Combined Therapy with Anti-PD1 and BRAF and/or MEK Inhibitor for Advanced Melanoma: A Multicenter Cohort Study
Abstract
:1. Introduction
2. Results
2.1. Patients’ Characteristics and Treatment
2.2. Safety
2.3. Efficacy
2.3.1. Efficacy in BRAF-Mutated Melanoma Patients
2.3.2. Efficacy in BRAF-WT Melanoma Patients
3. Discussion
4. Materials and Methods
4.1. Study Design
4.2. Patients
4.3. Procedure
4.4. Outcomes and Endpoints
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Long, G.V.; Stroyakovskiy, D.; Gogas, H.; Levchenko, E.; de Braud, F.; Larkin, J.; Garbe, C.; Jouary, T.; Hauschild, A.; Grob, J.J.; et al. Combined BRAF and MEK inhibition versus BRAF inhibition alone in melanoma. N. Engl. J. Med. 2014, 371, 1877–1888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Long, G.V.; Stroyakovskiy, D.; Gogas, H.; Levchenko, E.; de Braud, F.; Larkin, J.; Garbe, C.; Jouary, T.; Hauschild, A.; Grob, J.-J.; et al. Dabrafenib and trametinib versus dabrafenib and placebo for Val600 BRAF-mutant melanoma: A multicentre, double-blind, phase 3 randomised controlled trial. Lancet 2015, 386, 444–451. [Google Scholar] [CrossRef]
- Long, G.V.; Flaherty, K.T.; Stroyakovskiy, D.; Gogas, H.; Levchenko, E.; de Braud, F.; Larkin, J.; Garbe, C.; Jouary, T.; Hauschild, A.; et al. Dabrafenib plus trametinib versus dabrafenib monotherapy in patients with metastatic BRAF V600E/K-mutant melanoma: Long-term survival and safety analysis of a phase 3 study. Annal. Oncol. 2017, 28, 1631–1639. [Google Scholar] [CrossRef] [PubMed]
- Larkin, J.; Ascierto, P.A.; Dréno, B.; Atkinson, V.; Liszkay, G.; Maio, M.; Mandalà, M.; Demidov, L.; Stroyakovskiy, D.; Thomas, L.; et al. Combined vemurafenib and cobimetinib in BRAF-mutated melanoma. N. Engl. J. Med. 2014, 371, 1867–1876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ascierto, P.A.; McArthur, G.A.; Dréno, B.; Atkinson, V.; Liszkay, G.; Di Giacomo, A.M.; Mandalà, M.; Demidov, L.; Stroyakovskiy, D.; Thomas, L.; et al. Cobimetinib combined with vemurafenib in advanced BRAFV600-mutant melanoma (coBRIM): Updated efficacy results from a randomised, double-blind, phase 3 trial. Lancet Oncol. 2016, 17, 1248–1260. [Google Scholar] [CrossRef]
- Dummer, R.; Ascierto, P.A.; Gogas, H.J.; Arance, A.; Mandala, M.; Liszkay, G.; Garbe, C.; Schadendorf, D.; Krajsova, I.; Gutzmer, R.; et al. Encorafenib plus binimetinib versus vemurafenib or encorafenib in patients with BRAF -mutant melanoma (COLUMBUS): A multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 2018, 19, 603–615. [Google Scholar] [CrossRef] [Green Version]
- Dummer, R.; Schadendorf, D.; Ascierto, P.A.; Arance, A.; Dutriaux, C.; Di Giacomo, A.M.; Rutkowski, P.; Del Vecchio, M.; Gutzmer, R.; Mandala, M.; et al. Binimetinib versus dacarbazine in patients with advanced NRAS -mutant melanoma (NEMO): A multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2017, 18, 435–445. [Google Scholar] [CrossRef]
- Robert, C.; Ribas, A.; Schachter, J.; Arance, A.; Grob, J.-J.; Mortier, L.; Daud, A.; Carlino, M.S.; McNeil, C.M.; Lotem, M.; et al. Pembrolizumab versus ipilimumab in advanced melanoma (KEYNOTE-006): Post-hoc 5-year results from an open-label, multicentre, randomised, controlled, phase 3 study. Lancet Oncol. 2019, S1470204519303882. [Google Scholar] [CrossRef]
