Immunotherapy in Hepatocellular Cancer Patients with Mild to Severe Liver Dysfunction: Adjunctive Role of the ALBI Grade
Abstract
:1. Introduction
2. Patients and Methods
2.1. Patients and Methods
2.2. Statistical Analysis
3. Results
3.1. Baseline Patient Characteristics
3.2. The Relationship between ALBI Grade and Clinico-Pathologic Factors
3.3. Pre-Treatment ALBI Grade Is an Independent Predictor of HCC Patients’ OS during ICI Therapy
3.4. The Relationship between ALBI Grade at ICI Cessation and PIOS
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [Green Version]
- Pardee, A.D.; Butterfield, L.H. Immunotherapy of hepatocellular carcinoma: Unique challenges and clinical opportunities. Oncoimmunology 2012, 1, 48–55. [Google Scholar] [CrossRef] [Green Version]
- Jensen, C.E.; Loaiza-Bonilla, A.; Bonilla-Reyes, P.A. Immune checkpoint inhibitors for hepatocellular carcinoma. Hepatic Oncol. 2016, 3, 201–211. [Google Scholar] [CrossRef] [PubMed]
- Rich, N.E.; Yopp, A.C.; Singal, A.G. Medical Management of Hepatocellular Carcinoma. J. Oncol. Pract. 2017, 13, 356–364. [Google Scholar] [CrossRef] [PubMed]
- Vogel, A.; Cervantes, A.; Chau, I.; Daniele, B.; Llovet, J.; Meyer, T.; Nault, J.C.; Neumann, U.; Ricke, J.; Sangro, B.; et al. Hepatocellular carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2018, 29, iv238–iv255. [Google Scholar] [CrossRef] [PubMed]
- Llovet, J.M.; Ricci, S.; Mazzaferro, V.; Hilgard, P.; Gane, E.; Blanc, J.F.; de Oliveira, A.C.; Santoro, A.; Raoul, J.L.; Forner, A.; et al. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med. 2008, 359, 378–390. [Google Scholar] [CrossRef]
- Tovoli, F.; Ielasi, L.; Casadei-Gardini, A.; Granito, A.; Foschi, F.G.; Rovesti, G.; Negrini, G.; Orsi, G.; Renzulli, M.; Piscaglia, F. Management of adverse events with tailored sorafenib dosing prolongs survival of hepatocellular carcinoma patients. J. Hepatol. 2019, 71, 1175–1183. [Google Scholar] [CrossRef] [Green Version]
- Granito, A.; Marinelli, S.; Negrini, G.; Menetti, S.; Benevento, F.; Bolondi, L. Prognostic significance of adverse events in patients with hepatocellular carcinoma treated with sorafenib. Ther. Adv. Gastroenterol. 2016, 9, 240–249. [Google Scholar] [CrossRef] [Green Version]
- Raoul, J.L.; Kudo, M.; Finn, R.S.; Edeline, J.; Reig, M.; Galle, P.R. Systemic therapy for intermediate and advanced hepatocellular carcinoma: Sorafenib and beyond. Cancer Treat. Rev. 2018, 68, 16–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruix, J.; Qin, S.; Merle, P.; Granito, A.; Huang, Y.H.; Bodoky, G.; Pracht, M.; Yokosuka, O.; Rosmorduc, O.; Breder, V.; et al. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2017, 389, 56–66. [Google Scholar] [CrossRef] [Green Version]
- Sangro, B.; Gomez-Martin, C.; de la Mata, M.; Iñarrairaegui, M.; Garralda, E.; Barrera, P.; Riezu-Boj, J.I.; Larrea, E.; Alfaro, C.; Sarobe, P. A clinical trial of CTLA-4 blockade with tremelimumab in patients with hepatocellular carcinoma and chronic hepatitis C. J. Hepatol. 2013, 59, 81–88. [Google Scholar] [CrossRef] [PubMed]
