Seeger, M.A.; Ksander, B.R.; Teramoto, H.; et al. A genome-wide RNAi screen reveals a Trio-regulated Rho GTPase circuitry transducing mitogenic signals initiated by G protein-coupled receptors. Mol. Cell 2013, 49, 94–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weinstein, L.S.; Shenker, A.; Gejman, P.V.; Merino, M.J.; Friedman, E.; Spiegel, A.M. Activating Mutations of the Stimulatory G Protein in the McCune–Albright Syndrome. N. Engl. J. Med. 1991, 325, 1688–1695. [Google Scholar] [CrossRef] [PubMed]
- Wiesner, T.; Obenauf, A.C.; Murali, R.; Fried, I.; Griewank, K.G.; Ulz, P.; Windpassinger, C.; Wackernagel, W.; Loy, S.; Wolf, I.; et al. Germline mutations in BAP1 predispose to melanocytic tumors. Nat. Genet. 2011, 43, 1018–1021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, C.H.; McIntyre, R.E.; Arends, M.J.; Adams, D.J. The activating mutation R201C in GNAS promotes intestinal tumourigenesis in ApcMin/+ mice through activation of Wnt and ERK1/2 MAPK pathways. Oncogene 2010, 29, 4567–4575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wood, L.D.; Parsons, D.W.; Jones, S.; Lin, J.; Sjöblom, T.; Leary, R.J.; Shen, D.; Boca, S.M.; Barber, T.; Ptak, J.; et al. The genomic landscapes of human breast and colorectal cancers. Science 2007, 318, 1108–1113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wunder, F.; Tinel, H.; Kast, R.; Geerts, A.; Becker, E.; Kolkhof, P.; Hütter, J.; Ergüden, J.; Härter, M. Pharmacological characterization of the first potent and selective antagonist at the cysteinyl leukotriene 2 (CysLT2) receptor. Br. J. Pharm. 2010, 160, 399–409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, D.; Du, M.; Zhang, J.; Xiong, P.; Li, W.; Zhang, H.; Xiong, W.; Liu, F.; Liu, J. DNMT1 mediated promoter methylation of GNAO1 in hepatoma carcinoma cells. Gene 2018, 665, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Yoo, J.H.; Shi, D.S.; Grossmann, A.H.; Sorensen, L.K.; Tong, Z.; Mleynek, T.M.; Rogers, A.; Zhu, W.; Richards, J.R.; Winter, J.M.; et al. ARF6 Is an Actionable Node that Orchestrates Oncogenic GNAQ Signaling in Uveal Melanoma. Cancer Cell 2016, 29, 889–904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, F.-X.; Zhao, B.; Panupinthu, N.; Jewell, J.L.; Lian, I.; Wang, L.H.; Zhao, J.; Yuan, H.; Tumaneng, K.; Li, H.; et al. Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling. Cell 2012, 150, 780–791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zimmer, L.; Vaubel, J.; Mohr, P.; Hauschild, A.; Utikal, J.; Simon, J.; Garbe, C.; Herbst, R.; Enk, A.; Kämpgen, E.; et al. Phase II DeCOG-Study of Ipilimumab in Pretreated and Treatment-Naïve Patients with Metastatic Uveal Melanoma. PLoS ONE 2015, 10, e0118564. [Google Scholar] [CrossRef] [PubMed]
Cancers | GNAS | |||||
---|---|---|---|---|---|---|
Alteration | Mutation | Fusion | Amplification | Deep deletion | Multiple Alterations | |
Colorectal | 11.45% of 594 cases | 3.87% (23 cases) | 0.17% (1 case) | 7.24% (43 cases) | 0.17% (1 case) | |
Stomach | 9.55% of 400 cases | 5.45% (24 cases) | 3.64% (16 cases) | 0.23% (1 case) | 0.23% (1 case) | |
Uterine | 9.07% of 529 cases | 7.18% (38 cases) | 1.89% (10 cases) | |||
Lung adeno | 7.77% of 566 cases | 3.71% (21 cases) | 3.89% (22 cases) | 0.18% (1 case) | ||