- Larkin, J.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J.J.; Cowey, C.L.; Lao, C.D.; Schadendorf, D.; Dummer, R.; Smylie, M.; Rutkowski, P.; et al. Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma. N. Engl. J. Med. 2015, 373, 23–34. [Google Scholar] [CrossRef] [Green Version]
- Wolchok, J.D.; Chiarion-Sileni, V.; Gonzalez, R.; Rutkowski, P.; Grob, J.-J.; Cowey, C.L.; Lao, C.D.; Wagstaff, J.; Schadendorf, D.; Ferrucci, P.F.; et al. Overall Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma. N. Engl. J. Med. 2017, 377, 1345–1356. [Google Scholar] [CrossRef]
- Hodi, F.S.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J.-J.; Rutkowski, P.; Cowey, C.L.; Lao, C.D.; Schadendorf, D.; Wagstaff, J.; Dummer, R.; et al. Nivolumab plus ipilimumab or nivolumab alone versus ipilimumab alone in advanced melanoma (CheckMate 067): 4-year outcomes of a multicentre, randomised, phase 3 trial. Lancet Oncol. 2018, 19, 1480–1492. [Google Scholar] [CrossRef]
- Boni, A.; Cogdill, A.P.; Dang, P.; Udayakumar, D.; Njauw, C.-N.J.; Sloss, C.M.; Ferrone, C.R.; Flaherty, K.T.; Lawrence, D.P.; Fisher, D.E.; et al. Selective BRAF V600E Inhibition Enhances T-Cell Recognition of Melanoma without Affecting Lymphocyte Function. Cancer Res. 2010, 70, 5213–5219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frederick, D.T.; Piris, A.; Cogdill, A.P.; Cooper, Z.A.; Lezcano, C.; Ferrone, C.R.; Mitra, D.; Boni, A.; Newton, L.P.; Liu, C.; et al. BRAF Inhibition Is Associated with Enhanced Melanoma Antigen Expression and a More Favorable Tumor Microenvironment in Patients with Metastatic Melanoma. Clin. Cancer Res. 2013, 19, 1225–1231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.; Peng, W.; Xu, C.; Lou, Y.; Zhang, M.; Wargo, J.A.; Chen, J.Q.; Li, H.S.; Watowich, S.S.; Yang, Y.; et al. BRAF Inhibition Increases Tumor Infiltration by T cells and Enhances the Antitumor Activity of Adoptive Immunotherapy in Mice. Clin. Cancer Res. 2013, 19, 393–403. [Google Scholar] [CrossRef] [Green Version]
- Long, G.V.; Wilmott, J.S.; Haydu, L.E.; Tembe, V.; Sharma, R.; Rizos, H.; Thompson, J.F.; Howle, J.; Scolyer, R.A.; Kefford, R.F. Effects of BRAF inhibitors on human melanoma tissue before treatment, early during treatment, and on progression. Pigment. Cell Melanoma Res. 2013, 26, 499–508. [Google Scholar] [CrossRef]
- Wilmott, J.S.; Long, G.V.; Howle, J.R.; Haydu, L.E.; Sharma, R.N.; Thompson, J.F.; Kefford, R.F.; Hersey, P.; Scolyer, R.A. Selective BRAF Inhibitors Induce Marked T-cell Infiltration into Human Metastatic Melanoma. Clin. Cancer Res. 2012, 18, 1386–1394. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.; Zhou, J.; Giobbie-Hurder, A.; Wargo, J.; Hodi, F.S. The Activation of MAPK in Melanoma Cells Resistant to BRAF Inhibition Promotes PD-L1 Expression That Is Reversible by MEK and PI3K Inhibition. Clin. Cancer Res. 2013, 19, 598–609. [Google Scholar] [CrossRef] [Green Version]
- Hu-Lieskovan, S.; Robert, L.; Homet Moreno, B.; Ribas, A. Combining Targeted Therapy With Immunotherapy in BRAF-Mutant Melanoma: Promise and Challenges. JCO 2014, 32, 2248–2254. [Google Scholar] [CrossRef] [Green Version]