- El-Khoueiry, A.B.; Sangro, B.; Yau, T.; Crocenzi, T.S.; Kudo, M.; Hsu, C.; Kim, T.Y.; Choo, S.P.; Trojan, J.; Welling, T.H.R.; et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): An open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet 2017, 389, 2492–2502. [Google Scholar] [CrossRef]
- Zhu, A.X.; Finn, R.S.; Edeline, J.; Cattan, S.; Ogasawara, S.; Palmer, D.; Verslype, C.; Zagonel, V.; Fartoux, L.; Vogel, A.; et al. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): A non-randomised, open-label phase 2 trial. Lancet Oncol. 2018, 19, 940–952. [Google Scholar] [CrossRef]
- Flynn, M.J.; Sayed, A.A.; Sharma, R.; Siddique, A.; Pinato, D.J. Challenges and Opportunities in the Clinical Development of Immune Checkpoint Inhibitors for Hepatocellular Carcinoma. Hepatology 2019, 69, 2258–2270. [Google Scholar] [CrossRef] [Green Version]
- Finn, R.S.; Ryoo, B.Y.; Merle, P.; Kudo, M.; Bouattour, M.; Lim, H.Y.; Breder, V.; Edeline, J.; Chao, Y.; Ogasawara, S.; et al. Pembrolizumab As Second-Line Therapy in Patients With Advanced Hepatocellular Carcinoma in KEYNOTE-240: A Randomized, Double-Blind, Phase III Trial. J. Clin. Oncol. 2020, 38, 193–202. [Google Scholar] [CrossRef]
- Cheng, A.-L.; Qin, S.; Ikeda, M.; Galle, P.; Ducreux, M.; Zhu, A.; Kim, T.-Y.; Kudo, M.; Breder, V.; Merle, P.; et al. LBA3IMbrave150: Efficacy and safety results from a ph III study evaluating atezolizumab (atezo) + bevacizumab (bev) vs sorafenib (Sor) as first treatment (tx) for patients (pts) with unresectable hepatocellular carcinoma (HCC). Ann. Oncol. 2019, 30, ix186–ix187. [Google Scholar] [CrossRef]
- Tandon, P.; Garcia-Tsao, G. Prognostic indicators in hepatocellular carcinoma: A systematic review of 72 studies. Liver Int. 2009, 29, 502–510. [Google Scholar] [CrossRef] [Green Version]
- Pugh, R.N.; Murray-Lyon, I.M.; Dawson, J.L.; Pietroni, M.C.; Williams, R. Transection of the oesophagus for bleeding oesophageal varices. Br. J. Surg. 1973, 60, 646–649. [Google Scholar] [CrossRef]
- Durand, F.; Valla, D. Assessment of the prognosis of cirrhosis: Child-Pugh versus MELD. J. Hepatol. 2005, 42, S100–S107. [Google Scholar] [CrossRef]
- Johnson, P.J.; Berhane, S.; Kagebayashi, C.; Satomura, S.; Teng, M.; Reeves, H.L.; O’Beirne, J.; Fox, R.; Skowronska, A.; Palmer, D.; et al. Assessment of liver function in patients with hepatocellular carcinoma: A new evidence-based approach-the ALBI grade. J. Clin. Oncol. 2015, 33, 550–558. [Google Scholar] [CrossRef]
- Pinato, D.J.; Sharma, R.; Allara, E.; Yen, C.; Arizumi, T.; Kubota, K.; Bettinger, D.; Jang, J.W.; Smirne, C.; Kim, Y.W.; et al. The ALBI grade provides objective hepatic reserve estimation across each BCLC stage of hepatocellular carcinoma. J. Hepatol. 2017, 66, 338–346. [Google Scholar] [CrossRef] [Green Version]
- Chan, A.W.; Kumada, T.; Toyoda, H.; Tada, T.; Chong, C.C.; Mo, F.K.; Yeo, W.; Johnson, P.J.; Lai, P.B.; Chan, A.T.; et al. Integration of albumin-bilirubin (ALBI) score into Barcelona Clinic Liver Cancer (BCLC) system for hepatocellular carcinoma. J. Gastroenterol. Hepatol. 2016, 31, 1300–1306. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.C.; Chao, Y.; Chen, M.H.; Lan, K.H.; Lee, C.J.; Lee, I.C.; Chen, S.C.; Hou, M.C.; Huang, Y.H. Predictors of Response and Survival in Immune Checkpoint Inhibitor-Treated Unresectable Hepatocellular Carcinoma. Cancers 2020, 12, 182. [Google Scholar] [CrossRef] [Green Version]