Esophagus | 7.69% of 182 cases | 4.95% (9 cases) | 2.75% (5 cases) | |||
Melanoma | 7.21% of 444 cases | 6.08% (27 cases) | 1.13% (5 cases) | |||
Pancreas | 7.07% of 184 cases | 4.89% (9 cases) | 0.54% (1 case) | 1.63% (3 cases) | ||
Sarcoma | 7.06% of 255 cases | 1.57% (4 cases) | 5.49% (14 cases) | |||
Uterine CS | 7.02% of 57 cases | 3.51% (2 cases) | 3.51% (2 cases) | |||
ACC | 6.59% of 91 cases | 5.49% (5 cases) | 1.1% (1 case) | |||
BICB | 6.18% of 1084 cases | 1.01% (11 cases) | 0.37% (4 cases) | 4.61% (50 cases) | 0.18% (2 cases) | |
Ovarian | 5.14% of 584 cases | 0.86% (5 cases) | 0.17% (1 case) | 3.94% (23 cases) | 0.17% (1 case) | |
Cervical | 4.38% of 297 cases | 3.03% (9 cases) | 0.34% (1 case) | 1.01% (3 cases) | ||
Bladder | 3.41% of 411 cases | 2.68% (11 cases) | 0.49% (2 cases) | 0.24% (1 case) | ||
Head & Neck | 2.68% of 523 cases | 2.49% (13 cases) | 0.19% (1 case) | |||
Lung squ | 2.46% of 487 cases | 1.85% (9 cases) | 0.21% (1 case) | 0.21% (1 case) | 0.21% (1 case) | |
Liver | 2.42% of 372 cases | 1.34% (5 cases) | 1.08% (4 cases) | |||
PCPG | 1.69% of 178 cases | 1.12% (2 cases) | 0.56% (1 case) | |||
Thyroid | 1.2% of 500 cases | 0.8% (4 cases) | 0.4% (2 cases) | |||
Mesothelioma | 1.15% of 87 cases | 1.15% (1 case) | ||||
pRCC | 1.06% of 283 cases | 1.06% (3 cases) | ||||
Prostate | 0.81% of 494 cases | 0.61% (3 cases) | 0.2% (1 case) | |||
Testicular germ cell | 0.67% of 149 cases | 0.67% (1 case) | ||||
ccRCC | 0.59% of 511 cases | 0.59% (3 cases) | ||||
LGG | 0.58% of 514 cases | 0.19% (1 case) | 0.39% (2 cases) | |||
GBM | 0.51% of 592 cases | 0.51% (3 cases) | ||||
AML | 0.5% of 200 cases | 0.5% (1 case) | ||||
Cholangiocarcinoma | ||||||
DLBC | ||||||
Kidney Chromophobe | ||||||
Thymoma | ||||||
Uveal melanoma | ||||||
GNAQ | ||||||
Alteration | Mutation | Fusion | Amplification | Deep deletion | Multiple Alterations | |
Uveal melanoma | 50% of 80 cases | 50% (40 cases) | ||||
Uterine | 3.97% of 529 cases | 2.84% (15 cases) | 0.38% (2 cases) | 0.76% (4 cases) | ||
Melanoma | 3.38% of 444 cases | 3.38% (15 cases) | ||||
Stomach | 2.5% of 440 cases | 0.91% (4 cases) | 0.23% (1 case) | 1.36% (6 cases) | ||
Esophagus | 2.2% of 182 cases | 0.55% (1 case) | 0.55% (1 case) | 0.55% (1 case) | 0.55% (1 case) | |
DLBC | 2.08% of 48 cases | 2.08% (1 case) | ||||
Bladder | 1.95% of 411 cases | 0.73% (3 cases) | 0.24% (1 case) | 0.97% (4 cases) | ||
Uterine CS | 1.75% of 57 cases | 1.75% (1 case) | ||||
Sarcoma | 1.57% of 255 cases | 1.57% (4 cases) | ||||
Colorectal | 1.52% of 594 cases | 1.35% (8 cases) | 0.17% (1 case) | |||
Lung adeno | 1.41% of 566 cases | 0.88% (5 cases) | 0.53% (3 cases) | |||
Ovarian | 1.37% of 584 cases | 0.68% (4 cases) | 0.68% (4 cases) | |||
ACC | 1.1% of 91 cases | 1.1% (1 case) | ||||
Pancreas | 1.09% of 184 cases | 0.54% (1 case) | 0.54% (1 case) | |||
GBM | 1.01% of 592 cases | 0.17% (1 case) | 0.68% (4 cases) | 0.17% (1 case) | ||
Cervical | 1.01% of 297 cases | 0.67% (2 cases) | 0.34% (1 case) | |||
BICB | 1.01% of 1084 cases | 0.28% (3 cases) | 0.09% (1 case) | 0.18% (2 cases) | 0.37% (4 cases) | 0.09% (1 case) |
Lung squ | 0.82% of 487 cases | 0.41% (2 cases) | 0.41% (2 cases) | |||
Liver | 0.81% of 372 cases | 0.27% (1 case) | 0.27% (1 case) | 0.27% (1 case) | ||