- Ribas, A.; Lawrence, D.; Atkinson, V.; Agarwal, S.; Miller, W.H.; Carlino, M.S.; Fisher, R.; Long, G.V.; Hodi, F.S.; Tsoi, J.; et al. Combined BRAF and MEK inhibition with PD-1 blockade immunotherapy in BRAF-mutant melanoma. Nat. Med. 2019, 25, 936–940. [Google Scholar] [CrossRef]
- Pelster, M.S.; Amaria, R.N. Combined targeted therapy and immunotherapy in melanoma: A review of the impact on the tumor microenvironment and outcomes of early clinical trials. Ther. Adv. Med. Oncol. 2019, 11, 1758835919830826. [Google Scholar] [CrossRef] [Green Version]
- Koya, R.C.; Mok, S.; Otte, N.; Blacketor, K.J.; Comin-Anduix, B.; Tumeh, P.C.; Minasyan, A.; Graham, N.A.; Graeber, T.G.; Chodon, T.; et al. BRAF inhibitor vemurafenib improves the antitumor activity of adoptive cell immunotherapy. Cancer Res. 2012, 72, 3928–3937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ribas, A.; Hodi, F.S.; Callahan, M.; Konto, C.; Wolchok, J. Hepatotoxicity with Combination of Vemurafenib and Ipilimumab. N. Engl. J. Med. 2013, 368, 1365–1366. [Google Scholar] [CrossRef] [PubMed]
- Puzanov, I. Combining targeted and immunotherapy: BRAF inhibitor dabrafenib (D) ± the MEK inhibitor trametinib (T) in combination with ipilimumab (Ipi) for V600E/K mutation-positive unresectable or metastatic melanoma (MM). J. Transl. Med. 2015, 13, K8. [Google Scholar] [CrossRef] [Green Version]
- Ascierto, P.A.; Ferrucci, P.F.; Fisher, R.; Del Vecchio, M.; Atkinson, V.; Schmidt, H.; Schachter, J.; Queirolo, P.; Long, G.V.; Di Giacomo, A.M.; et al. Dabrafenib, trametinib and pembrolizumab or placebo in BRAF-mutant melanoma. Nat. Med. 2019, 25, 941–946. [Google Scholar] [CrossRef]
- Long, G.V.; Lebbe, C.; Atkinson, V.; Mandalà, M.; Nathan, P.D.; Arance Fernandez, A.M.; Richtig, E.; Yamazaki, N.; Robert, C.; Schadendorf, D.; et al. The anti–PD-1 antibody spartalizumab (S) in combination with dabrafenib (D) and trametinib (T) in previously untreated patients (pts) with advanced BRAF V600–mutant melanoma: Updated efficacy and safety from parts 1 and 2 of COMBI-i. JCO 2019, 37, 9531. [Google Scholar] [CrossRef]
- Sullivan, R.J.; Hamid, O.; Gonzalez, R.; Infante, J.R.; Patel, M.R.; Hodi, F.S.; Lewis, K.D.; Tawbi, H.A.; Hernandez, G.; Wongchenko, M.J.; et al. Atezolizumab plus cobimetinib and vemurafenib in BRAF-mutated melanoma patients. Nat. Med. 2019, 25, 929–935. [Google Scholar] [CrossRef]
- Arance, A.M.; Gogas, H.; Dreno, B.; Flaherty, K.T.; Demidov, L.; Stroyakovskiy, D.; Eroglu, Z.; Ferrucci, P.F.; Pigozzo, J.; Rutkowski, P.; et al. Combination treatment with cobimetinib (C) and atezolizumab (A) vs pembrolizumab (P) in previously untreated patients (pts) with BRAFV600 wild type (WT) advanced melanoma: Primary analysis from the phase 3 IMSPIRE170 trial. Available online: https://oncologypro.esmo.org/meeting-resources/esmo-2019-congress/Combination-treatment-with-cobimetinib-C-and-atezolizumab-A-vs-pembrolizumab-P-in-previously-untreated-patients-pts-with-BRAFV600-wild-type-wt-advanced-melanoma-primary-analysis-from-the-phase-3-IMspire170-trial (accessed on 6 April 2020).