- Fessas, P.; Possamai, L.A.; Clark, J.; Daniels, E.; Gudd, C.; Mullish, B.H.; Alexander, J.L.; Pinato, D.J. Immunotoxicity from checkpoint inhibitor therapy: Clinical features and underlying mechanisms. Immunology 2020, 159, 167–177. [Google Scholar] [CrossRef] [PubMed]
- European Association for the Study of the Liver. EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma. J. Hepatol. 2018, 69, 182–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Llovet, J.M.; Bru, C.; Bruix, J. Prognosis of hepatocellular carcinoma: The BCLC staging classification. Semin. Liver Dis. 1999, 19, 329–338. [Google Scholar] [CrossRef] [PubMed]
- Yau, T.; Park, J.W.; Finn, R.S.; Cheng, A.-L.; Mathurin, P.; Edeline, J.; Kudo, M.; Han, K.-H.; Harding, J.J.; Merle, P.; et al. LBA38_PRCheckMate 459: A randomized, multi-center phase III study of nivolumab (NIVO) vs sorafenib (SOR) as first-line (1L) treatment in patients (pts) with advanced hepatocellular carcinoma (aHCC). Ann. Oncol. 2019, 30. [Google Scholar] [CrossRef]
- Faivre, S.; Rimassa, L.; Finn, R.S. Molecular therapies for HCC: Looking outside the box. J. Hepatol. 2020, 72, 342–352. [Google Scholar] [CrossRef] [Green Version]
- Pinato, D.J.; Guerra, N.; Fessas, P.; Murphy, R.; Mineo, T.; Mauri, F.A.; Mukherjee, S.K.; Thursz, M.; Wong, C.N.; Sharma, R.; et al. Immune-based therapies for hepatocellular carcinoma. Oncogene 2020, 39, 3620–3637. [Google Scholar] [CrossRef] [Green Version]
- Terzi, E.; Terenzi, L.; Venerandi, L.; Croci, L.; Renzulli, M.; Mosconi, C.; Allegretti, G.; Granito, A.; Golfieri, R.; Bolondi, L.; et al. The ART score is not effective to select patients for transarterial chemoembolization retreatment in an Italian series. Dig. Dis. 2014, 32, 711–716. [Google Scholar] [CrossRef]
- Finn, R.S.; Merle, P.; Granito, A.; Huang, Y.H.; Bodoky, G.; Pracht, M.; Yokosuka, O.; Rosmorduc, O.; Gerolami, R.; Caparello, C.; et al. Outcomes of sequential treatment with sorafenib followed by regorafenib for HCC: Additional analyses from the phase III RESORCE trial. J. Hepatol. 2018, 69, 353–358. [Google Scholar] [CrossRef] [PubMed]
- Granito, A.; Bolondi, L. Non-transplant therapies for patients with hepatocellular carcinoma and Child-Pugh-Turcotte class B cirrhosis. Lancet Oncol. 2017, 18, e101–e112. [Google Scholar] [CrossRef]
- Pecorelli, A.; Lenzi, B.; Gramenzi, A.; Garuti, F.; Farinati, F.; Giannini, E.G.; Ciccarese, F.; Piscaglia, F.; Rapaccini, G.L.; Di Marco, M.; et al. Curative therapies are superior to standard of care (transarterial chemoembolization) for intermediate stage hepatocellular carcinoma. Liver Int. 2017, 37, 423–433. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Wu, J.; Lu, W.; Yang, C.; Liu, H. Application of the Albumin-Bilirubin Grade in Predicting the Prognosis of Patients With Hepatocellular Carcinoma: A Systematic Review and Meta-Analysis. Transplant. Proc. 2019, 51, 3338–3346. [Google Scholar] [CrossRef]