Thymoma | 0.81% of 123 cases | 0.81% (1 case) | ||||
Head & Neck | 0.76% of 523 cases | 0.38% (2 cases) | 0.38% (2 cases) | |||
Testicular germ cell | 0.67% of 149 cases | 0.67% (1 case) | ||||
PCPG | 0.56% of 178 cases | 0.56% (1 case) | ||||
AML | 0.5% of 200 cases | 0.5% (1 case) | ||||
pRCC | 0.35% of 283 cases | 0.35% (1 case) | ||||
Thyroid | 0.2% of 500 cases | 0.2% (1 case) | ||||
Prostate | 0.4% (2 cases) | |||||
LGG | ||||||
Cholangiocarcinoma | ||||||
Kidney Chromophobe | ||||||
ccRCC | ||||||
Mesothelioma | ||||||
GNA11 | ||||||
Alteration | Mutation | Fusion | Amplification | Deep deletion | Multiple Alterations | |
Uveal melanoma | 46.25 % of 80 cases | 45% (36 cases) | 1.25% (1 case) | |||
Sarcoma | 5.88% of 255 cases | 0.39% (1 case) | 0.39% (1 case) | 3.53% (9 cases) | 1.57% (4 cases) | |
Cervical | 4.71% of 297 cases | 1.01% (3 cases) | 1.35% (4 cases) | 2.36% (7 cases) | ||
Melanoma | 4.05% of 444 cases | 3.83% (17 cases) | 0.23% (1 case | |||
Esophagus | 3.3% of 182 cases | 1.1% (2 cases) | 2.2% (4 cases) | |||
Ovarian | 2.91% of 584 cases | 0.51% (3 cases) | 2.4% (14 cases) | |||
Uterine | 2.84% of 529 cases | 1.89% (10 cases) | 0.95% (5 cases) | |||
LGG | 2.33% of 514 cases | 0.19% (1 case) | 2.14% (11 cases) | |||
Lung adeno | 1.59% of 566 cases | 0.71% (4 cases) | 0.18% (1 case) | 0.71% (4 cases) | ||
Colorectal | 1.52% of 594 cases | 1.01% (6 cases) | 0.51% (3 cases) | |||
Bladder | 1.46% of 411 cases | 0.73% (3 cases) | 0.73% (3 cases) | |||
BICB | 1.29% of 1084 cases | 0.46% (5 cases) | 0.18% (2 cases) | 0.65% (7 cases) | ||
Prostate | 1.21% of 494 cases | 0.2% (1 case) | 0.2% (1 case) | 0.81% (4 cases) | ||
GBM | 1.18% of 592 cases | 0.17% (1 case) | 0.84% (5 cases) | 0.17% (1 case) | ||
Mesothelioma | 1.15% of 87 cases | 1.15% (1 case) | ||||
PCPG | 1.12% of 178 cases | 1.12% (2 cases) | ||||
Pancreas | 1.09% of 184 cases | 0.54% (1 case) | 0.54% (1 case) | |||
Liver | 0.81% of 372 cases | 0.27% (1 case) | 0.54% (2 cases) | |||
Thymoma | 0.81% of 123 cases | 0.81% (1 case) | ||||
Head & Neck | 0.57% of 523 cases | 0.38% (2 cases) | 0.19% (1 case) | |||
AML | 0.5% of 200 cases | 0.5% (1 case) | ||||
Lung squ | 0.41% of 487 cases | 0.21% (1 case) | 0.21% (1 case) | |||
ccRCC | 0.39% of 511 cases | 0.39% (2 cases) | ||||
ACC | ||||||
Cholangiocarcinoma | ||||||
DLBC | ||||||
Kidney Chromophobe | ||||||
pRCC | ||||||
Stomach | ||||||
Testicular germ cell | ||||||
Thyroid | ||||||
Uterine CS |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Larribère, L.; Utikal, J. Update on GNA Alterations in Cancer: Implications for Uveal Melanoma Treatment. Cancers 2020, 12, 1524. https://doi.org/10.3390/cancers12061524
Larribère L, Utikal J. Update on GNA Alterations in Cancer: Implications for Uveal Melanoma Treatment. Cancers. 2020; 12(6):1524. https://doi.org/10.3390/cancers12061524
Chicago/Turabian StyleLarribère, Lionel, and Jochen Utikal. 2020. "Update on GNA Alterations in Cancer: Implications for Uveal Melanoma Treatment" Cancers 12, no. 6: 1524. https://doi.org/10.3390/cancers12061524
APA StyleLarribère, L., & Utikal, J. (2020). Update on GNA Alterations in Cancer: Implications for Uveal Melanoma Treatment. Cancers, 12(6), 1524. https://doi.org/10.3390/cancers12061524