- Burton, E.M.; Amaria, R.N.; Glitza, I.C.; Shephard, M.; Diab, A.; Milton, D.; Patel, S.; Mcquade, J.; Wong, M.; Hwu, P.; et al. 1312PD - Safety and efficacy of TRIplet combination of nivolumab (N) with dabrafenib (D) and trametinib (T) [TRIDeNT] in patients (pts) with BRAF-mutated metastatic melanoma (MM): A single center phase II study. Annal. Oncol. 2019, 30, v534–v535. [Google Scholar] [CrossRef]
- Kirchberger, M.C.; Ugurel, S.; Mangana, J.; Heppt, M.V.; Eigentler, T.K.; Berking, C.; Schadendorf, D.; Schuler, G.; Dummer, R.; Heinzerling, L. MEK inhibition may increase survival of NRAS-mutated melanoma patients treated with checkpoint blockade: Results of a retrospective multicentre analysis of 364 patients. Eur. J. Cancer 2018, 98, 10–16. [Google Scholar] [CrossRef]
Characteristics | Total n (%) (n = 59) | BRAF-Mutated, n (%) (n = 40) | BRAF-Wildtype, n (%) (n = 18) |
---|---|---|---|
Median age, years (range) | 57 (27–88) | 54 (27–78) | 72 (37–88) |
Gender: | |||
Male | 32 (54) | 20 (50) | 12 (67) |
Female | 27 (46) | 20 (50) | 6 (33) |
ECOG 1 | |||
≤1 | 51 (86) | 35 (87) | 15 (83) |
>1 | 6 (10) | 4 (10) | 2 (11) |
NS 2 | 2 (3) | 1 (2) | 1 (6) |
AJCC staging 3 | |||
IV M1a | 2 (3) | 0 (0) | 2 (11) |
IV M1b | 7 (12) | 3 (8) | 3 (17) |
IV M1c | 50 (85) | 37 (92) | 13 (72) |
Number of metastatic sites | |||
<3 | 25 (42) | 18 (45) | 6 (33) |
≥3 | 29 (49) | 18 (45) | 11 (61) |
NS 2 | 5 (8) | 4 (10) | 1 (6) |
Brain metastasis | 30 (51) | 22 (55) | 8 (44) |
LDH 4 | |||
Normal | 37 (63) | 24 (60) | 12 (67) |
High | 13 (22) | 9 (22) | 4 (22) |
NS 2 | 9 (15) | 7 (18) | 2 (11) |
Median time from advanced melanoma diagnosis to onset of combination therapy, months (range) | 12 (1–127) | 10 (1–61) | 13 (3–57) |
Reason for combination therapy initiation | |||
Progression | 45 (76) | 29 (72.5) | 16 (89) |
Toxicity | 3 (5) | 3 (7.5) | 0 |
NS 2 | 11 (19) | 8 (20) | 2 (11) |
Previous lines | |||
Ipilimumab + nivolumab | 13 (22) | 8 (20) | 5 (28) |
Ipilimumab | 9 (15) | 2 (5) | 7 (39) |
Anti-PD1 | 30 (51) | 16 (40) | 14 (78) |
BRAFi 5 + MEKi 6 | 33 (56) | 33 (83) | 0 |
BRAFi 5 | 11 (19) | 11 (28) | 0 |
MEKi 6 | 3 (5) | 1 (3) | 2 (11) |
Chemotherapy | 7 (12) | 1 (3) | 6 (33) |
BRAF Status | Anti-PD1 + BRAFi 1 + MEKi 2, n | Anti-PD1 + BRAFi 1, n | Anti-PD1 + MEKi 2, n | Total, n |
---|---|---|---|---|
BRAF-mutant | 18 | 20 | 2 | 40 |
BRAF-wildtype | 0 | 0 | 18 | 18 |
Unknown | 0 | 0 | 1 | 1 |
Total, n | 18 | 20 | 21 | 59 |
Event | Anti-PD1 + BRAFi 1 + MEKi 2 (n = 18) | Anti-PD1 + BRAFi 1 (n = 20) | Anti-PD1 + MEKi 2 (n = 21) | |||
---|---|---|---|---|---|---|
Any Grade | Grade 3–4 | Any Grade | Grade 3–4 | Any Grade | Grade 3–4 | |
Number of Patients with Event (%) | ||||||
AE 3 occurring in ≥10% of total patients | ||||||
Pyrexia | 7 (39) | 0 (0) | 3 (15) | 0 (0) | 0 (0) | 0 (0) |
Diarrhea | 1 (6) | 1 (6) | 1 (5) | 0 (0) | 5 (24) | 0 (0) |
Acneiform rash | 0 (0) | 0 (0) | 1 (5) | 0 (0) | 6 (29) | 1 (5) |