- Yau, T.; Kang, Y.-K.; Kim, T.-Y.; El-Khoueiry, A.B.; Santoro, A.; Sangro, B.; Melero, I.; Kudo, M.; Hou, M.-M.; Matilla, A. Nivolumab (NIVO) + ipilimumab (IPI) combination therapy in patients (pts) with advanced hepatocellular carcinoma (aHCC): Results from CheckMate 040. J. Clin. Oncol. 2019, 37, 4012. [Google Scholar] [CrossRef]
- Llovet, J.; Shepard, K.V.; Finn, R.S.; Ikeda, M.; Sung, M.; Baron, A.D.; Kudo, M.; Okusaka, T.; Kobayashi, M.; Kumada, H.; et al. A phase Ib trial of lenvatinib (LEN) plus pembrolizumab (PEMBRO) in unresectable hepatocellular carcinoma (uHCC): Updated results. Ann. Oncol. 2019, 30, v286–v287. [Google Scholar] [CrossRef]
- Kambhampati, S.; Bauer, K.E.; Bracci, P.M.; Keenan, B.P.; Behr, S.C.; Gordan, J.D.; Kelley, R.K. Nivolumab in patients with advanced hepatocellular carcinoma and Child-Pugh class B cirrhosis: Safety and clinical outcomes in a retrospective case series. Cancer 2019, 125, 3234–3241. [Google Scholar] [CrossRef]
- Trojan, J.; Sarrazin, C. Complete Response of Hepatocellular Carcinoma in a Patient With End-stage Liver Disease treated With Nivolumab: Whishful thinking or Possible? Am. J. Gastroenterol. 2016, 111, 1208–1209. [Google Scholar] [CrossRef]
- Albillos, A.; Lario, M.; Alvarez-Mon, M. Cirrhosis-associated immune dysfunction: Distinctive features and clinical relevance. J. Hepatol. 2014, 61, 1385–1396. [Google Scholar] [CrossRef] [Green Version]
- Pinato, D.J.; Yen, C.; Bettinger, D.; Ramaswami, R.; Arizumi, T.; Ward, C.; Pirisi, M.; Burlone, M.E.; Thimme, R.; Kudo, M.; et al. The albumin-bilirubin grade improves hepatic reserve estimation post-sorafenib failure: Implications for drug development. Aliment. Pharmacol. Ther. 2017, 45, 714–722. [Google Scholar] [CrossRef]
- Lee, P.C.; Chen, Y.T.; Chao, Y.; Huo, T.I.; Li, C.P.; Su, C.W.; Lee, M.H.; Hou, M.C.; Lee, F.Y.; Lin, H.C.; et al. Validation of the albumin-bilirubin grade-based integrated model as a predictor for sorafenib-failed hepatocellular carcinoma. Liver Int. 2018, 38, 321–330. [Google Scholar] [CrossRef] [PubMed]
- Ueshima, K.; Nishida, N.; Hagiwara, S.; Aoki, T.; Minami, T.; Chishina, H.; Takita, M.; Minami, Y.; Ida, H.; Takenaka, M.; et al. Impact of Baseline ALBI Grade on the Outcomes of Hepatocellular Carcinoma Patients Treated with Lenvatinib: A Multicenter Study. Cancers 2019, 11, 952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuo, Y.H.; Wang, J.H.; Hung, C.H.; Rau, K.M.; Wu, I.P.; Chen, C.H.; Kee, K.M.; Hu, T.H.; Lu, S.N. Albumin-Bilirubin grade predicts prognosis of HCC patients with sorafenib use. J. Gastroenterol. Hepatol. 2017, 32, 1975–1981. [Google Scholar] [CrossRef]
- Gui, B.; Weiner, A.A.; Nosher, J.; Lu, S.E.; Foltz, G.M.; Hasan, O.; Kim, S.K.; Gendel, V.; Mani, N.B.; Carpizo, D.R.; et al. Assessment of the Albumin-Bilirubin (ALBI) Grade as a Prognostic Indicator for Hepatocellular Carcinoma Patients Treated With Radioembolization. Am. J. Clin. Oncol. 2018, 41, 861–866. [Google Scholar] [CrossRef] [PubMed]
Characteristic | n = 341 (%) |
---|---|
Age in Years | |
Median (Range) | 64 (15–89) |
Gender | |
Male | 262 (77) |
Female | 79 (23) |
Cirrhosis | |
Present | 242 (71) |
Absent | 99 (29) |
Risk factor for Liver Disease | |
Hepatitis B Infection | 95 (28) |
Hepatitis C Infection | 135 (40) |
Alcohol Excess | 57 (17) |
Non-Alcoholic Steato-Hepatitis (NASH) | 34 (10) |
Other | 15 (4) |
Child-Turcotte-Pugh Class | |
A | 250 (73) |
B | 81 (24) |
C | 9 (3) |
Barcelona Clinic Liver Cancer Stage | |
A | 5 (2) |
B | 72 (21) |
C | 254 (75) |
D | 10 (3) |
AFP (ng/mL) | |
Median (Range) | 115 (1–1,148,416) |
Albumin (g/L) | |
Median (Range) | 36 (12–53) |
Bilirubin (millimol/L) | |
Median (Range) | 14.5 (3–210) |
ALT (IU/L) | |
Median (Range) | 45 (0–272) |
ALP (IU/L) | |
Median (Range) | 135 (26–1064) |
Platelet count | |
Median (Range) | 161 (42–670) |
Maximum Diameter of Largest Lesion (cm) | |
Median (Range) | 5.2 (0.6–21.5) |
Extrahepatic Spread | |
Absent | 166 (49) |
Present | 175 (51) |
Treatment for HCC | |
Resection | 103 (30) |
Ablation | 62 (18) |
Transarterial Chemoembolisation | 156 (45) |
Radio-Embolisation | 81 (24) |
External Beam Radiotherapy | 34 (10) |
Sorafenib | 207 (61) |
Other Systemic Therapies | 32 (9) |
Prior Lines of Anti-Cancer Treatment | |
1 | 129 (38) |
2 | 183 (54) |
>2 | 29 (8) |
Immunotherapy Treatment | |
Anti-PD(L)-1 Monotherapy | 290 (85) |
Anti-PD(L)-1 + CTLA-4 Combination | 25 (7) |
Anti-PD(L)-1 + TKI Combination | 24 (7) |
Anti-CTLA-4 Monotherapy | 2 (1) |
ALBI Grade | |
1 | 104 (31) |
2 | 187 (55) |
3 | 39 (11) |
Missing | 11 (3.2) |
ALBI Grade at Cessation | |
1 | 47 (14) |
2 | 120 (35) |
3 | 50 (15) |
Missing | 124 (36) |
Characteristic | ALBI G1 (n = 104) (%) | ALBI G2 (n = 187) (%) | ALBI G3 (n = 39) (%) | p Value |
---|---|---|---|---|
Viral Aetiology | 57/47 | 122/64 | 30/8 | 0.02 * |
Y/N | (55/45) | (66/34) | (79/21) | |
Gender | 71/33 | 148/39 | 33/6 | 0.05 * |
M/F | (68/32) | (79/21) | (85/15) | |
Cirrhosis | 52/52 | 149/38 | 34/5 | <0.001 * |
Y/N | (50/50) | (73/27) | (89/11) | |
Child-Turcotte-Pugh class | 101/2/1 | 134/52/1 | 7/25/7 | <0.001 * |
A/B/C | (97/2/1) | (72/16/1) | (18/64/18) | |
BCLC Stage | 0/33/70/1 | 3/29/153/2 | 2/10/20/7 | <0.001 * |
A/B/C/D | (0/32/67/1) | (2/16/82/1) | (5/26/51/18) | |
AFP | 73/30 | 101/79 | 19/17 | 0.03 * |
<400/>400 ng/mL | (71/29) | (56/44) | (53/47) | |
ECOG PS | 103/1 | 177/10 | 31/8 | <0.001 * |
0–1/2–3 | (99/1) | (95/5) | (80/20) | |
ICPI treatment | 79/25 | 164/23 | 39/0 | 0.001 * |
Monotherapy/Combination | (76/24) | (88/12) | (100/0) | |
Disease control rate | 64/40 | 100/87 | 19/20 | 0.28 |
CR + PR + SD/PD + NE | (62/39) | (54/47) | (49/51) | |
Toxicity as Reason for Discontinuation of ICI Y/N | 0.79 | |||
4/99 | 7/179 | 2/37 | ||
(4/96) | (4/96) | (5/95) | ||
Overall Survival (Months) | <0.001 * | |||
Median (95% CI) | 22.5 (18.5–26.4) | 9.6 (8.1–11.0) | 4.6 (2.3–6.8) | |
Immunotherapy Duration (Months) | <0.001 * | |||
Median (95% CI) | 5.1 (6.3–9.0) | 3.3 (4.3–5.7) | 2.3 (3.4–8.2) |
CTP | ALBI Grade | n (%) | Median Survival (95% CI) |
---|---|---|---|
CTP A (n = 242) | ALBI 1 | 101 (42%) | 22.5 (18.5–26.4) |
ALBI 2 | 134 (55%) | 9.6 (8.1–11.0) | |
ALBI 3 | 7 (3%) | 4.6 (2.3–6.8) | |
Overall | 15.3 (11.3–19.3) | ||
CTP B (n = 79) | ALBI 1 | 2 (3%) 52 (66%) 25 (32%) | - |
ALBI 2 | 7.2 (4.5–9.8) | ||
ALBI 3 | 8.5 (1.5–15.4) | ||
Overall | 7.5 (4.4–10.5) | ||
CTP C (n = 9) | ALBI 1 | 1 (11%) 1 (11%) 7 (78%) | - |
ALBI 2 | - | ||
ALBI 3 | 3.4 (1.3–4.2) | ||