AE 3 of interest occurring in <10% of total patients * | ||||||
Skin and subcutaneous tissue disorders—other ** | 2 (11) | 1 (6) | 2 (10) | 0 (0) | 1 (5) | 0 (0) |
Fatigue | 2 (11) | 0 (0) | 1 (5) | 0 (0) | 1 (5) | 0 (0) |
Chills | 3 (17) | 0 (0) | 1 (5) | 0 (0) | 0 (0) | 0 (0) |
Hypothyroidism | 1 (6) | 0 (0) | 1 (5) | 0 (0) | 1 (5) | 0 (0) |
Increased CPK 4 | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 3 (14) | 1 (5) |
Dry skin | 1 (6) | 0 (0) | 1 (5) | 0 (0) | 1 (5) | 0 (0) |
Eosinophilia | 0 (0) | 0 (0) | 1 (5) | 0 (0) | 2 (10) | 0 (0) |
Myalgia | 1 (6) | 0 (0) | 0 (0) | 0 (0) | 2 (10) | 0 (0) |
Increased AST 5 | 2 (11) | 1 (6) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
Generalized muscle weakness | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 1 (5) | 1 (5) |
Hyponatremia | 1 (6) | 1 (6) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
Maculopapular rash | 1 (6) | 1 (6) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
Tumor Response | Total (n = 59) | BRAF-Mutated Melanoma Patients (n = 40) | BRAF-Wild-Type Melanoma Patients (n = 18) |
---|---|---|---|
Best overall response, n (%) | |||
CR 1 | 2 (3) | 2 (5) | 0 (0) |
PR 2 | 5 (8) | 3 (8) | 2 (11) |
SD 3 | 30 (51) | 16 (40) | 13 (72) |
PD 4 | 22 (37) | 19 (48) | 3 (17) |
Objective overall response, n (%) | |||
CR 1 + PR 2 | 7 (12) | 5 (12) | 2 (11) |
Disease control, n (%) | |||
CR 1 + PR 2 + SD 3 | 37 (63) | 21 (52) | 15 (83) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huynh, S.; Mortier, L.; Dutriaux, C.; Maubec, E.; Boileau, M.; Dereure, O.; Leccia, M.-T.; Arnault, J.-P.; Brunet-Possenti, F.; Aubin, F.; et al. Combined Therapy with Anti-PD1 and BRAF and/or MEK Inhibitor for Advanced Melanoma: A Multicenter Cohort Study. Cancers 2020, 12, 1666. https://doi.org/10.3390/cancers12061666
Huynh S, Mortier L, Dutriaux C, Maubec E, Boileau M, Dereure O, Leccia M-T, Arnault J-P, Brunet-Possenti F, Aubin F, et al. Combined Therapy with Anti-PD1 and BRAF and/or MEK Inhibitor for Advanced Melanoma: A Multicenter Cohort Study. Cancers. 2020; 12(6):1666. https://doi.org/10.3390/cancers12061666
Chicago/Turabian StyleHuynh, Sandra, Laurent Mortier, Caroline Dutriaux, Eve Maubec, Marie Boileau, Olivier Dereure, Marie-Therese Leccia, Jean-Philippe Arnault, Florence Brunet-Possenti, Francois Aubin, and et al. 2020. "Combined Therapy with Anti-PD1 and BRAF and/or MEK Inhibitor for Advanced Melanoma: A Multicenter Cohort Study" Cancers 12, no. 6: 1666. https://doi.org/10.3390/cancers12061666
APA StyleHuynh, S., Mortier, L., Dutriaux, C., Maubec, E., Boileau, M., Dereure, O., Leccia, M. -T., Arnault, J. -P., Brunet-Possenti, F., Aubin, F., Dreno, B., Beylot-Barry, M., Lebbe, C., Lefevre, W., & Delyon, J. (2020). Combined Therapy with Anti-PD1 and BRAF and/or MEK Inhibitor for Advanced Melanoma: A Multicenter Cohort Study. Cancers, 12(6), 1666. https://doi.org/10.3390/cancers12061666