Overall | 4.3 (2.4–6.1) |
Variable | Patients (n = 330) | Univariable HR (95% CI) | p Value | Multi-Variable HR (95% CI) | p Value |
---|---|---|---|---|---|
ALBI Grade, | 103/185/39 | ||||
2 vs. 1 | 2.2 (1.5–3.2) | <0.001 | 2.1 (1.4–3.0) | <0.001 * | |
3 vs. 1 | 2.8 (1.6–4.8) | <0.001 | 3.1 (1.8–5.4) | <0.001 * | |
Age, <65/>65 | 189/149 | 0.66 | |||
Gender, M/F | 259/79 | 0.80 | |||
Aetiology, Viral/Non-Viral | 215/121 | 0.34 | |||
Child-Turcotte-Pugh, | 247/81/9 | ||||
B vs. A | 1.8 (1.3–2.5) | <0.001 | |||
C vs. A | 3.4 (1.5–7.8) | 0.004 | |||
BCLC Stage, C + D/A + B | 260/78 | 1.5 (1.0–2.3) | 0.04 | ||
Baseline AFP, >400/<400 ng/mL | 128/198 | 1.4 (1.1–2.0) | 0.02 | ||
ICPI Regimen,
Monotherapy/Combination | 287/51 | 0.61 | |||
Post-ICPI Therapy, Active Treatment/BSC | 102/205 | 0.55 (0.40–0.77) | <0.001 | 0.30 (0.20–0.48) | <0.001 * |
Disease Control Rate, CR + PR + SD/PD + NE | 185/153 | 3.32 (2.44–4.52) | <0.001 | 4.88 (3.43–6.96) | <0.001 * |
Characteristic | Patients (n = 217) | Univariable HR (95% CI) | p Value | Multivariable HR (95% CI) | p Value |
---|---|---|---|---|---|
ALBI Grade at Cessation, | 47/120/50 | ||||
2 vs. 1 | 2.0 (1.1–3.4) | 0.01 * | 1.5 (1.0–3.5) | 0.18 | |
3 vs. 1 | 5.1 (2.8–9.3) | <0.001 * | 3.9 (1.9–8.0) | <0.001 * | |
Age, <65/>65 | 115/102 | 0.53 | |||
Gender, M/F | 167/50 | 0.26 | |||
Aetiology, Viral/Non-Viral | 128/89 | 0.94 | |||
ECOG PS at Cessation 2–4/0–1 | 51/120 | 1.7 (1.1–2.6) | 0.03 * | ||
Baseline AFP,
>400/<400 ng/mL | 81/131 | 0.06 | |||
ICPI Regimen,
Monotherapy/Combination | 180/37 | 0.39 | |||
Post-ICPI Therapy, Active Treatment/BSC | 78/139 | 0.3 (0.2–0.5) | <0.001 * | 0.3 (0.2–0.5) | <0.001 * |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinato, D.J.; Kaneko, T.; Saeed, A.; Pressiani, T.; Kaseb, A.; Wang, Y.; Szafron, D.; Jun, T.; Dharmapuri, S.; Naqash, A.R.; et al. Immunotherapy in Hepatocellular Cancer Patients with Mild to Severe Liver Dysfunction: Adjunctive Role of the ALBI Grade. Cancers 2020, 12, 1862. https://doi.org/10.3390/cancers12071862
Pinato DJ, Kaneko T, Saeed A, Pressiani T, Kaseb A, Wang Y, Szafron D, Jun T, Dharmapuri S, Naqash AR, et al. Immunotherapy in Hepatocellular Cancer Patients with Mild to Severe Liver Dysfunction: Adjunctive Role of the ALBI Grade. Cancers. 2020; 12(7):1862. https://doi.org/10.3390/cancers12071862
Chicago/Turabian StylePinato, David J., Takahiro Kaneko, Anwaar Saeed, Tiziana Pressiani, Ahmed Kaseb, Yinghong Wang, David Szafron, Tomi Jun, Sirish Dharmapuri, Abdul Rafeh Naqash, and et al. 2020. "Immunotherapy in Hepatocellular Cancer Patients with Mild to Severe Liver Dysfunction: Adjunctive Role of the ALBI Grade" Cancers 12, no. 7: 1862. https://doi.org/10.3390/cancers12071862
APA StylePinato, D. J., Kaneko, T., Saeed, A., Pressiani, T., Kaseb, A., Wang, Y., Szafron, D., Jun, T., Dharmapuri, S., Naqash, A. R., Muzaffar, M., Navaid, M., Lee, C. -J., Bulumulle, A., Yu, B., Paul, S., Nimkar, N., Bettinger, D., Hildebrand, H., ... Huang, Y. -H. (2020). Immunotherapy in Hepatocellular Cancer Patients with Mild to Severe Liver Dysfunction: Adjunctive Role of the ALBI Grade. Cancers, 12(7), 1862. https://doi.org/10.3390/cancers12071862